

Faculty of Manufacturing Engineering

DRY SLIDING WEAR AND FRICTION BEHAVIOR OF SILICON CARBIDE AND MULTI WALL CARBON NANOTUBES REINFORCED MAGNESIUM MATRIX HYBRID COMPOSITES

Tee Zhen Wei

Master of Science in Manufacturing Engineering

2015

C Universiti Teknikal Malaysia Melaka

DRY SLIDING WEAR AND FRICTION BEHAVIOR OF SILICON CARBIDE AND MULTI WALL CARBON NANOTUBES REINFORCED MAGNESIUM MATRIX HYBRID COMPOSITES

TEE ZHEN WEI

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSTITI TEKNIKAL MALAYSIA MELAKA

2015

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Dry Sliding Wear and Friction Behavior of Silicon Carbide and Multi-Walled Carbon Nanotubes Reinforced Magnesium Matrix Hybrid Composites" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	:	
Name	:	
Date	:	

DEDICATION

I Humbly Dedicate to

My Beloved Father and Mother, Tee Cheng Sum and Khoo Swee Lan

&

All My Friends; Who Have Bring Me

The Gairty, Encourage, Delight and Happiness in My life!

ABSTRACT

In order to optimize the functionality of magnesium, a modest attempt has been made to develop magnesium hybrid composites incorporating of synthesis micro and nano size fillers. Commercially pure magnesium (Mg) reinforced with (i) 10 wt.% micro-sized silicon carbide (SiC) particles (ii) combination of 10 wt.% micro-sized silicon carbide (SiC) particles and 1 wt.% multi-walled carbon nanotubes (MWCNTs), respectively, were synthesized via powder metallurgy route followed by hot extrusion. After the specimen preparation, microstructural characterization studies were conducted to determine the distribution of reinforcement, grain morphology, and presence of porosity by using Optical Microscope, Scanning Electron Microscope and Field Emission Scanning Electron Microscopy. Density and porosity measurements were carried out accordance with Archimedes' principle. Micro-Vickers Test was also carried out to investigate the hardness of material. The dry sliding tests were performed using a pin-on-disc tester against a grey cast iron counterbody under two applied normal loads (5, 10, 20, 40 N) with four sliding speeds (0.5, 1.5, 3.5, 4.5 m/s) corresponding to a constant sliding distance of 5000 m to identify the wear rate and coefficient of friction of magnesium composite. The morphology of the worn pin surfaces and collected wear debris were examined using Scanning Electron Microscope. Throughout this work, reasonably uniform distribution of SiC particulates and MWCNTs in magnesium matrix were observed. Low porosity (below 2.0 %) was obtained which indicated the suitability of the processing parameters. The Vickers hardness of all the hierarchical magnesium composite configurations are significantly higher than the pure magnesium. Wear rate for both unreinforced magnesium and its composite increased with increasing load but the incorporation of micro and nano size fillers reduced the wear rate of magnesium particularly at loads of 5, 10, 20 N. The sliding speed increment induced higher wear on magnesium composites. However, at the highest load of 40 N, a crossover in wear rate was observed with the increased in sliding speeds, i.e., at sliding speed of 1.5 m/s the wear rate of the composite higher than unreinforced magnesium, but the incorporation of SiC and MWCNTs shifts to minimize the wear rate at sliding speeds of 3.5 and 4.5 m/s respectively. There is a small reduction in the coefficient of friction for Mg/SiC/MWCNTs composite as compared to Mg/SiC particularly at low loads of 5, 10, 20 N as the sliding speed increased but the change of coefficient of friction among different materials become insignificant at high load of 40 N. Five wear mechanisms mostly operated in combination namely abrasion, adhesion, oxidation, delamination and plastic deformation have been observed in various sliding conditions. Such modify hybrid approach may bring significant implications on application particularly in automotive and aviation sectors. These would become as another material option to further improve the fuel efficiency as well as service life of components.

ABSTRAK

Bagi mengoptimumkan fungsi magnesium, satu percubaan telah dibuat untuk menghasilkan komposit hybrid magnesium yang bertetulang saiz mikro dan nano. Magnesium tulen (Mg) diperkukuhkan dengan (i) 10 wt.% silikon karbida (SiC) bersaiz mikro (ii) 10 wt.% silikon karbida (SiC) bersaiz mikro dan 1 wt.% tiub nano karbon berdinding ganda (MWCNTs), masing-masing, telah disintesis melalui kaedah metalurgi serbuk diikuti oleh penyemperitan panas. Selepas penyediaan spesimen, kajian pencirian mikrostruktur telah dijalankan untuk menentukan pengagihan tetulang, morfologi ira, dan kehadiran keliangan dengan menggunakan Mikroskop Optik, Pengimbasan Elektron Mikroskop dan Bidang Pelepasan Mengimbas Mikroskopi Elektron. Ketumpatan dan keliangan pengukuran telah dijalankan mengikut prinsip Archimedes. Ujian micro-Vickers juga telah dijalankan untuk mengkaji kekerasan bahan. Ujian haus pada keadaan kering telah dilakukan dengan menggunakan penguji pin terhadap besi tuang kelabu di bawah empat kenaan beban normal (5, 10, 20, 40 N) dengan empat kelajuan gelongsor (0.5, 1.5, 3.5, 4.5 m/s) dengan jarak yang tetap, 5000 m untuk mengenal pasti kadar haus dan pekali geseran komposit magnesium. Morfologi permukaan pin yang telah haus dan serpihan haus yang dipungut telah diperiksa menggunakan Pengimbasan Elektron Mikroskop. Dari kajian ini, taburan yang seragam zarahan SiC dan MWCNTs di dalam matriks magnesium telah diperhatikan. Keliangan yang rendah (di bawah 2.0 %) yang telah diperolehi menunjukkan kesesuaian parameter pemprosesan. Kekerasan Vickers bagi hierarki konfigurasi komposit magnesium adalah jauh lebih tinggi daripada magnesium yang tulen. Kadar haus untuk kedua-dua magnesium tanpa tetulang dan komposit meningkat dengan peningkatan beban tetapi penambahan pengisi bersaiz mikro dan nano mengurangkan kadar haus magnesium terutamanya pada 5, 10, 20 N. Peningkatan kelajuan gelongsor menyebabkan kadar haus yang lebih tinggi pada komposit magnesium. Walau bagaimanapun, pada beban tertinggi 40 N, peralihan dalam kadar haus diperhatikan dengan peningkatan dalam kelajuan gelongsor; iaitu pada kelajuan 1.5 m/s kadar haus daripada komposit lebih tinggi daripada magnesium tanpa tetulang tergelincir, tetapi penambahan SiC dan MWCNTs mengurangkan kadar haus pada kelajuan gelongsor 3.5 dan 4.5 m/s masing-masing. Terdapat pengurangan kecil dalam pekali geseran Mg/SiC/MWCNTs komposit berbanding Mg/SiC terutamanya pada beban rendah 5, 10, 20 N dimana kelajuan gelongsor meningkat tetapi perubahan pekali geseran di antara bahanbahan yang berbeza menjadi tidak ketara pada beban tertinggi 40 N. Lima mekanisma haus yang kebanyakannya beroperasi secara gabungan iaitu lelasan, rekatan, pengoksidaan, delaminasi dan ubah bentuk plastik telah diperhatikan dalam pelbagai keadaan gelongsor. Pengubahsuaian komposit hybrid magnesium ini boleh membawa implikasi yang besar ke atas aplikasi terutamanya dalam sektor automotif dan penerbangan. Ia akan menjadi salah satu pilihan bahan untuk meningkatkan lagi kecekapan bahan api dan juga hayat perkhidmatan komponen.

ACKNOWLEGEMENTS

Thank to God for giving me a strength and good heath condition to accomplish my master thesis as scheduled. With deep regards and profound respect, I wish to extend my sincere and earnest gratitude to my main supervisor Professor Dr. Qumrul Ahsan, for his priceless guidance, valuable advice, constructive criticism and patience throughout in this research work. He has been an illuminated guide, not just in addressing the issues of the present work, but also in teaching me how to deal with people. When I wandered, he gave accurate directions just like a faithful GPS. His scientific advice and helpful comments have contributed the most towards the completion of my thesis. I am also very thankful to my co-supervisor Puan Siti Rahmah for her precious time spent especially providing some of the tools and resources which were essential to the work reported in this dissertation. I have no hesitation to admit that without their knowledge, continued support and encouragement on my research activity, this thesis would not been same as presented here. I would like to acknowledge financial support for this project provided by Universiti Teknikal Malaysia Melaka (UTeM) under the grant number of PJP/2011/FKP (18A) /S907 and allowing me to use entire facilities available to complete my testing and studies.Special thanks are addressed to the laboratory technichians who are Mr. Jaafar, Mr. Safarizal, Mr. Mazlan, Mr. Mohd Farihan, Mr. Sarman, Mr. Mohd Raduan, Mr. Muhammad Azwan for their tremendous technical support and assistance during the execution of my experimental work. In particular, I would like to thank Mr. Azrul Syafiq

for helping me whenever and whatever I needed in the tribology lab. Valuable help in metallographic and worn surface examinations by Mr. Azhar Shah for SEM and EDX and Mr. Sanadi Subhi for FESEM are also deeply appreciated. My sincere thanks also extends to my friends and my seniors, especially Mrs. Chong Meng Mun, Mr. Mohd Zaidan, Mr. Alans Ng Guan Yao, Mrs. Nurul Hazliza for their friendship and help rendered. Together we shared endless discussions and managed to get the positive out of the difficulties during our research. Last but not least, I would like to pay my gratitude to my parents who have invested in me, both emotionally and financially for the entire duration of my study. Their love and belief in me lit my path in life and helped me strive to reach towards horizon and beyond.

TABLE OF CONTENTS

DEC	LAR	ATION	
APP	ROV	AL	
DEL	DICAT	ΓΙΟΝ	
	TRA		i
	TRA		ii
		VLEDGEMENTS	iii
		OF CONTENTS	v
		TABLES	viii
	-	FIGURES	ix
		APPENDICES	xvi
		ABBREVIATIONS	xvii
		SYMBOLS	
		PUBLICATIONS	xx xxi
LIG	I OF	IUDEICATIONS	ллі
CHA	РТЕ	R	
1.		RODUCTION	1
	1.1	Background	1
		Problem statements	4
		Objective of study	6
		Scope of study	6
		Dissertation outline	7
•			0
2.		ERATURE REVIEW	8
	2.1	1	9
		Metal matrix composites	9
	2.3	1	11
		2.3.1 Titanium	12
		2.3.2 Aluminum	12
		2.3.3 Magnesium	13
	2.4	Particulate reinforcements for magnesium matrix composites	15
		2.4.1 Particulate silicon carbide	16
		2.4.2 Carbon nanotubes	18
	2.5		20
		composites	
		2.5.1 Liquid state processing of metal matrix composites	22
		2.5.1.1 Stir casting	22
		2.5.1.2 Infiltration processes	23
		2.5.2 Solid state processing of metal matrix composites	24
		2.5.2.1 Powder metallurgy	24
		2.5.3 Extrusion of metal matrix composites	31
	2.6	Hardness of particulate reinforced magnesium matrix composites	34
	2.7	Tribology of particulate reinforced magnesium matrix composites	36
		2.7.1 Friction	37

PAGE

		2.7.2	Wear		38
			2.7.2.1	Abrasive wear	39
			2.7.2.2	Adhesive wear	40
			2.7.2.3	Oxidation wear	41
			2.7.2.4	Fatigue wear	42
			2.7.2.5	Melt wear	43
			2.6.2.3	Summary of literatures of wear in magnesium metal matrix composites	n 43
3.	ME	THOD	OLOGY		47
	3.0	Overv			47
	3.1	Mater			48
			Magnes	sium	49
			Silicon		49
		3.1.3	Multiwa	alled carbon nanotubes	50
	3.2	Equip	ments / i	nstruments used	50
	3.3	Chara	cterizatio	on of raw materials	51
		3.3.1	Particle	size analyzer	51
	3.4	Sampl	le prepara	ation	51
		3.4.1		processing	51
				Composition	52
				Mechanical mixing	53
				Compaction of the powder mixing	57
				Sintering	59
		3.4.2		ary processing	60
				Hot extrusion	61
				Cutting	62
				Grinding	62
	25	D1 ·	3.4.2.4	Polishing	63
	3.3	-		cterization	63
	26		•	v and porosity measurement	63 65
	3.6			aracterization ardness test	65
			Tribolo		68
		5.0.2		Experimental matrix design	68
				Wear mechanisms characterization	70
	3.7	Metal		c characterization	70
	5.7			microscopy	70
				ing electron microscope	71
				nission scanning electron microscope	73
4.	RES	SULTS	AND DI	SCUSSION	74
	4.0	Overv			74
				terisation	74
				ium particles	75
			-	carbide particles	76
				valled carbon nanotubes	77
	4.2	Macro	ostructura	al characteristics	77

	4.3	Microstructural characteristics	78
	4.4	Density and porosity measurement	82
	4.5	Microhardness measurement	85
	4.6	Wear data presentation	88
		4.6.1 Effects of load	88
		4.6.2 Effects of sliding speed	88
		4.6.3 Effects of reinforcement	91
		4.6.4 Coefficient of friction	91
	4.7	Wear mechanisms	93
		4.7.1 Abrasive wear	94
		4.7.2 Oxidation wear	98
		4.7.3 Delamination wear	101
		4.7.4 Adhesive wear	103
		4.7.5 Melt wear	105
	4.8	Summary of wear behaviour	108
5.	CO	NCLUSION AND RECOMMENDATIONS	112
	5.1	Conclusion	112
	5.2	Recommendation	114
REI	FERE	NCES	115
APF	PEND	IX A	133
APF	PEND	IX B	137
APF	PEND	IX C1	138
APF	PEND	IX C2	139
APF	PEND	IX C3	140
APF	PEND	IX D1	141
APF	PEND	IX D2	142
APF	PEND	IX D3	143
APF	PEND	IX E	144

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Advantages of MMCs compared to PMCs and unreinforced matrix	9
	alloys	
2.2	Typical reinforcement used in metal matrix composites (Chawla	10
	and Chawla, 2006)	
2.3	Comparison of properties between Mg with other common matrix	14
	materials	
2.4	List of particulates used as reinforcement for magnesium	16
	composite	
2.5	Properties of commonly used reinforcement particulates (Kainer,	17
	2006)	
3.1	Description of composition for magnesium hybrid composites in a	52
	total formulated powder of 30g	
3.2	Factors and levels selected for the pin on disc test	69
4.1	Density results	82
4.2	Porosity results	84
4.3	Results of vickers hardness measurements for different samples	85
4.4	Summary wear mechanisms for each sliding condition and pin	110
	material	

viii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Sturctures of this dissertation	7
2.1	Schematic structures of (a) SWCNT and (b) MWCNT (Choudhary	18
	and Gupta., 2011)	
2.2	Schematic diagram of processing methods of metal matrix	21
	composites (Evans et al., 2003)	
2.3	Schematic diagram showing the stir casting setup (Gupta and	22
	Sharon, 2011)	
2.4	(a) The experimental set-up of the spontaneous or pressureless	23
	infiltration where Mg infiltration in mixed with SiC and SiO_2	
	powders (b) Gas pressure infiltration (c) Squeeze casting	
	infiltration (Chawla and Chawla, 2006)	
2.5	Movements of working parts and balls in a planetary mill (Datta,	25
	2012)	
2.6	Sequence of compaction (a) Die fill stage (b) Compaction (c) Part	27
	ejection (Angelo and Subramanian, 2008)	
2.7	Schematic diagram of progress of sintering: (i) Particles in contact,	28
	(ii) Initial stage, (iii) Intermediate stage, (iv) Final sintered	
	geometry (German, 1996)	

- 2.8 Schematic diagram of hot extrusion, showing effect on grain 31 structure (Friedrich and Mordike, 2006)
- 2.9 Csf/AZ91D composite workpieces by liquid-solid extrusion (v=4 33 mm/s) at different temperatures: (a) 400 °C; (b) 410 °C; (c) 420 °C (Qi et al., 2010)
- 2.10 Extrusion constant k for various materials as a function of 34 temperature (Kalpakjian et al., 2001 as cited in Komander 2009)
- 2.11 Steps involved in indentation during vicker hardness test 35 (Gadermayr et al., 2012)
- 2.12 Schematic diagram of (a) Two-body abrasion mechanism (b) 40
 Three-body abrasion mechanism (Adapted and modified from Stachowiak and Batchelor, 2001)
- 2.13 Schematic process of the formation of an adhesive transfer particle40 (Adapted and modified from Stachowiak and Batchelor, 2001)
- 2.14 Schematic representations of oxidation of metallic surfaces at high 41
 contact temperatures (Adapted and modified from Stachowiak and Batchelor, 2001)
- 2.15 Schematic illustration of the process of surface crack initiation and 42 propagation (Adapted and modified from Stachowiak and Batchelor, 2001)
- 2.16 Schematic illustration of the formation of molten layer (Adapted 43 and modified from Stachowiak and Batchelor, 2001)
- 3.1Methodology process flow chart48

Х

3.2	Digital photograph of Insmart mini planetary ball mill (Ceramic	54
	lab, FKP, UTeM)	
3.3	Digital photograph of formulated powder (89 wt.% Mg, 10 wt.%	55
	SiC, 1 wt .% MWCNTs) (a) Before mixing (b) After mixed for 1	
	hour (c) After mixed for 2 Hour	
3.4	Digital photograph of tool steel die-punch arrangement in Instron	57
	universal testing machine, model load frames: 5584 (Fitting and	
	fabrication lab, FKM, UTeM)	
3.5	Digital photograph of green compact	58
3.6	Digital photograph of high temperature horizontal tubular furnace,	59
	model: TF70-1600 (Tribology lab, FKM, UTeM)	
3.7	Experimental heating cycles with 10° C / min heating rate for	60
	sintering magnesium composite samples	
3.8	Digital photograph of 150 Ton hydraulic press machine	61
	(Fabrication lab, FKP, UTeM)	
3.9	Digital photograph of Mitutoyo Vickers hardness tester, model:	65
	HM-200 series (Material lab, FKP, UTeM)	
3.10	Digital photograph of Ducom pin-on-disc tester, model: TR-20LE	66
	(a) Data acquisition system (b) Machine structure (Tribology lab,	
	FKM, UTeM)	
3.11	Digital photograph of Carl Zeiss Axioskop 2 MAT optical	71
	microscopy (Material lab, FKP, UTeM)	
3.12	Digital photograph of Zeiss EVO 50 scanning electron microscope	72

(Material lab, FKP, UTeM)

- 3.13 Digital photograph of JEOL field emission scanning electron 73 microscope, model: JSM-6700F (Biomedical engineering research group (BERG), faculty of engineering, UIAM)
- 4.1 FESEM micrograph of as-received magnesium powder (a) at 100×75 magnification (b) at $200 \times$ magnification
- 4.2 Particle size distribution graphs of as-received magnesium powder 75
- 4.3 FESEM micrograph of as-received silicon carbide powder (a) at 76
 100 × magnification (b) at 400 × magnification
- 4.4 Particle size distribution graphs of as-received silicon carbide 76 powder
- 4.5 FESEM micrographs of as-received multi-walled carbon nanotubes 77
 (a) at 30,000 × magnification (b) at 60,000 × magnification
- 4.6 (a) Sintered billet (b) Extruded rod 78
- 4.7 SEM micrographs of extruded composites (a) Mg/SiC (b) 79
 Mg/SiC/MWCNTs at 150 × magnification
- 4.8 FESEM micrographs of extruded hybrid composites 80 Mg/SiC/MWCNTs (a) at 37,000 × magnification (b) at 100,000 × magnification
- 4.9 Etched SEM micrographs of extruded (a) Pure Mg (b) Composites 81
 Mg/SiC (c) Composites Mg/SiC/MWCNTs at 1000 ×
 Magnification
- 4.10 Comparisons of theoretical density and experimental density for 83 different samples
- 4.11 Comparisons of calculated volumetric porosity for different 84

xii

samples

- 4.12 Variation of Hardness Number (HV) measured for different 86 samples
- 4.13 Comparative graphs of wear rate (mm³/m) with (a) Sliding speed : 89
 0.5 m/s; (b) Sliding speed : 1.5 m/s; (c) Sliding speed : 3.5 m/s; (d)
 Sliding speed : 4.5 m/s as a function of various applied load of different samples corresponding to sliding distance of 5000 m
- 4.14 Comparative graphs of wear rate (mm³/m) with (a) Load : 5 N; (b) 90
 Load : 10 N; (c) Load : 20 N; (d) Load : 40 N as a function of various sliding speed of different samples corresponding to sliding distance of 5000 m
- 4.15 Variation of coefficient of friction (μ) with (a) Load : 5 N; (b) 92
 Load : 10 N; (c) Load : 20 N; (d) Load : 40 N as a function of various sliding speed of different samples corresponding to sliding distance of 5000 m
- 4.16 SEM images of worn surface at sliding speed of 1.5 m/s (a) Mg, 95
 (b) Mg/SiC, (c) Mg/SiC/MWCNTs under load of 5 N, (d) Mg, (e)
 Mg/SiC, (f) Mg/SiC/MWCNTs under load of 10 N, (g) Mg, (h)
 Mg/SiC, (i) Mg/SiC/MWCNTs under load of 20 N, (j) Mg, (k)
 Mg/SiC, (l) Mg/SiC/MWCNTs under load of 40 N at 150 ×
 magnification
- 4.17 SEM images of worn surface at load of 20 N (a) Mg, (b) Mg/SiC, 96
 (c) Mg/SiC/MWCNTs under sliding speed of 0.5 m/s , (d) Mg, (e)
 Mg/SiC, (f) Mg/SiC/MWCNTs under sliding speed of 1.5 m/s , (g)

Mg, (h) Mg/SiC, (i) Mg/SiC/MWCNTs under sliding speed of 3.5 m/s , (j) Mg, (k) Mg/SiC, (l) Mg/SiC/MWCNTs under sliding speed of 4.5 m/s at $150 \times$ magnification

- 4.18 (a) Ribbon-Like Strips from Mg Specimen Tested Under Load of 97
 40 N and Sliding Speed of 1.5 m/s (b) Corresponding EDX spectra for Figure 4.18a
- 4.19 Large amount of transferred material covering the worn surface of 98 Mg/SiC/MWCNTs test under load of 10 N and sliding speed of 1.5 m/s (a) at 150 × magnification (b) at 900 × magnification (c) corresponding EDX spectra for Figure 4.19b
- 4.20 (a) Fine Oxide Debris from Mg/SiC/MWCNTs Specimen Tested 99
 Under Load of 10 N and Sliding Speed of 1.5 m/s (b)
 Corresponding EDX spectra for Figure 4.20a
- 4.21 Worn surface of Mg/SiC/MWCNTs test under load of 20 N and 109 sliding speed of 4.5 m/s (a) at 150 × magnification (b) corresponding EDX spectra for Figure 4.21a
- 4.22 (a) Cracks running perpendicular to the sliding direction indicative 110 of delamination (b) Large craters formed due to the material removed from pin surface during delamination
- 4.23 (a) Wear debris showing flake type particles (b) EDX analysis 111 showing the presence of oxygen in delamination wear debris.
- 4.24 SEM images of worn surface (a) Mg, (b) Mg/SiC, (c) 112
 Mg/SiC/MWCNTs at 150 × magnification, (d) Mg, (e) Mg/SiC, (f)
 Mg/SiC/MWCNTs at 900 × magnification under load of 40 N and

sliding speed of 3.5 m/s, Corresponding EDX Spectra (g) from Figure d, (h) from Figure e, (i) from Figure f.

- 4.25 FESEM images of worn surface Mg/SiC/MWCNTs under (a) Load 114
 of 40 N and sliding speed of 1.5 m/s (b) Load of 40 N and sliding
 speed of 4.5 m/s at 55000 × magnification
- 4.26 (a) Featureless worn surface of Mg/SiC/MWCNTs test under load 115 of 40N and sliding speed of 4.5m/s at 150 × magnification (b) surface pin material extruded to trailing edge and re-solidified around the periphery during sliding (c) Large, irregular lumps in the wear debris
- 4.27 (a) Cross-section of worn surface Mg/SiC/MWCNTs parallel to the 116 sliding direction under load of 40 N and sliding speed of 3.5 m/s at 300 × magnification (b) Corresponding EDX spectra of Figure 4.27a
- 4.28 Wear mechanism map of the studied composites with a 117 approximate boundaries of dominant wear mechanisms at the different sliding conditions

XV

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	A list of equipments / Instruments used	135
В	A list of chemical used	139
C1	The details drawing of compaction die	140
C2	The details drawing of compaction punch	141
C3	The details drawing of stopper	142
D1	The details drawing of extrusion die	143
D2	The details drawing of extrusion plunger	144
D3	The details drawing of holder for extrusion die	145
Е	Chemical analysis of the counterbody	146

LIST OF ABBREVIATIONS

ASTM	American society for testing materials
Al	Aluminium
Al ₂ O ₃	Alumina
AlN	Aluminum nitride
AE42	Magnesium alloy with about 4 wt.% Al and 2 wt.% about
	mischmetal
AM60B	Magnesium alloy with about 6 wt.% Al and less than 1 wt.% Mn
AZ91D	Magnesium alloy with about 9 wt.% Al and about 1 wt.% Zn
B ₄ C	Boron carbide
BCC	Body centered cubic
BN	Boron nitride
BPR	Ball to powder ratio
С	Carbon
CFMMCs	Continuous fiber reinforced metal matrix composites
CMCs	Ceramic matrix composites
CNT	Carbon nanotube
CO ₂	Carbon dioxide
СТЕ	Coefficient of thermal expansion
Cu	Copper

xvii

DMD	Disintegrated melt deposition
EDX	Energy dispersive X-ray spectrometer
FCC	Face centered cubic
FEG	Field Emission Gun
FESEM	Field emission scanning electron microscopy
Grp	Graphite
НСР	Hexagonal close packed
Hv	Vickers hardness number
Mg	Magnesium
Mg/SiC	Magnesium reinforced with silicon carbide
Mg/SiC/MWCNTs	Magnesium reinforced with silicon carbide and multi-wall
	carbon nanotubes
Mg ₂ Si	Magnesium silicide
MgO	Magnesium oxide
MM	Mechanical milling
MMCs	Metal matrix composites
Mn	Manganese
MSDS	Material safety data sheet
Ni	Nickel
OM	Optical microscopy
PCA	Process control agent
РМ	Powder metallurgy
PMCs	Polymer matrix composites
PRMMCs	Particulate reinforced metal matrix composites

xviii

C Universiti Teknikal Malaysia Melaka

PSA	Particle size analyzer
QE22	Magnesium alloy with 2.5% Ag, 2% RE and 0.7% Zr
RE	Rare earth metals
SEI	Secondary electron imaging
SEM	Scanning electron microscopy
SiC	Silicon carbide
SiO ₂	Silica
Ti	Titanium
TiB ₂	Titanium diboride
TiC	Titanium carbide
W	Tungsten
XRD	X-ray diffraction
Y ₂ O ₃	Yttrium(III) oxide
Zn	Zinc
Zr	Zirconium