

3D INTRINSIC SCENE CHARACTERISTICS **EXTRACTION FRAMEWORK** FOR A SINGLE IMAGE

HABIBULLAH AKBAR

DOCTOR OF PHILOSOPHY

2016

Faculty of Information and Communication Technology

3D INTRINSIC SCENE CHARACTERISTICS EXTRACTION FRAMEWORK FOR A SINGLE IMAGE

Habibullah Akbar

Doctor of Philosophy

2016

3D INTRINSIC SCENE CHARACTERISTICS EXTRACTION FRAMEWORK FOR A SINGLE IMAGE

HABIBULLAH AKBAR

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitled "3D Intrinsic Scene Characteristics Extraction Framework

for a Single Image" is the result of my own research except as cited in the references. The

thesis has not been accepted for any degree and is not concurrently submitted in candidature

of any other degree.

Signature :

Name : Habibullah Akbar

Date

APPROVAL

I hereby declare that I have read this thesis and, in my opinion, this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature

Supervisor Name : Prof. Dr. Nanna Suryana Herman

Date

DEDICATION

To my beloved mother, father, wife, daughter and sons

ABSTRACT

Three-Dimensional (3D) shape reconstruction is an important area of computer vision research because it has numerous potential applications from entertainment production to industrial inspection and clinical analysis. Existing 3D Intrinsic Scene Characteristics (3D-ISCs) extraction methods for a single image have focused solely on estimating diffuse characteristics, i.e. 3D shape, illumination, and reflectance models, of an object. As a result, they have neglected the specular characteristic, the shiny areas of a glossy surface. In reality, many real-world objects emit both specular and diffuse reflections, and thus the specular component may decrease the performance of the 3D-ISCs methods. This study has developed a framework to extract all of these characteristics. The framework combines a Specular Removal (SR) method and a Shape, Illumination, and Reflectance From Shading (SIRFS) method under a Bidirectional Reflectance Distribution Function (BRDF) model. Since the previous SR methods suffered from hue-saturation ambiguity, they are not suitable for this framework. To solve this problem, two SR methods were developed, evaluated, and compared with the standard SR methods. The proposed SR methods are referred as Chaotic Segmentation (CS) and Sparse Coding (SC) methods. To combine the SR and SIRFS methods, two BRDF models were also developed, evaluated, and compared. These models are referred as Modified Dichromatic Reflectance (MDR) and Modified Blinn-Phong (MBP) models. The performances of the proposed SR methods and the BRDF models for extracting 3D-ISCs were evaluated based on public datasets. The results showed that the SC method was more satisfactory compared to the CS and the benchmark method (iterative method). The accuracies of the diffuse and specular characteristics were improved by 7.6% and 53.5% respectively. Moreover, the combination of SC method and MDR model was capable of outperforming the SIRFS method. The computational speed was 19.2% faster. Meanwhile, the average accuracies of depth, surface normal, illumination, shading, and reflectance were improved by 11.4%, 6.5%, 50.5%, 35.2%, and 5.1% respectively. This study indicates that the specular reflection is an important aspect of 3D reconstruction from a single image. The proposed framework has also made considerable improvements in terms of accuracy and computational time of extracting 3D-ISCs.

ABSTRAK

Pembinaan semula bentuk Tiga-Dimensi (3D) merupakan bidang penting dalam penyelidikan visi komputer kerana ia mempunyai banyak aplikasi yang berpotensi daripada pengeluaran hiburan kepada pemeriksaan industri dan analisis klinikal. Kewujudan kaedah-kaedah pengekstrakan Ciri-ciri Paparan Instrinsik 3D (CPI-3D) untuk imej tunggal hanya tertumpu kepada ciri-ciri peresapan seperti model bentuk 3D, pencahayaan dan pembalikan sesuatu objek. Kaedah-kaedah ini mengabaikan ciri spekular (kawasan permukaan objek yang berkilat). Dalam keadaan realiti, kebanyakan objek sebenar memancarkan kedua-dua pantulan spekular dan peresapan, dan ini menjadikan komponen spekular mungkin mengurangkan prestasi kaedah CPI-3D. Kajian ini telah membangunkan kerangka kerja untuk mengekstrak CPI-3D. Kerangka kerja ini menggunakan kaedah Penyingkiran Spekular (PS) dan kaedah Bentuk, Pencahayaan serta Kepantulan dari Pembayangan (BPKP) di bawah model Fungsi Taburan Kepantulan Dwiarah (FTKD). Oleh kerana kaedah-kaedah PS sebelum ini mengalami kesamaran ketepuan warna, ia tidak sesuai untuk kerangka kerja ini. Bagi menyelesaikan masalah tersebut, dua kaedah PS telah dibangunkan, dinilai dan dibandingkan dengan kaedah standard PS. Kedua-duanya merujuk kepada Pensegmenan Camuk (PC) dan Pengkodan Bersela (PB). Bagi menggabungkan kaedah PS dan BPKP, dua model FTKD telah dibangunkan, dinilai dan dibandingkan. Kedua-duanya merujuk kepada Pengubahsuaian Kepantulan Dikromatik (PKD) dan Pengubahsuaian Blinn-Phong (PBP). Prestasi kaedah PS dan model FTKD yang dicadangkan untuk mengekstrak CPI-3D telah dinilai berdasarkan kepada set data awam. Keputusan menunjukkan kaedah PB lebih memuaskan berbanding PC dan kaedah penanda aras (kaedah lelaran). Ketepatan peresapan dan specular telah meningkat masing-masing sebanyak 7.3% dan 53.5%. Gabungan kaedah PB dan model PKD mampu menyaingi kaedah BPKP. Kelajuan pengiraan telah meningkat sebanyak 19.2% manakala ketepatan purata kedalaman, permukaan normal, pencahayaan, pembayangan serta kepantulan telah meningkat masing-masing sebanyak 11.4%, 6.5%, 50.5%, 35.2% dan 5.1%. Kajian ini menandakan bahawa kerangka kerja pengekstrakan CPI-3D cadangan telah menunjukkan kemajuan besar dari segi ketepatan dan masa pengiraan.

ACKNOWLEDGEMENTS

In the name of Allah, The Most Gracious and The Most Merciful. I wish to express my sincerest appreciation and gratitude to Prof. Dr. Nanna Suryana Herman for his valuable advice, patience, and support during my Ph.D. journey at Universiti Teknikal Malaysia Melaka. With his vision and guidance, this thesis may never have been completed on time. My deepest appreciation also to Prof. Datuk Dr. Shahrin Sahib for his help in developing motivation, ideas, and for willingly sharing his expertise and in-depth knowledge. I appreciate their available time for solid discussion despite their tight schedule. I wish to thank all my fellow postgraduate students for their discussions, support, and friendship. I also thank the staff, lecturers, and technicians in the Faculty of Information and Communication Technology for their help, cooperation, and encouragement. My deepest appreciation also to my parents, Tasman Abbas and Djasminar Anwar, for their prayer, love, and care. I pray their efforts will be rewarded by Allah in this world and the hereafter. I would like to thank my brother, Abdullah Denovan, and my sister, Nila Novari. I would also like to thank my wife (Nancy Kuspriyati), my daughter (Aisyah Syarafana), and my sons (Izdihar Zidan and Ashraf Ruwaifi) for their love, support, and patience. This work was supported by Universiti Teknikal Malaysia Melaka under Zamalah Scheme.

		TABLE OF CONTENTS	PAGE
DI	ECLA	ARATION	
		OVAL	
		ATION	
		ACT	i
	BSTR		ii
		OWLEDGEMENTS	iii
		OF CONTENTS	iii
		F TABLES	v
		F FIGURES	vi
LI	ST O	F ABBREVIATIONS	vii
		F SYMBOLS	ix
LI	ST O	F PUBLICATIONS	xi
Cl	НАРТ	ΓER	1
1	INT	RODUCTION	1
	1.1	Research Background	1
	1.2	Problem Statement	6
	1.3	Research Questions	7
	1.4		8
	1.5	Research Scope	9
	1.6	Thesis Structure	9
2	LIT	ERATURE REVIEW	12
	2.1	Overview	12
	2.2	Bidirectional Reflectance Distribution Function (BRDF)	12
		2.2.1 Lambertian Model	15
		2.2.2 Oren-Nayar Model	16
		2.2.3 Phong Model	17
		2.2.4 Blinn-Phong Model	19
		2.2.5 Dichromatic Reflectance Model (DRM)	20
	2.3	Shape From Shading (SFS)	21
		2.3.1 Analytical Approach	26
		2.3.2 Approximation Approach	31
		2.3.3 Optimization Approach	32
	2.4	Intrinsic Image (II)	40
		2.4.1 Retinex Approach	43
		2.4.2 Machine Learning Approach	48
	2.5	Specular Removal (SR)	50
		2.5.1 Color Space Segmentation Approach	52
		2.5.2 Specular-free Approach	53

		2.5.3	Partial D	rifferential Equation Approach	58
		2.5.4	Inpaintin	ng Approach	59
			2.5.4.1	Manual Thresholding	60
			2.5.4.2		61
			2.5.4.3	Clonal Selection Algorithm (ClonalG)	64
				Particle Swarm Optimization (PSO)	65
	2.6	Resear	ch Method	ds in Computer Vision	66
	2.7	Resear	ch Gap		68
	2.8	Summ	ary		69
3	RES			ODOLOGY	71
	3.1	Overv			71
	3.2	-		earch Methodology	71
	3.3		ch Phases		72
	3.4			cation Phase	74
			ure Review		76
	3.6			ase of 3D-ISCs Extraction Framework	78
				ork Description	79
		3.6.2		Segmentation Method	81
			3.6.2.1	Formulation of Specular Removal Problem	81
				Proposed Specular Removal Method	84
				Chaotic ClonalG	89
		2.62		Coherency Sensitive Hashing	96
		3.6.3	-	Coding Method	97
			3.6.3.1	Formulation of Specular Removal Problem	98
			3.6.3.2	Proposed Specular Removal method	101
			3.6.3.3	Specular-Free Images	102
				XYZ color space	103
		261		Dictionary Construction	105
		3.6.4		Blinn-Phong Model Formulation of Proposed 3D ISCs Extraction Framework	107 108
			3.6.4.1	Formulation of Proposed 3D-ISCs Extraction Framework Proposed MBP Model	108
		3.6.5		d Dichromatic Reflectance Model	110
		3.0.3	3.6.5.1	Proposed MDR Model	113
			3.6.5.2	1	115
				Reflectance Image	116
			3.6.5.4	Illumination Estimation	117
			3.6.5.5	Modified Dichromatic Reflectance Model	117
	3.7	Evneri	mental Ph		118
	5.1	3.7.1	Data Col		118
		3.7.1	3.7.1.1	DECSAI, Berkeley, SIPI and Tennessee Dataset	119
			3.7.1.2	MIT Intrinsic Images Dataset	119
			3.7.1.2	MIT-Berkeley Intrinsic Images Dataset	119
			3.7.1.4	MIT-Berkeley-UTeM Intrinsic Images Dataset	120
		3.7.2		Comparison	120
		3.7.2		ental Settings	121
		_ ,	-r	·- <i>G</i> -	

		3.7.4	Performance Measures	121
	3.8	Applic	cation Phase	123
	3.9	Summ	ary	123
4	EXI	PERIM	ENTAL RESULTS AND DISCUSSION	125
	4.1	Overv	iew	125
	4.2	Exper	imental Results of Chaotic Segmentation	125
		4.2.1	Results and comparative performance of Segmentation Step	125
			4.2.1.1 Fitness evaluation	126
			4.2.1.2 Stability comparison	126
			4.2.1.3 Efficiency comparison	132
		4.2.2		135
		4.2.3	5	143
		4.2.4		145
		4.2.5	Discussion	147
	4.3	_	imental Results of Sparse Coding	148
		4.3.1	Result on Images with Significant Specularity	148
		4.3.2	, e	154
		4.3.3	Result on Images without Specularity	156
	4.4	4.3.4	Discussion	156
	4.4	-	imental Results of Modified Blinn-Phong Model	159
		4.4.1	Specular from Reflectance Image	159
		4.4.2	Results on Images with Significant Specularity	161
	15	4.4.3	Discussion	164
	4.5	4.5.1	imental Results of Modified Dichromatic Reflectance Model	165 165
		4.5.1		170
		4.5.2	Results of Real-World Images Discussion	170
	4.6		endering Applications of the Proposed Framework	172
	4.0	4.6.1	Optimal Linear Direction	173
		4.6.2	1	174
		4.6.3	Blinn-Phong Extension	170
		4.6.4	Dichromatic Editing	177
		4.6.5	Object Recoloring based on Intrinsic Image Estimation	177
	4.7	Summ		178
5	COI	NCLUS	SIONS	180
	5.1	Overv		180
	5.2		w of Research Objectives	180
	5.3	Concl	· ·	181
		5.3.1	Conclusion related to <i>RO 1</i> .	181
		5.3.2	Conclusion related to <i>RO 2</i> .	182
		5.3.3	Conclusion related to <i>RO 3</i> .	183
		5.3.4	Conclusion related to <i>RO 4</i> .	185
		5.3.5	Conclusion related to <i>RO 5</i> .	185
	5.4	Resear	rch Contributions	186

REFER	RENCES	189
5.6	Summary	188
5.5	Recommendation for Future Research	187

LIST OF TABLES

TABLE	TITLE PA	AGE
2.1	List of Constraints to Modify the Functional	34
2.2	Different Types of Specular-free Images	57
2.3	A Comparison of Computer Vision Methods with regard to Different Types	
	of Characteristics	69
4.1	Ground Truth Value by an Exhaustive search (Otsu Method) for the Test	
	Images	130
4.2	Mean Values and Standard Deviation of the Objective Function for 50 Runs	133
4.3	Thresholds Value of the Algorithms	134
4.4	Mean Values of the Computational Time and Iteration (it) for 50 Runs	136
4.5	Accuracy Performance of PSO, ClonalG, CS Methods on Images with Signi-	
	ficant Specularity	139
4.6	Speed Performance of PSO, ClonalG, CS on Images with Significant Specularity	y 141
4.7	Accuracy Performance of PSO, ClonalG, CS on Synthetic Images	143
4.8	Speed Performance of PSO, ClonalG, CS on Synthetic Images	144
4.9	Accuracy Performance of PSO, ClonalG, CS on Images without Significant	
	Specularity	146

4.10	Speed Performance of PSO, ClonalG, CS on Images without Significant	
	Specularity	146
4.11	Accuracy Performance of MZK06, YCK06, YWA10, SC09 on Images with	
	Significant Specularity	150
4.12	Speed Performance of MZK06, YCK06, SC09 on Images with Significant	
	Specularity	150
4.13	Accuracy Performance of SF1, SF2, Both SF on Images with Significant	
	Specularity	153
4.14	Speed Performance of SF1, SF2, Both SF methods on Images with Significant	
	Specularity	153
4.15	Accuracy Performance of SF1, SF2, Both SF on Synthetic Images	154
4.16	Speed Performance of SF1, SF2, Both SF on Synthetic Images	155
4.17	Accuracy Performance of SF1, SF2, Both SF on Images without Significant	
	Specularity	157
4.18	Speed Performance of SF1, SF2, Both SF on Images without Significant	
	Specularity	157
4.19	Accuracy Performance of SIRFS, SIRFS-MZK06, SIRFS-YCK06, SIRFS-	
	MBP on Images with Significant Specularity	162
4.20	Speed Performance of MZK06, YCK06, MBP Both SF on Images without	
	Significant Specularity	162
4.21	Accuracy Performance of SIRFS, MZK06-SIRFS, YCK06-SIRFS, MDR-	
	SIRFS on MIT-Berkeley Intrinsic Images Dataset	166

on MIT-Berkeley Intrinsic Images Dataset

X

LIST OF FIGURES

IGURI	E TITLE	PAGE
1.1	An Example of a Commercial 3D Scanner, Manufactured by <i>Breuckmann</i>	
	Opto-TOP HE	2
1.2	The Best Method in (Zhang et al., 1999) Review: (left) (Zheng and Chellappa,	,
	1991) Method and (right) (Lee and Kuo, 1993) Method	3
1.3	The Best Method in (Durou et al., 2008) Review: (left) (Falcone and Sagona,	,
	1997) Method and (right) (Daniel and Durou, 2000) Method	4
1.4	The original Pepper image (Petitcolas, 2014)	5
1.5	(a) input image, (b) orientation of surface normals, (c) illumination, and (d))
	reflectance	5
1.6	Thesis Structure	10
2.1	Bidirectional Reflectance Distribution Functions: adopted from (Kurihara	
	and Takaki, 2001)	15
2.2	Phong model	19
2.3	a) An ideal of a shading image and (b) the corresponding 3D model.	22
2.4	(Weiss, 2001) Intrinsic-images: (a) an input image, (b) reflectance image, (c)	1
	shading image	42

2.3	(a) Input Image. (b) Kim et al. (2013) result. (c) Dark channel. (d) Result of	
	(Tan and Ikeuchi, 2005)	57
3.1	Overview of Research Phases	73
3.2	A visualization of 3D-ISCs extraction problem in this study. Given a single	
	input image, the task is to derive the object into these characteristics: (b)	
	diffuse, (c) reflectance, (d) illumination, (e) specular, (f) shading, and (g) 3D	
	shape characteristics.	75
3.3	3D Intrinsic Scene Characteristics Extraction Framework	79
3.4	The Extraction process of diffuse and specular characteristics using CS	
	method. Initially, the input image is segmented into diffuse and specular	
	pixels using the proposed SR method. Then, the specular pixel is replaced	
	based on the information from the neighbors using inpainting method.	85
3.5	The curve of mutation rate is affected by the value of parameter ρ	88
3.6	Diagram of logistic map bifurcation (Bresten and Jung, 2009)	91
3.7	Distribution of logistic map	92
3.8	Comparison of histogram of logistic map distribution and Matlab pseudo-	
	random number distribution. (a) Logistic Map with uniform distribution, (b)	
	Matlab random generator with uniform distribution	92
3.9	The Extraction process of diffuse and specular characteristics using SC	
	method. Initially, the input image is processed using specular-free meth-	
	ods. The output is the n specular-free images. These images then are used to	
	reconstruct a dictionary. From the dictionary, the SC method generates the	
	diffuse and specular images	101

3.10	The Extraction Process of 3D-ISCs using MBP Model. Initially, the input	
	image is processed using SIRFS method. The output is the shading and	
	reflectance image. The shading is rendered using a shader from the 3D shape	
	and illumination model. The SR method then process reflectance image to	
	extract specular and diffuse characteristics.	109
3.11	The extraction process of 3D-ISCs using MDR Model. Initially, the input	
	image is processed using SR method. The output is the diffuse image. The	
	SIRFS then extract the reflectance and shading image. From the shading	
	image is rendered using a shader from the 3D shape and illumination model.	111
3.12	Pixel histograms of filter output from diffuse (left) and from specular (right). It	
	is clearly that the filter output histograms have distinctly noticeable difference	
	shape between diffuse and specular reflection.	114
4.1	Original image and their histogram	127
4.2	Original image and their histogram (continued)	128
4.3	Original image and their histogram (continued)	129
4.4	Thresholded image obtained by CS (a) represents $K = 3$, (b) represents $K = 4$,	
	(c) represents $K = 5$	137
4.5	Thresholded image obtained by CS (a) represents $K = 3$, (b) represents $K = 4$,	
	(c) represents $K = 5$ (continued)	138
4.6	The Ground Truth Images. (top) Input images, (middle) Diffuse Images,	
	(bottom) Specular Images. From left to right: Apple, Pear, Potato, Teabag1,	
	Teabag2	139

4.7	Thresholded image obtained by CS (a) represents $K = 1$, (b) represents $K = 2$,	
	(c) represents $K = 3$	140
4.8	Thresholded image obtained by CS (a) represents $K = 1$, (b) represents $K = 2$,	
	(c) represents $K = 3$ (continued)	141
4.9	PSO: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	142
4.10	ClonalG: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	142
4.11	CS: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	142
4.12	PSO: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	144
4.13	ClonalG: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	144
4.14	CS: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	145
4.15	PSO: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	146
4.16	ClonalG: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	147
4.17	CS: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	147

4.18	The Ground Truth Images. (top) Input images, (middle) Diffuse Images,	
	(bottom) Specular Images. From left to right: Apple, Pear, Potato, Teabag1,	
	Teabag2	149
4.19	MZK06: (left) Original, (middle) Diffuse, and (right) Specular	151
4.20	YCK06: (left) Original, (middle) Diffuse, and (right) Specular	151
4.21	YWA10: (left) Original, (middle) Diffuse, and (right) Specular	152
4.22	SC09: (left) Original, (middle) Diffuse, and (right) Specular component	152
4.23	Proposed Method: (top) Diffuse Results, (bottom) Specular Results. From	
	left to right: Apple, Pear, Potato, Teabag1, Teabag2	153
4.24	Proposed Method: (top) Diffuse Results, (bottom) Specular Results. From	
	left to right: Apple, Pear, Potato, Teabag1, Teabag2	155
4.25	MZK06: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	155
4.26	YCK06: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	156
4.27	Proposed Method: (top) Diffuse Results, (bottom) Specular Results. From	
	left to right: Apple, Pear, Potato, Teabag1, Teabag2	157
4.28	MZK06: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	158
4.29	YCK06: (top) Diffuse Results, (bottom) Specular Results. From left to right:	
	Apple, Pear, Potato, Teabag1, Teabag2	158
4.30	Intrinsic Scene Characteristics from SIRFS for pear	160
4.31	Intrinsic Scene Characteristics from SIRFS for potato	161

4.32	Intrinsic Scene Characteristics from SIRFS for teabag1	161
4.33	MZK06: From top-left to top-right is the diffuse images of pear, potato, and	
	teabag1 while from bottom-left to bottom-right is the specular images of pear,	
	potato, and teabag1	163
4.34	YCK06: From top-left to top-right is the diffuse images of pear, potato, and	
	teabag1 while from bottom-left to bottom-right is the specular images of pear,	
	potato, and teabag1	163
4.35	MDR: From top-left to top-right is the diffuse images of pear, potato, and	
	teabag1 while from bottom-left to bottom-right is the specular images of pear,	
	potato, and teabag1	164
4.36	MZK06-SIRFS on Pear: (left to right) diffuse, reflectance, shading, surface	
	normals, and illumination images	167
4.37	MZK06-SIRFS on Potato: (left to right) diffuse, reflectance, shading, surface	
	normals, and illumination images	168
4.38	MZK06-SIRFS on Teabag1: (left to right) diffuse, reflectance, shading,	
	surface normals, and illumination images	168
4.39	YCK06-SIRFS on Pear: (left to right) diffuse, reflectance, shading, surface	
	normals, and illumination images	168
4.40	YCK06-SIRFS on Potato: (left to right) diffuse, reflectance, shading, surface	
	normals, and illumination images	169
4.41	YCK06-SIRFS on Teabag1: (left to right) diffuse, reflectance, shading, sur-	
	face normals, and illumination images	169

4.42	MDR-SIRFS on Pear: (left to right) diffuse, reflectance, shading, surface	
	normals, and illumination images	169
4.43	MDR-SIRFS on Potato: (left to right) diffuse, reflectance, shading, surface	
	normals, and illumination images	170
4.44	MDR-SIRFS on Teabag1: (left to right) diffuse, reflectance, shading, surface	
	normals, and illumination images	170
4.45	Results of ISC estimation using the proposed model on real-world Pebbles	
	image, manually cropped color images of objects.	171
4.46	Results of ISC estimation using the proposed model on real-world Toy image,	
	manually cropped color images of objects.	171
4.47	Results of ISC estimation using the proposed model on real-world Fruits	
	image, manually cropped color images of objects.	172
4.48	Results of ISC estimation using the proposed model on real-world Toothpaste	
	image, manually cropped color images of objects.	172
4.49	Specular highlight on sphere for different type of light source	174
4.50	Dichromatic Editing of Pear	178
4.51	Reflectance Editing of Pear	178