

Faculty of Manufacturing Engineering

DEVELOPMENT OF LEAN ENVIRONMENTAL MANAGEMENT INTEGRATION SYSTEM FOR SUSTAINABILITY OF ISO 14001: 2004 STANDARD

Robert @ Kerk Swee Tian

Doctor of Philosophy

2016

DEVELOPMENT OF LEAN ENVIRONMENTAL MANAGEMENT INTEGRATION SYSTEM FOR SUSTAINABILITY OF ISO 14001: 2004 STANDARD

ROBERT @ KERK SWEE TIAN

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitled "Development of Lean Environmental Management Integration System for Sustainability of ISO 14001: 2004 Standard" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy in Manufacturing Engineering.

Signature	:	
Supervisor's Name	:	
Date	:	

DEDICATION

My dad,

For bringing

me to this world.

Beloved mum,

For taking good care since small and working hard for the family.

As well as precious advice and guidance in life and academic.

My concerned brother and sisters,

For giving support and bringing fun.

My dear wife for her support and understanding

My children's for their support and encouragement

ABSTRACT

Nowadays, organizations are rapidly taking measures in integrating Environmental Management System (EMS) and lean practices in all types of environmental conditions in order to enhance their performance and efficiency. The main objective of this study is to propose a model that provides an EMS by integrating of ISO 14001:2004 standard with the lean principles that ensures the continuous improvement and sustainability for the organization in the current environment. This study develops the conceptual framework for EMS through integrated lean principles with ISO 14001. The developed model will be known as "Lean Environmental Management Integration System" (LEMIS). The developed framework will be tested in order to provide the conclusion to the study. This study conducts quantitative research to identify the answers for proposed objectives. Here, questionnaire is designed and provided to 140 managers from various organizations in Malaysia. The collected data is be tested by using SPSS tools. The findings of the study confirm that, successful integration of EMS, lean principles and ISO 14001 brings various advantages to the entire organization including employees, stakeholders, community, and customers. LEMIS performance measurement model was developed to visualize all the performance measures and involvement of all levels of employees to enhance the problem solving capability. The case study in real life implementation were used for results validation. Visual indicators helps the field workers avoid the repetition of past problem and only noticing the symptoms and quickly responded and take preventive actions. This study concludes that, integration of EMS and lean principles with ISO 14001 have ability to enhance the performance and efficiency of the organization.

ABSTRAK

Pada masa kini, organisasi cepat mengambil langkah-langkah dalam mengintegrasikan Sistem Pengurusan Alam Sekitar (EMS) dan amalan yang cekap di setiap jenis keadaan alam sekitar dalam usaha untuk meningkatkan prestasi dan kecekapan mereka. Objektif utama kajian ini adalah untuk mencadangkan satu model yang menyediakan EMS dengan mengintegrasikan ISO 14001: 2004 standard dengan prinsip-prinsip lean yang memastikan peningkatan berterusan dan kemampanan untuk organisasi dalam persekitaran semasa. Kajian ini membangunkan rangka kerja konsep bagi EMS melalui bersepadu prinsip lean dengan ISO 14001. Model yang dibangunkan akan dikenali sebagai " Sistem Integrasi dan Pengurusan Alam Sekitar " (LEMIS). Rangka kerja dibangunkan akan diuji untuk memberikan kesimpulan kajian itu. Kajian ini menjalankan penyelidikan kuantitatif untuk mengenal pasti jawapan untuk objektif dicadangkan. Di sini, soal selidik direka dan diberikan kepada 140 pengurus dari pelbagai organisasi di Malaysia. Data yang dikumpul diuji dengan menggunakan alat SPSS. Dapatan kajian ini mengesahkan bahawa, integrasi kejayaan EMS, prinsip lean dan ISO 14001 membawa pelbagai kelebihan kepada organisasi keseluruhan termasuk pekerja, pemegang kepentingan, komuniti, dan pelanggan. LEMIS model pengukuran prestasi telah dibangunkan untuk menggambarkan semua langkah-langkah prestasi dan penglibatan semua peringkat pekerja untuk meningkatkan keupayaan penyelesaian masalah. Kajian kes dalam pelaksanaan kehidupan sebenar telah digunakan untuk keputusan pengesahan. Petunjuk visual membantu pekerja mengelakkan pengulangan masalah lalu dan hanya perasan gejala dan cepat bertindak balas dan mengambil tindakan pencegahan. Kajian ini menyimpulkan bahawa, integrasi EMS dan prinsip lean dengan ISO 14001 mempunyai keupavaan untuk meningkatkan prestasi dan kecekapan organisasi.

ACKNOWLEDGEMENTS

The journey towards this thesis would not have been possible without the sincere help and contributions from several personel involved. I would like to take this opportunity for expressing my sincere gratitude to them. Firstly, I am grateful for having concerned and dedicated supervisors, Associate Professor Ir. Dr. Puvanasvaran A/L A. Perumal and Professor Dr. Mohd Razali Bin Muhamad from Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka (UTeM). Under the supervision, the research work is closely directed and monitored besides abundance of encouragement and ideas towards the completion of this thesis.

Next, I am also thankful to the Government of Malaysia, Ministry of Education Malaysia and Segamat Community College for giving me the opportunity to attend the Doctor of Philosophy degree course in Manufacturing Engineering. I also like to express my gratitude to the Syarikat Air Melaka Berhad for providing me place to implement my developed system.

Particularly, I would like to express my appreciation and gratitude to my late father and dearly mother who ensure my good health and continuous moral support as well as advice. Last but not least, I deeply thank my beloved wife, Loh Sai Hwei and my childrens, Kerk Ming Xuan, Kerk Ming Er, Kerk Ming Teng and my beloved friends (Dr. Tay Choo Chuan, Dr. Choong Chee Guan, Dr. Se Sian Meng and Dr. Chua Kok Yau) who have shared my happiness and sadness as well as knowledge throughout the journey of research.

iii

TABLE OF CONTENT

DE	CLAR	ATION	
AP	PROV	AL	
DE	DICA	ΓΙΟΝ	
AB	STRA	СТ	i
AB	STRA	Κ	ii
AC	CKNOV	VLEDGEMENTS	iii
TA	iv		
LI	ST OF	TABLES	ix
LI	ST OF	FIGURES	xiii
LI	ST OF	APPENDICES	xvi
LI	ST OF	ABBREVIATIONS	xviii
LI	ST OF	SYMBOLS	xxi
LI	ST OF	PUBLICATIONS	xxii
CE	IAPTE	R	
1	INT	RODUCTION	1
	1.1	The Environmental Management System	1
	1.2	The ISO 14001	4
	1.3	The Lean System	8
	1.4	Purpose of The Study	13
	1.5	Problem Statement	14
	1.6	Research Question	15
	1.7	Objective of The Study	15
	1.8	Structure of The Thesis	16
2	LIT	ERATURE REVIEW	18
	2.1	The ISO 14001, Lean Manufacturing, EMS Concept	18
		2.1.1 Environmental Management System (EMS)	21
		2.1.1.1 The Plan Phase	23
		2.1.1.2 The Do Phase	24
		2.1.1.3 The Check Phase	25
		2.1.1.4 The Ast Dhase	25

		4.1.1.4	The Do Fliase	24
		2.1.1.3	The Check Phase	25
		2.1.1.4	The Act Phase	25
		2.1.1.5	Organizations	26
		2.1.1.6	Market	26
		2.1.1.7	Social Forces / Community	27
		2.1.1.8	Financial	27
		2.1.1.9	Regulatory Institutions	27
	2.1.2	ISO 1400)1	34
		2.1.2.1	Environmental Policy	35
		2.1.2.2	Planning	35
		2.1.2.3	Operation and Implementation	35
		2.1.2.4	Verifying and Corrective Action	35
		2.1.2.5	Management Review	36
	2.1.3	Lean Ma	nufacturing System	44
	2.1.4	Performa	ince Measurement System (PMS)	45
2.2	A Mod	el for Lean	and Environmental Management System	46

		2.2.1	Five Lean Principles	48
			2.2.1.1 The Value Principle	50
			2.2.1.2 The Value Stream Principle	51
			2.2.1.3 Achieving Flow Principle	52
			2.2.1.4 The Pull Operation Principle	52
			2.2.1.5 Achieving Perfection Principle	52
		2.2.2	Redefining The Lean Principles	53
		2.2.3	A Model for Lean Environmental Management Integration	
			System (LEMIS)	54
			2.2.3.1 Integrating Lean into The Environmental	
			Management System	55
			2.2.3.2 Lean Manufacturing System Model	56
	2.3	Concept	tual Framework	59
		2.3.1	Similarities and differences between Lean and	
			Sustainability	63
	2.4		s of The Model for Sustainability of ISO 14001 Standards	67
	2.5		s of The Model for Integration of ISO 14001 Standards	70
	2.6		Challenges for The Integration Model of ISO 14001	
		Standar		73
	2.7	Conclus	sion	77
_				
3			RONMENTAL MANAGEMENT INTEGRATION	
			AMEWORK	80
	3.1		vork Development of Lean Environmental Management	0.1
		•	ion System (LEMIS)	81
		3.1.1	Phase 1 (Requirements of EMS and ISO14001)	81
		3.1.2	Phase 2 (Refinement of ISO 14001 Standards)	83
		3.1.3	Phase 3 (Lean Requirements)	84
		3.1.4	Phase 4 (Refinement of Lean Principles)	85
		3.1.5	Phase 5 (Lean Core Elements and The Sub Clauses	05
		216	Integration ISO 14001) Phase ((From every Critical Success Factors (CSF) and	85
		3.1.6	Phase 6 (Framework Critical Success Factors (CSF) and	00
	2 2	LEMIG	Validation of Framework)	88
	3.2		Framework Validation	89
	3.3		nalysis Method for Focus Group	91 92
	3.4	3.4.1	Performance Measurement Development Performance Measures Identification Based on QCDAC	92 93
		3.4.1	Categorizing Performance Measures Based on Core	95
		5.4.2	Elements of Lean Principles	94
		3.4.3	Identifying The Performance Measures Based on Eight	94
		5.4.5	Main Category	94
		3.4.4	Establish The Eight Category Performance Measurement	24
		5.4.4	Based on Core Elements of Lean Principles	96
		3.4.5	Summary of The LEMIS Performance Measurement	90
		5.4.5	Development	96
	3.5	Perform	hance Measurement Identification and Ranking by Using	70
	5.5		tive Structural Modelling (ISM)	96
		3.5.1	Structural Self-Interaction Matrix (SSIM)	90 98
		3.5.2	Reachability Matrix	100
		5.5.4		100

		3.5.3	Level Partitions for Reachability Matrix	101
		3.5.4	Reachability Matrix in Conical Form	103
		3.5.5	Diagraphs for ISM	104
		3.5.6	MICMAC Analysis of Classsification of Performance	
			Measurement	105
		3.5.7	Summary of the Performance Measurement Identification	
			and Ranking by Using Interpretive Structural Modelling	
			(ISM)	107
	3.6	LEMIS	Performance Measurement Implementation Output	107
		3.6.1	Performance Measurement Identification	109
		3.6.2	Communication Between the Top, Middle and Lower	
			Managemant	111
		3.6.3	LEMIS Performance Measurement Data Collection	111
	3.7	Conclu	sion	112
4	DEV	FLOPM	ENT OF HYPOTHESIS AND EXPECTED RESULTS	114
-	4 .1		tical Background	115
	4.2		eses Development	116
	4.3	Conclus	1	121
5		THODOL		122
	5.1	-	tion of Syarikat Air Melaka Berhad (SAMB)	125
	5.2		ch Design and Method	125
		5.2.1	1 5	126
		5.2.2	Research Strategy	128
	5.3		ew of Methodology	129
	5.4		ollection Tools and Procedures	130
		5.4.1	Questionnaire Development	131
		5.4.2	Pilot Test	132
		5.4.3	Sending and Receiving Questionnaire	133
		5.4.4	Sampling Technique and Sample Size	133
		5.4.5	Data Analysis Method	134
		5.4.6	Accounting for Survey Errors	136
	5.5		alidity, Reliability and Ethics	137
		5.5.1	Validity	137
		5.5.2	Reliability	138
		5.5.3	Ethical Considerations	138
	5.6		ch Study Limitations and Delimitations	139
	5.7		Performance Measurement and Model of Implementation	140
		5.7.1	Phase 1 (Performance Measures Identification)	140
		5.7.2	Phase 2 (Performance Measures Ranking)	142
		5.7.3	Phase 3 (Performance Measures Implementation)	144
			5.7.3.1 Step 1	145
			5.7.3.2 Step 2	146
			5.7.3.3 Step 3	146
			5.7.3.4 Step 4	146
		5 7 A	5.7.3.5 Step 5	146
	50	5.7.4	Data Collection Limitation	148
	5.8	Conclu	S1011	148

6	RES	ULTS AI	ND DISCU	JSSION	149
	6.1	Data A	nalysing		149
	6.2	Adoption of Lean Manufacturing Practices in ISO 14001			
		Accred	ited Organ	izations	151
		6.2.1	Adoption	of Lean Manufacturing Practices	151
		6.2.2	Reliabilit	ty	152
	6.3	Relatio	nship of IS	O 14001 Requirement with Lean Principles	153
		6.3.1	Correlati	on	154
		6.3.2	Reliabilit	ty	162
	6.4	Critical Success Factors in Incorporating Lean Principles with ISO			
		14001 (163
		6.4.1	Reliabilit	ty	163
		6.4.2	Correlati	on	164
			6.4.2.1	Factor of Impact against Value Based ISO 14001	164
			6.4.2.2	Factor of Impact against Value Stream Based	
				ISO 14001	166
			6.4.2.3	Factor of Impact against Flow Based ISO	
				14001	167
			6.4.2.4	Factor of Impact against Pull Based ISO 14001	
					168
			6.4.2.5	Factor of Impact against Perfection Based ISO	
				14001	169
			6.4.2.6	Summary of Critical factors in integrating	
				Lean Principles with ISO14001	169
	6.5	Conclu	sion		170
	6.6	LEMIS	Framewor	rk Validation	170
		6.6.1	Agreeme	ent of Experts on Lean and ISO 14001	
			Fundame		171
		6.6.2	Agreeme	nt of Experts on The Framework Methodology	171
		6.6.3	Views of	Experts on The Lean and ISO 14001 Integration	172
		6.6.4	Views of	Experts on Critical Success Factor of Lean and	
			ISO 1400)1 Integration	172
		6.6.5		y of The Validation by The Focus Group	173
	6.7	LEMIS	Performan	nce Measurement Outputs	174
		6.7.1	Custome	r Satisfaction	174
		6.7.2	Lead Tin	ne	176
		6.7.3	Employe	e Involvement	178
		6.7.4	Performa	nce Indicator (PI)	180
		6.7.5		ntation Process	181
		6.7.6	Audit Pro	ocess	183
		6.7.7		ion Sharing	185
		6.7.8		e Involvement	187
		6.7.9		e Training	189
		6.7.10		ous Monitoring and Control for Sustainability	190
	6.8	Discuss	sion and Co	onclusion	191

7	CON	CLUSION AND RECOMMEDATIONS	195
	7.1	Conclusion	195
	7.2	Benefits and Positive Scenario Provided in The Production	
		Department	197
	7.3	Recommendations for Future Works	198
RE	FERE	NCES	200
AP	PEND	ICES	230

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Lean Principles and its Elements	12
2.1	Product Oriented Environmental Instruments/ Policies being	
	used in Europe	28
2.2	Advantages of Improved Environmental Management	32
2.3	Lean Thinking: Philosophy, System, and Techniques	48
2.4	Countering Issues with The 8Ps of Lean Thinking	54
2.5	Connection of Sustainability and ISO Standard	64
2.6	There is A Connection Between Sustainability and Lean	64
3.1	18 Clauses of ISO14001 Standard	83
3.2	Refinement of ISO14001 Standard Clauses	84
3.3	WH Question Analysis	85
3.4	Sub Clauses 1 Integrated with 1st Lean Principles Core	
	Elements	87
3.5	Sub Clauses 1 Integrated with 2nd Lean Principles Core	
	Elements	87
3.6	Sub Clauses 1 Integrated with 3rd Lean Principles Core	
	Elements	87

3.7	Sub Clauses 1 Integrated with 4th Lean Principles Core	
	Elements	88
3.8	Sub Clauses 1 Integrated with 5th Lean Principles Core	
	Elements	88
3.9	List of Experts Involved in The Focus Group	90
3.10	Determination of QCDAC Principles	93
3.11	Sub Clauses 1 Performance Measures	95
3.12	Enhanced Product / Service Package Value Performance	
	Measurements Categorizing	97
3.13	SSIM Value (Enhanced Product / Service Package Value)	100
3.14	Reachability matrix - Value (Enhanced Product / Service	
	Package Value	101
3.15	Level Partitioning Value (Enhanced Product / Service Package	
	Value) Iteration I	102
3.16	Level Partitioning Value (Enhanced Product / Service Package	
	Value) Iteration II	102
3.17	Level Partitioning Value (Enhanced Product / Service Package	
	Value) Iteration III, IV	102
3.18	Level Partitioning Value (Enhanced Product / Service Package	
	Value) Iteration V	103
3.19	Level Partitioning Value (Enhanced Product / Service Package	
	Value) Iteration VI	103
3.20	Level Partitioning Value (Enhanced Product / Service Package	
	Value) Iteration II-VI	103

Х

3.21	Conical for of Reachability Matrix - Value (Enhanced Product /	
	Service Package Value)	104
3.22	Driving power and dependence in reachability matrix - Value	
	(Enhanced Product / Service Package Value)	106
3.23	Detail of Data Collection for Each Core Elements in the Case	
	Study Company	110
4.1	Detail of Objectives, Research Questions and Hypotheses of	
	The Study	118
5.1	Positivism, Interpretivism & Post-Positivism	127
5.2	Relevant Situations for Different Research Strategies	129
5.3	Reliability Statistics	138
5.4	Case Processing Summary with Reliability Statistics	138
5.5	LEMIS Performance Measurement and Model of	
	Implementation	141
5.6	Profile of The Panel Members	144
5.7	Performance Measurement and Details of Each Data Collected	147
6.1	Adoption of Lean Manufacturing Practices	152
6.2	Reliability Analyses of Lean Manufacturing Practices	153
6.3	Mode, Median, and Mean for All Lean Practices	154
6.4	Value with ISO 14001 Needs	155
6.5	Value Stream with ISO 14001 Needs	156
6.6	Flow with ISO 14001 Needs	157
6.7	Pull with ISO 14001 Needs	159
6.8	Perfection with ISO 14001 Needs	160

6.9	Output of Shapiro-Wilk and Kolmogorov-Smirnov Test for	
	Examining The Normality of the Lean Principles	161
6.10	Overall Lean Principles Cronbach's Alpha	162
6.11	Cronbach's Alpha for Each Issues and Challenges for Lean	
	Principles and ISO 14001 Integration	165
6.12	Factor of Impact Against Value Based ISO14001	166
6.13	Factor of Impact Against Value Stream Based ISO14001	167
6.14	Factor of Impact Against Flow Based ISO14001	168
6.15	Factor of Impact Against Pull Based ISO14001	168
6.16	Factor of Impact Against Perfection Based ISO14001	169
6.17	Percentage of Improvement for Customer Feedback Survey	176
6.18	Detail of Malfunction Equipment	183

LIST OF FIGURES

FIGURE	TITLE		
1.1	Environmental Management		
1.2	The ISO 14001 Integration in The Organization	8	
1.3	Lean Production System		
1.4	Reducing The Impact of Environment on Organisational System		
1.5	Core Benefits of The Lean System	11	
1.6	EMS Benefits of ISO 14001		
2.1	Environmental Management System (EMS) Cycle According to		
	ISO 14001	23	
2.2	Cycle of Continual Improvement	30	
2.3	Stapes of A Typical Environmental Management System	31	
2.4	Five Steps of ISO 14001	36	
2.5	The Innovation through Lean System	50	
2.6	The 8Ps of The Lean Business System	53	
2.7	Advanced Lean System Model	59	
2.8	A CLD of A Problem	60	
2.9	A CLD of The Conceptual Framework	61	
2.10	Ways to Increase The Use of EMS for Sustainable Development	63	
2.11	Sustainability Development	65	

xiii

2.12	Quality Management System for Continuous Improvement			
	through ISO 14001	69		
2.13	Advantages of Integrating ISO 14001 EMS in The Organisation	70		
3.1	LEMIS Framework Development Flow	82		
3.2	Integration Using Cross Tabulation Methods			
3.3	Matrix for Assessing Level of Consensus in Focus Group 9			
3.4	Diagraph for ISM Model- Value (Enhanced Product/ Service			
	Package Value)	105		
3.5	Cluster of Performance Measurement (MICMAC analysis) -			
	Value (Enhanced Product / Service Package Value)	107		
3.6	Process Flow for The Performance Measurement in LEMIS			
	Implementation	109		
4.1	Conceptual Framework for The Development of EMS			
	(Environmental Management System) through Integrated Lean			
	Principles with ISO 14001	119		
5.1	Research Onion	128		
5.2	Research Steps	132		
5.3	Data Analysis Flow Chart	135		
5.4	Flow Diagram for Performance Measures Identification	142		
5.5	Flow Diagram for Preparing The ISM Model	143		
5.6	Flow Diagram for Data Collection and LEMIS Implementation	145		
6.1	Lean Principles "Value" Against ISO 14001 Needs	155		
6.2	Lean Principles "Value Stream" Against ISO 14001 Needs	156		
6.3	Lean Principles "Flow" Against ISO 14001 Needs	158		

xiv

6.4	Lean Principles "Pull" Against ISO 14001 Needs			
6.5	Lean Principles "Perfection" Against ISO 14001 Needs			
6.6	Customer Feedback Survey for Water Supply Services			
6.7	Lead Time of Delivery for New Water Meter Installation			
6.8	Lead Time of Delivery for Pipe Damage Repairs			
6.9	Problem Fall Down According to ISO 14001 Clauses			
6.10	Improvement Plans Completed for Each Plant			
6.11	Report on Performance Indicator Error for year 2013			
6.12	Number of Calibration and Malfunction Equipment			
6.13	Number of Related Training Attended by Auditors			
6.14	Number of NCR Found by Auditors	184		
6.15	Information Sharing Measuring Data and Graph with			
	Improvement	186		
6.16	Root Cause Identification with 5 Why Analysis	188		
6.17	Employee Training Measuring Data and Graph with			
	Improvement	190		

LIST OF APPENDICES

APPEND	IX TITLE	PAGE		
А	Refinement of ISO 14001 Standards	230		
В	WH Question Analysis			
С	Lean Core Elements and ISO 14001 Sub Requirement			
	Integration	242		
D1	LEMIS Performance Measures 24			
D2	Overall Performance Measures			
D3	Performance Measures Based on QCDAC			
D4	Performance Measures Based on Lean Principles Core			
	Elements	257		
D5	Performance Measures Grouping	263		
D6	Performance Measurements Categorizing Based on Nine Core			
	Elements of Lean Principles	264		
Е	ISM for Eight Core Element of Lean Principles	269		
F	LEMIS Framework	299		
G	Research Questionnaire	300		
Н	LEMIS Performance Measurement Checklist	306		
Ι	Framework Validation 31			
J	Details of Improvement Plan 3			

Κ	Details of Performance Indicators Error Report	318
L	Performance Indicators for Chemical Usage, Power Factor,	
	Plant Loss and Petrol and Diesel Usage	320
М	Details of The Root Cause and Action Taken for The Non	
	Conformance	324

xvii

LIST OF ABBREVIATIONS

ASTM	-	American Society for Testing and Materials
ATMA	-	Accra Tema Metropolitan Area
BS	-	British Standards
BSI	-	British Standards Institute
CEO	-	Chief Executive Officer
CI	-	Continuous Improvement
CLD	-	Causal Loop Diagram
CSF	-	Critical Success Factor
CSR	-	Corporate Social Responsibility
EM	-	Emergency Medicine
EMAS	-	Eco-Management and Audit Scheme
EMS	-	Environmental Management System
ENGO	-	Environmental Non-Governmental Organizations
EPA	-	Environmental Protection Agency
EU	-	European Union
GATT	-	General Agreement on Tariffs and Trade
HRM	-	Human Resource Management
IEC	-	International Electrotechnical Commission
IMF	-	International Monetary Fund
ISM	-	Interpretive Structural Modelling

xviii

ISO	-	International Organization for Standardization
IT	-	Information Technology
JIT	-	Just in Time
LDCs	-	Low Developed Countries
LEMIS	-	Lean Environmental Management Integration System
MICMAC	-	Matrices Impacts Croises Multiplication Applique and Classment
MNC	-	Multinational Corporation
MS	-	Microsoft
NCR	-	Non Conformance
NIST MEP	-	National Institute of Standards and Technology Manufacturing
		Extension Partnership
OHSAS	-	Occupational Health and Safety Assessment Series
OHSMS	-	Occupational Health and Safety Management System
OPAC	-	Online Public Access Catalogue
PI	-	Performance Indicator
PMS	-	Performance Measurement System
QCDAC	-	Quality, Cost, Delivery, Accountability and Continuous Improvement
QMS	-	Quality Management System
SAE	-	Society Automotive Engineers
SAMB	-	Syarikat Air Melaka Berhad
SE	-	Standard Error
SPSS	-	Statistical Package for the Social Sciences
SRB	-	Sustainable Responsible Business
SSIM	-	Structural Self Interaction Matrix
TPS	-	Total Production System
		xix