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ABSTRACT 

 

 

In order to optimize the functionality of magnesium, a modest attempt has been made to 
develop magnesium hybrid composites incorporating of synthesis micro and nano size 
fillers. Commercially pure magnesium (Mg) reinforced with (i) 10 wt.% micro-sized 
silicon carbide (SiC) particles (ii) combination of 10 wt.% micro-sized silicon carbide (SiC) 
particles and 1 wt.% multi-walled carbon nanotubes (MWCNTs), respectively, were 
synthesized via powder metallurgy route followed by hot extrusion. After the specimen 
preparation, microstructural characterization studies were conducted to determine the 
distribution of reinforcement, grain morphology, and presence of porosity by using Optical 
Microscope, Scanning Electron Microscope and Field Emission Scanning Electron 
Microscopy. Density and porosity measurements were carried out accordance with 
Archimedes’ principle. Micro-Vickers Test was also carried out to investigate the hardness 
of material. The dry sliding tests were performed using a pin-on-disc tester against a grey 
cast iron counterbody under two applied normal loads (5, 10, 20, 40 N) with four sliding 
speeds (0.5, 1.5, 3.5, 4.5 m/s) corresponding to a constant sliding distance of 5000 m to 
identify the wear rate and coefficient of friction of magnesium composite. The morphology 
of the worn pin surfaces and collected wear debris were examined using Scanning Electron 
Microscope. Throughout this work, reasonably uniform distribution of SiC particulates and 
MWCNTs in magnesium matrix were observed. Low porosity (below 2.0 %) was obtained 
which indicated the suitability of the processing parameters. The Vickers hardness of all 
the hierarchical magnesium composite configurations are significantly higher than the pure 
magnesium. Wear rate for both unreinforced magnesium and its composite increased with 
increasing load but the incorporation of micro and nano size fillers reduced the wear rate of 
magnesium particularly at loads of 5, 10, 20 N. The sliding speed increment induced 
higher wear on magnesium composites. However, at the highest load of 40 N, a crossover 
in wear rate was observed with the increased in sliding speeds, i.e., at sliding speed of 1.5 
m/s the wear rate of the composite higher than unreinforced magnesium, but the 
incorporation of SiC and MWCNTs shifts to minimize the wear rate at sliding speeds of 
3.5 and 4.5 m/s respectively. There is a small reduction in the coefficient of friction for 
Mg/SiC/MWCNTs composite as compared to Mg/SiC particularly at low loads of 5, 10, 20 
N as the sliding speed increased but the change of coefficient of friction among different 
materials become insignificant at high load of 40 N. Five wear mechanisms mostly 
operated in combination namely abrasion, adhesion, oxidation, delamination and plastic 
deformation have been observed in various sliding conditions. Such modify hybrid 
approach may bring significant implications on application particularly in automotive and 
aviation sectors. These would become as another material option to further improve the 
fuel efficiency as well as service life of components. 
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ABSTRAK 

 

 

Bagi mengoptimumkan fungsi magnesium, satu percubaan telah dibuat untuk 

menghasilkan komposit hybrid magnesium yang bertetulang saiz mikro dan nano. 

Magnesium tulen (Mg) diperkukuhkan dengan (i) 10 wt.% silikon karbida (SiC) bersaiz 

mikro (ii) 10 wt.% silikon karbida (SiC) bersaiz mikro dan 1 wt.% tiub nano karbon 

berdinding ganda (MWCNTs), masing-masing, telah disintesis melalui kaedah metalurgi 

serbuk diikuti oleh penyemperitan panas. Selepas penyediaan spesimen, kajian pencirian 

mikrostruktur telah dijalankan untuk menentukan pengagihan tetulang, morfologi ira, dan 

kehadiran keliangan dengan menggunakan Mikroskop Optik, Pengimbasan Elektron 

Mikroskop dan Bidang Pelepasan Mengimbas Mikroskopi Elektron. Ketumpatan dan 

keliangan pengukuran telah dijalankan mengikut prinsip Archimedes. Ujian micro-Vickers 

juga telah dijalankan untuk mengkaji kekerasan bahan. Ujian haus pada keadaan kering 

telah dilakukan dengan menggunakan penguji pin terhadap besi tuang kelabu di bawah 

empat kenaan beban normal (5, 10, 20, 40 N) dengan empat kelajuan gelongsor (0.5, 1.5, 

3.5, 4.5 m/s) dengan jarak yang tetap, 5000 m untuk mengenal pasti kadar haus dan pekali 

geseran komposit magnesium. Morfologi permukaan pin yang telah haus dan serpihan 

haus yang dipungut telah diperiksa menggunakan Pengimbasan Elektron Mikroskop. Dari 

kajian ini, taburan yang seragam zarahan SiC dan MWCNTs di dalam matriks magnesium 

telah diperhatikan. Keliangan yang rendah (di bawah 2.0 %) yang telah diperolehi 

menunjukkan kesesuaian parameter pemprosesan. Kekerasan Vickers bagi hierarki 

konfigurasi komposit magnesium adalah jauh lebih tinggi daripada magnesium yang tulen. 

Kadar haus untuk kedua-dua magnesium tanpa tetulang dan komposit meningkat dengan 

peningkatan beban tetapi penambahan pengisi bersaiz mikro dan nano mengurangkan 

kadar haus magnesium terutamanya pada 5, 10, 20 N. Peningkatan kelajuan gelongsor 

menyebabkan kadar haus yang lebih tinggi pada komposit magnesium. Walau 

bagaimanapun, pada beban tertinggi 40 N, peralihan dalam kadar haus diperhatikan 

dengan peningkatan dalam kelajuan gelongsor; iaitu pada kelajuan 1.5 m/s kadar haus 

daripada komposit lebih tinggi daripada magnesium tanpa tetulang tergelincir, tetapi 

penambahan SiC dan MWCNTs mengurangkan kadar haus pada kelajuan gelongsor 3.5 

dan 4.5 m/s masing-masing. Terdapat pengurangan kecil dalam pekali geseran 

Mg/SiC/MWCNTs komposit berbanding Mg/SiC terutamanya pada beban rendah 5, 10, 20 

N dimana kelajuan gelongsor meningkat tetapi perubahan pekali geseran di antara bahan-

bahan yang berbeza menjadi tidak ketara pada beban tertinggi 40 N. Lima mekanisma 

haus yang kebanyakannya beroperasi secara gabungan iaitu lelasan, rekatan, 

pengoksidaan, delaminasi dan ubah bentuk plastik telah diperhatikan dalam pelbagai 

keadaan gelongsor. Pengubahsuaian komposit hybrid magnesium ini boleh membawa 

implikasi yang besar ke atas aplikasi terutamanya dalam sektor automotif dan 

penerbangan. Ia akan menjadi salah satu pilihan bahan untuk meningkatkan lagi 

kecekapan bahan api dan juga hayat perkhidmatan komponen. 
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Mg2Si  Magnesium silicide 

MgO  Magnesium oxide 

MM  Mechanical milling 

MMCs  Metal matrix composites  

Mn  Manganese 

MSDS  Material safety data sheet 

Ni  Nickel 

OM  Optical microscopy  

PCA  Process control agent 

PM  Powder metallurgy  

PMCs  Polymer matrix composites  

PRMMCs  Particulate reinforced metal matrix composites 
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PSA  Particle size analyzer 

QE22  Magnesium alloy with 2.5% Ag, 2% RE and 0.7% Zr  

RE  Rare earth metals 

SEI  Secondary electron imaging  

SEM  Scanning electron microscopy  

SiC  Silicon carbide 

SiO2  Silica  

Ti  Titanium 

TiB2  Titanium diboride 

TiC  Titanium carbide 

W  Tungsten 

XRD  X-ray diffraction  

Y2O3  Yttrium(III) oxide 

Zn  Zinc 

Zr  Zirconium 

 

 

 

 

 

 

 

 

 


