

# **Faculty of Electrical Engineering**

# COMPUTER VISION INSPECTION AND CLASSIFICATION ON PRINTED CIRCUIT BOARDS FOR FLUX DEFECTS

Ang Teoh Ong

**Doctor of Engineering** 

2016

C Universiti Teknikal Malaysia Melaka

## COMPUTER VISION INSPECTION AND CLASSIFICATION ON PRINTED CIRCUIT BOARDS FOR FLUX DEFECTS

## ANG TEOH ONG

# A thesis submitted In fullfilment of the requirements for the degree of Doctor of Engineering

**Faculty of Electrical Engineering** 

# UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

### DECLARATION

I hereby declare that the work in this thesis is my own research except as cited in the reference. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | : |  | • | • | •          | <br> | <br>• | • | • |   | • | • | • | • | • • | <br>• • | • |   | • | • • | • | • | • | • | <br>• | • | <br> | • • | • |   | • | <br>• | • |
|-----------|---|--|---|---|------------|------|-------|---|---|---|---|---|---|---|-----|---------|---|---|---|-----|---|---|---|---|-------|---|------|-----|---|---|---|-------|---|
| Name      | : |  |   | • | <b>.</b> . | <br> | <br>• |   | • | • | • | • | - | - |     | <br>• • |   | • | • |     | • |   | • | - | <br>• |   | <br> |     |   | • | - | <br>• | • |
| Date      | : |  |   | • | •          | <br> |       |   | • |   | • | • | • | • |     | <br>    |   |   |   |     |   |   |   | - | <br>• |   | <br> |     |   | • | - | <br>• | • |

C Universiti Teknikal Malaysia Melaka

## APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in term of scope and quality for the award of Doctor of Engineering.

| Signature       | : |
|-----------------|---|
| Supervisor Name | : |
| Date :          |   |



# **DEDICATION**

To my beloved mother, Madam Kok Mooi Yin, beloved father, Mr. Ang Chor Kok, wife, Ms. Lee Feuy Feuy, daughter, Ang Shin Yii and son, Ang Yee Kae.



#### ABSTRACT

The manual inspection of Printed Circuit Boards (PCB) is labor intensive and slow down the production line. During the assembly process, the defective PCBs with flux defects if not detected and remove, it can create corrosion and cause harmful effects on the board itself. As such, an automated inspection system is very much needed to overcome the aforementioned problems in PCB production line. The main objective of this work is to develop a real-time machine vision system for quality assessment of PCBs by detecting defectives PCBs. The proposed system should be able to detect flux defect on PCB board during the re-flow process and achieve good accuracy of the PCB quality checking. The proposed system is named as An Automatic Inspection System for Printed Circuit Boards (AIS-PCB), involves design and fabrication of a total automation control system involving the use of mechanical PCB loader/un-loader, robotic pneumatic system handler with vacuum cap and a vision inspection station that makes a decision either to accept or reject. The decision making part involves classifier training of PCB images. Prior to ANN training, the images need to be processed by the image processing and feature extraction. The image processing system is based on pattern matching and color image analysis techniques. The shape of the PCB pins is analyzed by using pattern matching technique to detect the PCB flux defect area. After that, the color analysis of the flux defect on a PCB boards are processed based on their red color pixel percentage in Red, Green and Blue (RGB) model. The red color filter band mean value of histogram is measured and compared to the value threshold to determine the occurrence of flux defect on the PCBs. The texture of the PCB flux defect can also be extracted based on line detection of the gradient field PCB images and feature indexing by using Radon transform-based approach. The feed-forward back-propagation (FFBP) model is used as classifier to classify the product quality of the PCBs via a learning concept. A number of trainings using the FFBP are performed for the classifier to learn and match the targets. The learned classifier, when tested on the PCBs from a factory's production line, achieves a grading accuracy of coefficient of efficiency (COE) greater than 95%. As such, it can be concluded that the developed AIS-PCB system has shown promising results by successfully classifying flux defects in PCBs through visual information and facilitates automatic inspection, thereby aiding humans in conducting rapid inspections.

#### ABSTRAK

Pemeriksaan secara manual bagi Papan Litar Bercetak (PCB) memerlukan tenaga kerja yang intensif dan melambatkan aliran pengeluaran. Dalam proses pemasangan, PCB yang rosak jika tidak dikesan dan diasingkan, keadaan ini boleh menghasilkan kakisan dan menyebabkan kesan buruk terhadap PCB tersebut. Maka, pemeriksaan secara pemeriksaan penglihatan automatik yang sistematik adalah sangat diperlukan bagi mengatasi masalah yang dinyatakan di atas didalam aliran pengeluaran. Oleh itu, objektif utama kajian ini adalah untuk membangunkan satu sistem penglihatan mesin masa nyata untuk penilaian kualiti PCB dengan mengesan kecacatan pada flux PCB. Sistem yang dicadangkan didalam kajian ini akan berupaya mengesan kecacatan fluks pada papan PCB semasa proses aliran semula dan memperolehi ketepatan yang tinggi terhadap pemeriksaan kualiti PCB. Sistem yang dicadangkan, dinamakan sebagai Sistem Pemeriksaan Automatik bagi Papan Litar Bercetak (AIS-PCB), melibatkan reka bentuk dan fabrikasi sistem kawalan automasi yang melibatkan penggunaan PCB mekanikal 'loader'/'un-loader', pengendalian sistem pneumatik robotik dengan topi vakum dan stesen pemeriksaan penglihatan yang membuat keputusan sama ada diterima atau ditolak. Proses membuatan keputusan ialah melibatkan latihan pengkelasan imej PCB. Sebelum latihan, semua imej perlu melalui pemprosesan imej dan proses pengekstrakan ciri-ciri. Sistem pemprosesan imej adalah berdasarkan kepada corak yang hampir sama dan teknik analisis warna imej. Bentuk pin PCB dianalisia menggunakan teknik corak yang hampir sama untuk mengesan kawasan kecacatan fluks PCB. Selepas itu, teknik analisisa warna bagi kecacatan fluks papan PCB diproses berdasarkan peratusan piksel berwarna merah di dalam model Merah, Hijau dan Biru (RGB). Penuras warna merah bermaksud nilai histogram diukur dan dibandingkan dengan nilai ambang untuk menentukan sama ada berlakunya kecacatan fluks pada PCB. Tekstur kecacatan fluks PCB juga boleh diekstrak berdasarkan pengesanan garis medan kecerunan pada imej PCB dan ciri pengindeksan dengan menggunakan pendekatan terubah Radon. Model propagasi-belakang suapanhadapan (FFBP) digunakan sebagai pengkelas untuk mengklasifikasikan kualiti PCB melalui konsep pembelajaran. Beberapa latihan menggunakan FFBP dilaksanakan bagi pengkelas untuk belajar dan memadankan dengan sasaran. Rangkaian pengelasan ini apabila diuji terhadap PCB dari aliran pengeluaran kilang telah didapati mencapai ketepatan pekali kecekapan (COE) melebihi 95%. Oleh itu, kesimpulan dapat dibuat bahawa sistem AIS-PCB yang dibangunkan ini telah memberikan keputusan yang memberangsangkan dengan keupayaan mengklasifikasikan kecacatan flux PCB melalui maklumat penglihatan dan memudahkan proses pemeriksaan secara automatik, dengan itu ia berupaya membantu manusia melaksanakan pemeriksaan secara pantas dan tepat.

#### ACKNOWLEDGEMENT

The author is pleased to express his deepest sense of gratitude and sencere devotion to his supervisor Prof. Dr. Zulkifilie Bin Ibrahim Mohd, Department of Electrical Engineering UTeM, for his continue supervision and helpful suggestion during the entire progress of this research.

The author wishes to thanks external supervisor PM. Dr. Suzaimah Ramli, UPNM for her help and encouragement during the reserach progress. The author wishes to extent the thanks to all member of the staff of Electrical Department, UTeM for their help and cooperation.

The author thanks all his friends and special thanks to Dr. Aoauche Mustapha and Prof. Dr. Aini, UKM for their support and guidance. Lastly, special appreciation to industry supervisor Mr. Boo Chai Eong, INTEL Penang especially for his advice and input from the industry aspects on this research.

# TABLE OF CONTENTS

**DECLARATION** 

| DEDICATIONABSTRACTiABSTRAKiiACKNOWLEDGEMENTSiiiTABLE OF CONTENTSivLIST OF TABLESviiLIST OF APPENDICESxLIST OF APPENDICESxiiiLIST OF ABBREVIATIONSxiLIST OF PUBLICATIONxivCHAPTER11.INTRODUCTION1.11.1Background111.2Computer vision system41.31.3Motivation for research1.4Problem statement1.5Objectives of research1.6Scope of research1.7Contribution of research1.8Organization of thesis102.1LITERATURE REVIEW112.1History of PCB technology2.3Automated grading system in PCB inspection2.4Summary32SYSTEM DESIGN3.3System implementation3.3.1CCD Camera3.3.2Frame grabber3.3.4Data acquisition I/O card3.3.4Data acquisition I/O card3.3.4Dirat inmut/outmut <tr< th=""><th>AP</th><th>PROV</th><th>AL</th><th></th></tr<>                                                                                                                                                                                     | AP  | PROV  | AL                                                       |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------------------------------------------------------|----------|
| ABSTRACT       i         ABSTRAK       ii         ACKNOWLEDGEMENTS       iii         TABLE OF CONTENTS       iv         LIST OF TABLES       vii         LIST OF ABDREVIATIONS       x         LIST OF ABBREVIATIONS       xii         LIST OF PUBLICATION       xiv         CHAPTER       1         1.       INTRODUCTION       1         1.1       Background       1         1.2       Computer vision system       4         1.3       Motivation for research       5         1.4       Problem statement       5         1.5       Objectives of research       9         1.6       Scope of research       9         1.7       Contribution of research       10         2.1       History of PCB technology       11         2.1       History of PCB technology       11         2.2       Literature review of PCB machine vision system       12         2.3       Automated grading system in PCB inspection       15         2.4       Summary       32         3.5       System implementation       41         3.3.1       CCD Camera       41         3.3.2                                                                                           | DE  | DICA  | ΓΙΟΝ                                                     |          |
| ABSTRAKiiACKNOWLEDGEMENTSiiiTABLE OF CONTENTSivLIST OF TABLESviiLIST OF TABLESviiiLIST OF FIGURESxLIST OF APPENDICESxLIST OF SYMBOLSxiiiLIST OF PUBLICATIONxivCHAPTER11.Background1.1Background1.2Computer vision system41.31.3Motivation for research1.4Problem statement551.5Objectives of research1.6Scope of research1.8Organization of thesis102.1LITERATURE REVIEW112.1History of PCB technology2.3Automated grading system in PCB inspection2.4Summary323.5SYSTEM DESIGN3.4Data acquisition I/O card3.3.4Data acquisition I/O card3.3.4.1USB DAQ module3.3.4.2Characteristic3.3.4.3Dirital innut/outmut44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AB  | STRA  | CT                                                       | i        |
| ACKNOWLEDGEMENTS       iii         TABLE OF CONTENTS       iv         LIST OF TABLES       viii         LIST OF FIGURES       viii         LIST OF APPENDICES       x         LIST OF PUBLICATIONS       xi         LIST OF PUBLICATION       1         1.1       Background       1         1.2       Computer vision system       4         1.3       Motivation for research       5         1.4       Problem statement       5         1.5       Objectives of research       8         1.6       Scope of research       9         1.7       Contribution of research       9         1.8       Organization of thesis       10         2.1       History of PCB technology       11         2.2       Literature review of PCB machine vision system       12         2.3       Automated grading system in PCB inspection       15         2.4       Summary       32         3.5       System implementation       41         3.3.1       CCD Camera       41         3.3.2       Frame grabber       42         3.3.4.1       USB DAQ module       42         3.3.4.2       Characteris                                                                     | AB  | STRA  | K                                                        | ii       |
| TABLE OF CONTENTSivLIST OF TABLESviiLIST OF FIGURESviiiLIST OF APPENDICESxLIST OF ABBREVIATIONSxiLIST OF PUBLICATIONxivCHAPTER11. INTRODUCTION11.1Background1.2Computer vision system41.31.3Motivation for research51.41.5Objectives of research1.6Scope of research1.7Contribution of research1.8Organization of thesis102.2.Literature review of PCB machine vision system1.2Literature review of PCB machine vision system122.32.4Summary323.SYSTEM DESIGN3.3System implementation413.3.13.3.2Frame grabber3.3.4Data acquisition I/O card3.3.4.1USB DAQ module3.3.4.2Characteristic3.3.4.2Characteristic3.3.4.2Characteristic3.4.3Data acquisition I/O card3.4.3Joital imput/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AC  | KNOV  | VLEDGEMENTS                                              | iii      |
| LIST OF TABLESviiLIST OF FIGURESviiiLIST OF APPENDICESxLIST OF ABBREVIATIONSxiLIST OF SYMBOLSxiiiLIST OF PUBLICATION11.1 Background11.2 Computer vision system41.3 Motivation for research51.4 Problem statement51.5 Objectives of research81.6 Scope of research91.7 Contribution of research91.8 Organization of thesis102. LITERATURE REVIEW112.1 History of PCB technology112.2 Literature review of PCB machine vision system122.3 Automated grading system in PCB inspection152.4 Summary323. SYSTEM DESIGN343.3 Computer413.3.1 CCD Camera413.3.2 Frame grabber423.3.4 Data acquisition I/O card423.3.4 Data acquisition I/O card423.3.4 Data acquisition I/O card423.3.4 Data acquisition I/O card423.3.4 Data acquisition I/O card433.3 4 Data acquisition I/O card433.3 4 Data acquisition I/O card433.4 Data acquisition I/O card433.3 4 Data acquisit                                                                                               | TA  | BLE C | <b>DF CONTENTS</b>                                       | iv       |
| LIST OF FIGURESviiiLIST OF APPENDICESxLIST OF ABBREVIATIONSxiiLIST OF FYMBOLSxiiiLIST OF PUBLICATIONxivCHAPTER11. INTRODUCTION11.2 Computer vision system41.3 Motivation for research51.4 Problem statement51.5 Objectives of research81.6 Scope of research91.7 Contribution of research91.8 Organization of thesis102. LITERATURE REVIEW112.1 History of PCB technology112.2 Literature review of PCB machine vision system122.3 Automated grading system in PCB inspection152.4 Summary323. SYSTEM DESIGN343.3 Computer413.3.1 CCD Camera413.3.2 Frame grabber423.3.4 Data acquisition I/O card423.3.4.1 USB DAQ module423.3.4.2 Characteristic433.4.3 Dioital innut/outnut44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LIS | ST OF | TABLES                                                   | vii      |
| LIST OF APPENDICES       x         LIST OF ABBREVIATIONS       xi         LIST OF SYMBOLS       xiiii         LIST OF PUBLICATION       xiv         CHAPTER       1         1.1       Background       1         1.2       Computer vision system       1         1.3       Motivation for research       5         1.4       Problem statement       5         1.5       Objectives of research       8         1.6       Scope of research       9         1.7       Contribution of research       9         1.8       Organization of thesis       10         2.       LITERATURE REVIEW       11         2.1       History of PCB technology       11         2.2       Literature review of PCB machine vision system       12         2.3       Automated grading system in PCB inspection       15         2.4       Summary       32         3.5       System implementation       34         3.1       Introduction       34         3.3       Coperview of proposed machine vision system       38         3.3.1       CCD Camera       41         3.3.2       Frame grabber       42                                                                      | LIS | ST OF | FIGURES                                                  | viii     |
| LIST OF ABBREVIATIONSxiLIST OF SYMBOLSxiiiLIST OF PUBLICATIONxivCHAPTER11.Background1.1.Background1.2.Computer vision system1.3.Motivation for research1.4.Problem statement1.5.Objectives of research1.6.Scope of research1.7.Contribution of research1.8.Organization of thesis102.2.1.History of PCB technology2.1.History of PCB technology2.3.Automated grading system in PCB inspection2.4.Summary32343.1.Introduction3.3.System implementation3.3.Cop of proposed machine vision system3.3.System implementation4.13.3.1.3.3.1.CCD Camera3.3.4.Data acquisition I/O card3.3.4.2.Characteristic3.3.4.2.Characteristic3.3.4.3.Dividal imput/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LIS | ST OF | APPENDICES                                               | X        |
| LIST OF SYMBOLSxiiiLIST OF PUBLICATIONxivCHAPTER11.INTRODUCTION11.1Background11.2Computer vision system41.3Motivation for research51.4Problem statement51.5Objectives of research81.6Scope of research91.7Contribution of research91.8Organization of thesis102.LITERATURE REVIEW112.1History of PCB technology112.2Literature review of PCB machine vision system122.3Automated grading system in PCB inspection152.4Summary323.SYSTEM DESIGN343.1Introduction443.3.2Frame grabber423.3.3Computer423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.4.3Divida limut/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LIS | ST OF | ABBREVIATIONS                                            | xi       |
| LIST OF PUBLICATIONxivCHAPTER11. INTRODUCTION11.1 Background11.2 Computer vision system41.3 Motivation for research51.4 Problem statement51.5 Objectives of research81.6 Scope of research91.7 Contribution of research91.8 Organization of thesis102. LITERATURE REVIEW112.1 History of PCB technology112.2 Literature review of PCB machine vision system122.3 Automated grading system in PCB inspection152.4 Summary323. SYSTEM DESIGN343.1 Introduction343.2 Overview of proposed machine vision system383.3 System implementation413.3.1 CCD Camera413.3.2 Frame grabber423.3.4 Data acquisition I/O card423.3.4.1 USB DAQ module423.3.4.2 Characteristic333.3 4.3 Divital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LIS | ST OF | SYMBOLS                                                  | xiii     |
| CHAPTER1.INTRODUCTION11.1Background11.2Computer vision system41.3Motivation for research51.4Problem statement51.5Objectives of research81.6Scope of research91.7Contribution of research91.8Organization of thesis102.LITERATURE REVIEW112.1History of PCB technology112.2Literature review of PCB machine vision system122.3Automated grading system in PCB inspection152.4Summary323.SYSTEM DESIGN343.1Introduction343.3.1CCD Camera413.3.2Frame grabber423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LIS | ST OF | PUBLICATION                                              | xiv      |
| 1.       INTRODUCTION       1         1.1       Background       1         1.2       Computer vision system       4         1.3       Motivation for research       5         1.4       Problem statement       5         1.5       Objectives of research       8         1.6       Scope of research       9         1.7       Contribution of research       9         1.8       Organization of thesis       10         2.       LITERATURE REVIEW       11         2.1       History of PCB technology       11         2.2       Literature review of PCB machine vision system       12         2.3       Automated grading system in PCB inspection       15         2.4       Summary       32         3.       SYSTEM DESIGN       34         3.1       Introduction       34         3.2       Overview of proposed machine vision system       38         3.3       System implementation       41         3.3.1       CCD Camera       41         3.3.2       Frame grabber       42         3.3.4       Data acquisition I/O card       42         3.3.4.1       USB DAQ module       42     <                                                          | СН  | APTE  | R                                                        |          |
| 1.1       Background       1         1.2       Computer vision system       4         1.3       Motivation for research       5         1.4       Problem statement       5         1.5       Objectives of research       8         1.6       Scope of research       9         1.7       Contribution of research       9         1.8       Organization of thesis       10         2.       LITERATURE REVIEW       11         2.1       History of PCB technology       11         2.2       Literature review of PCB machine vision system       12         2.3       Automated grading system in PCB inspection       15         2.4       Summary       32         3.       SYSTEM DESIGN       34         3.1       Introduction       34         3.2       Overview of proposed machine vision system       38         3.3       System implementation       41         3.3.1       CCD Camera       41         3.3.2       Frame grabber       42         3.3.4       Data acquisition I/O card       42         3.3.4.1       USB DAQ module       42         3.3.4.2       Characteristic       43 <th>1.</th> <th>INT</th> <th>RODUCTION</th> <th>1</th> | 1.  | INT   | RODUCTION                                                | 1        |
| 1.2Computer vision system41.3Motivation for research51.4Problem statement51.5Objectives of research81.6Scope of research91.7Contribution of research91.8Organization of thesis102.LITERATURE REVIEW112.1History of PCB technology112.2Literature review of PCB machine vision system122.3Automated grading system in PCB inspection152.4Summary323.SYSTEM DESIGN343.1Introduction343.2Overview of proposed machine vision system383.3System implementation413.3.1CCD Camera413.3.2Frame grabber423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 1.1   | Background                                               | 1        |
| 1.3       Motivation for research       5         1.4       Problem statement       5         1.5       Objectives of research       8         1.6       Scope of research       9         1.7       Contribution of research       9         1.8       Organization of thesis       10         2.       LITERATURE REVIEW       11         2.1       History of PCB technology       11         2.2       Literature review of PCB machine vision system       12         2.3       Automated grading system in PCB inspection       15         2.4       Summary       32         3.       SYSTEM DESIGN       34         3.1       Introduction       34         3.2       Overview of proposed machine vision system       38         3.3       System implementation       41         3.3.1       CCD Camera       41         3.3.2       Frame grabber       42         3.3.3       Computer       42         3.3.4.1       USB DAQ module       42         3.3.4.2       Characteristic       43         3.3.4.3       Digital input/output       44                                                                                                           |     | 1.2   | Computer vision system                                   | 4        |
| 1.4Problem statement31.5Objectives of research81.6Scope of research91.7Contribution of research91.8Organization of thesis102.LITERATURE REVIEW112.1History of PCB technology112.2Literature review of PCB machine vision system122.3Automated grading system in PCB inspection152.4Summary323.SYSTEM DESIGN343.1Introduction343.2Overview of proposed machine vision system383.3System implementation413.3.1CCD Camera413.3.2Frame grabber423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 1.3   | Motivation for research                                  | 5        |
| 1.3       Objectives of research       9         1.6       Scope of research       9         1.7       Contribution of research       9         1.8       Organization of thesis       10         2.       LITERATURE REVIEW       11         2.1       History of PCB technology       11         2.2       Literature review of PCB machine vision system       12         2.3       Automated grading system in PCB inspection       15         2.4       Summary       32         3.       SYSTEM DESIGN       34         3.1       Introduction       34         3.2       Overview of proposed machine vision system       38         3.3       System implementation       41         3.3.1       CCD Camera       41         3.3.2       Frame grabber       42         3.3.4       Data acquisition I/O card       42         3.3.4.1       USB DAQ module       42         3.3.4.2       Characteristic       43         3.3.4.3       Digital input/output       44                                                                                                                                                                                        |     | 1.4   | Problem statement<br>Objectives of research              | 3        |
| 1.0Scope of research91.7Contribution of research91.8Organization of thesis102.LITERATURE REVIEW112.1History of PCB technology112.2Literature review of PCB machine vision system122.3Automated grading system in PCB inspection152.4Summary323.SYSTEM DESIGN343.1Introduction343.2Overview of proposed machine vision system383.3System implementation413.3.1CCD Camera413.3.2Frame grabber423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 1.5   | Scope of research                                        | 8<br>0   |
| 1.7       Contribution of research       7         1.8       Organization of thesis       10         2.       LITERATURE REVIEW       11         2.1       History of PCB technology       11         2.2       Literature review of PCB machine vision system       12         2.3       Automated grading system in PCB inspection       15         2.4       Summary       32         3.       SYSTEM DESIGN       34         3.1       Introduction       34         3.2       Overview of proposed machine vision system       38         3.3       System implementation       41         3.3.1       CCD Camera       41         3.3.2       Frame grabber       42         3.3.3       Computer       42         3.3.4       Data acquisition I/O card       42         3.3.4.1       USB DAQ module       42         3.3.4.2       Characteristic       43         3.3.4.3       Digital input/output       44                                                                                                                                                                                                                                               |     | 1.0   | Contribution of research                                 | 9        |
| 1.0       Organization of thesis       10         2.       LITERATURE REVIEW       11         2.1       History of PCB technology       11         2.2       Literature review of PCB machine vision system       12         2.3       Automated grading system in PCB inspection       15         2.4       Summary       32         3.       SYSTEM DESIGN       34         3.1       Introduction       34         3.2       Overview of proposed machine vision system       38         3.3       System implementation       41         3.3.1       CCD Camera       41         3.3.2       Frame grabber       42         3.3.4       Data acquisition I/O card       42         3.3.4.1       USB DAQ module       42         3.3.4.2       Characteristic       43         3.3.4.3       Digital input/output       44                                                                                                                                                                                                                                                                                                                                        |     | 1.7   | Organization of thesis                                   | 10       |
| 2.LITERATURE REVIEW112.1History of PCB technology112.2Literature review of PCB machine vision system122.3Automated grading system in PCB inspection152.4Summary323.SYSTEM DESIGN343.1Introduction343.2Overview of proposed machine vision system383.3System implementation413.3.1CCD Camera413.3.2Frame grabber423.3.3Computer423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 1.0   | organization of thesis                                   | 10       |
| 2.1History of PCB technology112.2Literature review of PCB machine vision system122.3Automated grading system in PCB inspection152.4Summary323.SYSTEM DESIGN343.1Introduction343.2Overview of proposed machine vision system383.3System implementation413.3.1CCD Camera413.3.2Frame grabber423.3.3Computer423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.  | LIT   | ERATURE REVIEW                                           | 11       |
| 2.2Literature review of PCB machine vision system122.3Automated grading system in PCB inspection152.4Summary323.SYSTEM DESIGN343.1Introduction343.2Overview of proposed machine vision system383.3System implementation413.3.1CCD Camera413.3.2Frame grabber423.3.3Computer423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 2.1   | History of PCB technology                                | 11       |
| 2.3Automated grading system in PCB inspection152.4Summary323.SYSTEM DESIGN343.1Introduction343.2Overview of proposed machine vision system383.3System implementation413.3.1CCD Camera413.3.2Frame grabber423.3.3Computer423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 2.2   | Literature review of PCB machine vision system           | 12       |
| 2.4Summary323.SYSTEM DESIGN343.1Introduction343.2Overview of proposed machine vision system383.3System implementation413.3.1CCD Camera413.3.2Frame grabber423.3.3Computer423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 2.3   | Automated grading system in PCB inspection               | 15       |
| <b>3.</b> SYSTEM DESIGN <b>34</b> 3.1 Introduction343.2 Overview of proposed machine vision system383.3 System implementation413.3.1 CCD Camera413.3.2 Frame grabber423.3.3 Computer423.3.4 Data acquisition I/O card423.3.4.1 USB DAQ module423.3.4.2 Characteristic433.3.4.3 Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 2.4   | Summary                                                  | 32       |
| 3.1Introduction343.2Overview of proposed machine vision system383.3System implementation413.3.1CCD Camera413.3.2Frame grabber423.3.3Computer423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.  | SYS   | TEM DESIGN                                               | 34       |
| 3.2Overview of proposed machine vision system383.3System implementation413.3.1CCD Camera413.3.2Frame grabber423.3.3Computer423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 3.1   | Introduction                                             | 34       |
| 3.3System implementation413.3.1CCD Camera413.3.2Frame grabber423.3.3Computer423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 3.2   | Overview of proposed machine vision system               | 38       |
| 3.3.1CCD Camera413.3.2Frame grabber423.3.3Computer423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 3.3   | System implementation                                    | 41       |
| 3.3.2Frame grabber423.3.3Computer423.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |       | 3.3.1 CCD Camera                                         | 41       |
| 3.3.4Data acquisition I/O card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       | 3.3.2 Frame grabber                                      | 42       |
| 3.3.4Jata acquisition 1/0 card423.3.4.1USB DAQ module423.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       | 2.2.4 Data acquisition I/O card                          | 42       |
| 3.3.4.2Characteristic433.3.4.3Digital input/output44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       | 3.3.4 Data acquistion 1/0 calu<br>3.3.4.1 USB DAO module | 42<br>42 |
| 3 3 4 3 Digital input/output 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |       | 3.3.4.1 USD DAQ module<br>3.3.4.2 Characteristic         | 42<br>13 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |       | 3 3 4 3 Digital input/output                             | 43<br>47 |
| 3 3 4 4 Creating a digital I/O object 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |       | 3 3 4 4 Creating a digital I/O object                    | 45       |

3.3.4.4Creating a digital 10 object433.3.4.5Driving circuit45

| 3.4 | Data c  | collection                                                  | 48  |
|-----|---------|-------------------------------------------------------------|-----|
|     | 3.4.1   | Location                                                    | 48  |
|     | 3.4.2   | Equipment                                                   | 48  |
|     | 3.4.3   | Procedure                                                   | 48  |
|     | 3.4.4   | PCB (Printed Circuit Board) image samples                   | 49  |
|     | 3.4.5   | Consultation with factory                                   | 52  |
| 3.5 | Flux d  | lefects inspection algorithms                               | 53  |
|     | 3.5.1   | Software tools                                              | 54  |
|     | 3.5.2   | Proposed PCB inspection algorithms                          | 54  |
|     | 3.5.3   | Color analysis system                                       | 56  |
|     |         | 3.5.3.1 The RGB color space                                 | 56  |
|     |         | 3.5.3.2 RGB color and displays                              | 57  |
|     |         | 3.5.3.3 The HSV color space                                 | 57  |
|     |         | 3.5.3.4 HSV color and displays                              | 60  |
|     | 3.5.4   | Color image representation                                  | 62  |
|     |         | 3.5.4.1 Color calibration                                   | 62  |
|     |         | 3.5.4.2 Numeric representations                             | 62  |
|     |         | 3.5.4.3 Memory space                                        | 64  |
|     |         | 3.5.4.4 RGB color model                                     | 65  |
|     | 3.5.5   | Transformation between HSV and RGB                          | 66  |
|     | 3.5.6   | Color image processing using Matrox imaging library         | 69  |
|     |         | 3.5.6.1 Matrox MIL benefits                                 | 69  |
|     |         | 3.5.6.2 Pattern recognition using Matrox MIL                | 70  |
|     |         | 3.5.6.3 Color analysis                                      | 71  |
|     |         | 3.5.6.4 Fully optimized for speed                           | 72  |
|     | 3.5.7   | Color image processing using Matlab                         | 73  |
|     |         | 3.5.7.1 Indexed images                                      | 75  |
|     |         | 3.5.7.2 Intensity images                                    | 76  |
|     |         | 3.5.7.3 Binary images                                       | 76  |
|     |         | 3.5.7.4 RGB images                                          | 76  |
|     |         | 3.5.7.5 Converting images to other types                    | 77  |
|     |         | 3.5.7.6 Color space conversions                             | 77  |
|     |         | 3.5.7.7 Display images                                      | 78  |
|     | 3.5.8   | Image pre-processing                                        | 79  |
|     | 3.5.9   | Processing and image features                               | 81  |
|     |         | 3.5.9.1 Image processing algorithm                          | 82  |
|     |         | 3.5.9.2 Segmentation                                        | 84  |
|     |         | 3.5.9.3 Thresholding                                        | 85  |
|     |         | 3.5.9.4 Fix threshold algorithm                             | 86  |
|     |         | 3.5.9.5 Automatic threshold algorithm (Otsu's Method)       | 87  |
|     | 3.5.10  | Feature extraction algorithms                               | 90  |
|     | 3.5.11  | Features extraction based on RGB color space                | 91  |
|     |         | 3.5.11.1 Techniques based on pattern matching               | 97  |
|     |         | 3.5.11.2 Red color filter band algorithm                    | 99  |
|     | 2 5 1 9 | 3.5.11.3 Histogram                                          | 102 |
|     | 3.5.12  | reatures extraction based on Radon transform line detection | 103 |
|     |         | 3.5.12.1 Flux detect segmentation                           | 103 |
|     |         | 3.5.12.2 Feature extraction                                 | 105 |
|     |         | 3.3.12.3 Radon Transform feature extraction and procedure   | 105 |

|    | 3.6  | Design  | of Artificial Neural Network (ANN) classification       | 108 |
|----|------|---------|---------------------------------------------------------|-----|
|    |      | 3.6.1   | Simple neuron                                           | 110 |
|    |      | 3.6.2   | Hard-limit transfer function                            | 111 |
|    |      | 3.6.3   | Linear transfer function                                | 112 |
|    |      | 3.6.4   | Sigmoid transfer function                               | 112 |
|    |      | 3.6.5   | Neuron with vector input                                | 112 |
|    |      | 3.6.6   | Back propagation neural network                         | 115 |
|    |      | 3.6.7   | Selecting a topology for a ANN network                  | 119 |
|    |      | 3.6.8   | MLP performance evaluation                              | 120 |
|    |      |         | 3.6.8.1 Statistical criteria                            | 120 |
|    |      |         | 3.6.8.2 Receiver operating characteristic (ROC)         | 121 |
|    |      |         | 3.6.8.3 Area under curve (AUC)                          | 122 |
| 4. | RES  | SULTS A | AND DISCUSSION                                          | 123 |
|    | 4.1  | Introdu | action                                                  | 123 |
|    | 4.2  | Image   | Pre-Processing                                          | 123 |
|    | 4.3  | Result  | of Otsu automatic threshold and fix threshold           | 124 |
|    |      | 4.3.1   | Experimental Results                                    | 126 |
|    |      | 4.3.2   | Fix and automatic threshold mean value                  | 128 |
|    | 4.4  | Otsu au | atomatic threshold with RGB green, blue and             |     |
|    |      | red-blu | e color filter                                          | 133 |
|    | 4.5  | Otsu a  | utomatic threshold with RGB red color filter            | 137 |
|    |      | 4.5.1   | Result                                                  | 138 |
|    | 4.6  | Autom   | atic threshold with Radon Transform line detection      | 145 |
|    | 4.7  | Testing | g and performance evaluation with ANN Classification    | 157 |
|    |      | 4.7.1   | ANN neural network classification                       | 157 |
|    |      | 4.7.2   | Artificial neural networks performance evaluation       | 160 |
|    |      | 4.7.3   | Training stage result                                   | 161 |
|    |      | 4.7.4   | Testing stage result                                    | 163 |
|    | 4.8  | Compa   | arative study of Human manual inspection, RGB and Radon |     |
|    |      | Transf  | Form line detection                                     | 164 |
|    |      | 4.8.1   | Result comparison                                       | 164 |
|    |      | 4.8.2   | Software and tool validation                            | 166 |
|    | 4.9  | Econor  | mical impact                                            | 166 |
|    |      | 4.9.1   | Market Overview                                         | 166 |
|    |      | 4.9.2   | Economical situation                                    | 168 |
|    |      | 4.9.3   | Economical impact analysis                              | 169 |
| 5  | CO   | NCLUS   | ION AND FUTURE WORK                                     | 173 |
|    | 5.1  | Conclu  | ision                                                   | 173 |
|    | 5.2  | Attain  | ment of research objectives                             | 174 |
|    | 5.3  | Signifi | cant contribution of research output                    | 175 |
|    | 5.4  | Sugges  | stion for future work                                   | 175 |
| RE | FERE | NCE     |                                                         | 176 |
| AP | PEND | ICES    |                                                         | 186 |

### LIST OF TABLES

# TABLE

# TITLE

# PAGE

| 1.1     | PCB inspection problem statements                                                                                         | 5   |
|---------|---------------------------------------------------------------------------------------------------------------------------|-----|
| 2.1     | Types of defects                                                                                                          | 14  |
| 3.1     | Data for input / output port                                                                                              | 47  |
| 3.2     | RGB color space parameters                                                                                                | 67  |
| 3.3     | The ROI (MExR RED-Band) of the sample images with mean value                                                              | 101 |
| 3.4     | Statistical criteria for the evaluation of the models in the training stage                                               | 120 |
| 4.1 (a) | Fix threshold mean value                                                                                                  | 128 |
| 4.1 (b) | Automatic threshold mean value                                                                                            | 129 |
| 4.2 (a) | Average mean value between fix threshold and automatic threshold                                                          | 130 |
| 4.2 (b) | Average mean value between fix threshold and automatic threshold                                                          | 130 |
| 4.3     | Images and red color filter band mean value                                                                               | 138 |
| 4.4     | Statistical measure from ANN-models (training stage) for                                                                  | 161 |
|         | different learning algorithms simulation between measured and examined                                                    |     |
| 4.5     | Statistical measure from ANN-models (testing stage) for best learning algorithms simulation between measured and examined | 164 |
| 4.6     | Operation cost before AOI implementation                                                                                  | 170 |
| 4.7     | Operation cost after AOI implementation                                                                                   | 171 |
| 4.8     | Cost comparison between human manual inspection and AOI                                                                   | 172 |

### LIST OF FIGURES

# FIGURE

# TITLE

# PAGE

| 1.1<br>1.2 | PCBA general process flow chart<br>Flux residue surrounding solder joints of BGA FET and on the<br>baord | 2<br>6 |
|------------|----------------------------------------------------------------------------------------------------------|--------|
| 1.3        | Flux residue under 1210 chip capacitors                                                                  | 7      |
| 3 1(a)     | Machine vision configuration set-up                                                                      | 35     |
| 3.1(b)     | Inspection system block diagram                                                                          | 35     |
| 3.2        | Basic machine vision PCB image grading processing flow chart                                             | 37     |
| 3.3        | Components of the image processing system                                                                | 39     |
| 3.4        | Proposed PCB inspection system                                                                           | 41     |
| 3.5        | Advantech 4711A USB DAQ Port Configuration                                                               | 44     |
| 3.6        | DAQ output LED interface port                                                                            | 46     |
| 3.7        | Overview of the proposed PCB automatic inspection set-up                                                 | 49     |
| 3.8        | PCB with flux data base samples class                                                                    | 50     |
| 3.9        | PCB without flux data base samples class                                                                 | 51     |
| 3.10       | Data collection flow                                                                                     | 52     |
| 3.11       | HSV color model                                                                                          | 58     |
| 3.12       | HSV time-varied cone                                                                                     | 59     |
| 3.13       | HSV time-varied cylinder                                                                                 | 60     |
| 3.14       | RGB color model                                                                                          | 64     |
| 3.15       | HSV-RGB comparison                                                                                       | 68     |
| 3.16       | Barns grand tetons HSV separation                                                                        | 68     |
| 3.17       | Matrox vision PCB flux images processing preview                                                         | 70     |
| 3.18       | Matrox MIL Pattern Matching function                                                                     | 71     |
| 3.19       | Matrox MIL color analysis function                                                                       | 72     |
| 3.20       | Sample of Matlab vision PCB flux images processing preview                                               | 79     |
| 3.21       | Flow chart of Image pre-processing                                                                       | 80     |
| 3.22       | PCB flux image processing algorithms block diagram (a) based                                             | 82     |
|            | on MExR red color filter and (b) based on radon transform line                                           |        |
|            | detection algorithm                                                                                      |        |
| 3.23       | Filtering the primaries color separately                                                                 | 84     |
| 3.24       | Example of Thresholding the PCB image                                                                    | 85     |
| 3.25       | Image processing with fix threshold algorithms block diagram                                             | 87     |
| 3.26       | PCB segmentation and automatic threshold algorithm                                                       | 88     |
| 3.27       | Image processing algorithms with automatic threshold                                                     | 88     |
|            | algorithm                                                                                                |        |
| 3.28       | Optimal or adaptive thresholding                                                                         | 89     |
| 3.29       | Binary images threshold                                                                                  | 93     |
| 3.30(a)    | PCB binary image (with flux defect) and rotated angle                                                    | 93     |

| 3.30(b) | Finding the rotated PCB image angle                                                                                  | 94  |
|---------|----------------------------------------------------------------------------------------------------------------------|-----|
| 3.31    | The ROI on the reference image where pattern matching search                                                         | 95  |
|         | model for 3 IC's pin                                                                                                 |     |
| 3.32    | Flow chart of Proposed image processing algorithm                                                                    | 96  |
| 3.33    | <ul> <li>(1) Extracted Image (MExR Red-Band), (2) T = 170, (3) T = 80,</li> <li>(4) T = 10</li> </ul>                | 100 |
| 3.34    | Histogram for ROI (MExR RED-Band) of PCB flux image                                                                  | 101 |
| 3.35    | An image and its histogram                                                                                           | 103 |
| 3.36    | Illustration of (a) step 1 and step 2 (b) determination of the maximum and minimum value/s of either x or y (step 3) | 106 |
| 3.37    | Selection of angle (step 4)                                                                                          | 107 |
| 3.38    | Neural Network image index feature concept                                                                           | 110 |
| 3.39    | Simple Neuron                                                                                                        | 110 |
| 3.40    | Hard-limit Transfer Function                                                                                         | 111 |
| 3.41    | Linear Transfer Function                                                                                             | 112 |
| 3.42    | Sigmoid Transfer Function                                                                                            | 112 |
| 3.43    | Neuron with vector input                                                                                             | 113 |
| 3.44    | Input vector p                                                                                                       | 114 |
| 3.45    | Feed Forward Neural Network                                                                                          | 116 |
| 3.46    | Two-layer tansig/purelin Network                                                                                     | 117 |
| 3.47    | Architecture for ANN topology                                                                                        | 117 |
| 4.1     | After resize, the image has become 150x150 pixels                                                                    | 127 |
| 4.2     | Threshold the image using Otsu rules                                                                                 | 127 |
| 4.3     | Threshold the image using Fix Threshold 10                                                                           | 127 |
| 4.4     | Threshold the image using Fix Threshold 80                                                                           | 127 |
| 4.5     | Threshold the image using Fix Threshold 170                                                                          | 127 |
| 4.6     | Threshold image with fix threshold and automatic threshold for PCB with flux category                                | 131 |
| 4.7     | Threshold image with fix threshold and automatic threshold for PCB without flux category                             | 132 |
| 4.8     | Result of Otsu automatic threshold with RGB green color filter                                                       | 134 |
| 4.9     | Result of Otsu automatic threshold with RGB blue color filter                                                        | 135 |
| 4.10    | Result of Otsu automatic threshold with RGB red-blue color filter                                                    | 136 |
| 4.11    | Red color flux and Histogram with automatic threshold for PCB with flux category                                     | 144 |
| 4.12    | After resize, the image has become 150x150 pixels                                                                    | 146 |
| 4.13    | First and second subtraction                                                                                         | 146 |
| 4.14    | Mask and morphological operation                                                                                     | 146 |
| 4.15    | Final segmentation image                                                                                             | 147 |
| 4.16    | Result of the flux defect segmentation                                                                               | 152 |
| 4.17    | Results of the PCB flux defect feature extraction                                                                    | 156 |
| 4.18    | Radon transform automatic threshold training errors                                                                  | 159 |
| 4.19    | Radon transform automatic threshold before training                                                                  | 159 |
| 4.20    | Radon transform automatic threshold after training                                                                   | 160 |
| 4.21    | ANN classification performance in the training stage                                                                 | 162 |
| 4.22    | ANN classification performance in the testing stage                                                                  | 163 |
| 4.23    | Comparison result of Human manual inspection, RGB and radon transform line detection                                 | 165 |
| 4.24    | Software and tool validation                                                                                         | 166 |

## LIST OF APPENDICES

# APPENDIX

# TITLE

# PAGE

| A1 | Machine vision conceptual mechanical drawing        | 186 |
|----|-----------------------------------------------------|-----|
| A2 | SAMSUNG CCD Camera, Matrox Frame grabber and Matrox | 191 |
|    | 4-sight GPm Industrial imaging computer             |     |
| A3 | Automation components source code                   | 203 |
| A4 | Matrox programming source code                      | 208 |
| A5 | Matlab programming source code                      | 233 |

# LIST OF ABBREVIATIONS

| AF      | Auto Focus                                     |
|---------|------------------------------------------------|
| AIS     | Automatic Inspection System                    |
| ANN     | Artificial Neural Network                      |
| AOI     | Automatic Optical Inspection                   |
| API     | Application Program Interface                  |
| ASIC    | Application-Specific Integrated Circuit        |
| AUC     | Area Under The Curve                           |
| AVI     | Automated visual inspection                    |
| BIOS    | Basic Input/output System                      |
| BGA FET | Ball Grid Array Field-effect Transistor        |
| BNC     | Bayonet Neill-Concelman                        |
| BW      | Black And White                                |
| CAGR    | Compound Annual Growth Rate                    |
| CB      | Clear Image Border                             |
| CCD     | Charge-Coupled Device                          |
| CCIR    | Consultative Committee For International Radio |
| COE     | Coefficient of Efficiency                      |
| CMM     | Coordinate Measuring Machine                   |
| CMYK    | Cyan, Magenta, Yellow, Key                     |
| CPU     | Central Processing Unit                        |
| CRT     | Cathode Ray Tube                               |
| CVBS    | Composite Video Baseband Signal                |
| DAQ     | Data Acquisition                               |
| DIO     | Digital I/O                                    |
| ED      | Edge Image                                     |
| ELCB    | Earth Leakage Circuit Breaker                  |
| FCT     | Functional Testing                             |
| FDS     | Flux Defect Segmentation                       |
| FFBP    | Feed-Forward Back -Propagation                 |
| FN      | False Negative                                 |
| FP      | False Positive                                 |
| FPGA    | Field-Programmable Gate Array                  |
| FS      | First Subtraction                              |
| GA      | Genetic Algorithm                              |
| GLPF    | Gaussian Low-Pass Filter                       |
| GUI     | Graphical User Interface                       |
| HPC     | High-Performance Computing                     |
| HSB     | Hue, Saturation, Brightness                    |
| HSL     | Hue, Saturation, Lightness                     |
| HSV     | Hue-Saturation-Value                           |
| I/O     | Input/output                                   |
| IC      | Integrated Circuit                             |

| ICT     | In-Circuit Test                      |
|---------|--------------------------------------|
| LED     | Light-Emitting Diode                 |
| LM      | Levenberg-Marquardt                  |
| LPT     | Line Print Terminal                  |
| LUT     | Look-Up Table                        |
| MAE     | Mean Absolute Error                  |
| MCB     | Miniature Circuit Breakers           |
| MExG    | Modified Excess Green                |
| MExR    | Modified Excess Red                  |
| MI      | Manual Insert                        |
| MIL     | Matrox Imaging Library               |
| MLP     | Multi-Layer Perceptron               |
| MO      | Morphological Opening                |
| NGC     | Normalized Gray Scale Correlation    |
| NTSC    | National Television System Committee |
| OCR     | Optical Character Recognition        |
| PAL     | Phase Alternative Line               |
| PC      | Personal Computer                    |
| PCB     | Printed Circuit Board                |
| PCBA    | Printed Circuit Board Assembly       |
| PCI     | Protocol Control Information         |
| QA      | Quality Assurance                    |
| RBF     | Radial Basis Function                |
| RCA     | Radio Corporation Of America         |
| RGB     | Red, Green, Blue                     |
| RMSE    | Root Mean Square Error               |
| ROC     | Receiver Operating Characteristic    |
| ROI     | Region Of Interest                   |
| RT      | Radon Transform                      |
| SATA    | Serial ATA                           |
| SCG     | Scaled Conjugate Gradient            |
| SIMD    | Single Instruction Multiple Data     |
| SMT     | Surface Mount Technology             |
| SS      | Second Subtraction                   |
| SSEx    | Streaming SIMD Extensions            |
| TN      | True Negative                        |
| ТР      | True Positive                        |
| TTL     | Transistor-Transistor Logic          |
| WYSIWYG | What You See Is What You Get         |
| Y/C     | Luminance/Chroma                     |

# LIST OF SYMBOLS

| bpp | - | Bits per pixel        |
|-----|---|-----------------------|
| D   | - | Dimension             |
| GB  | - | Gigabyte              |
| GHz | - | Gigahertz             |
| hex | - | Hexadecimal           |
| m   | - | Meter                 |
| MB  | - | Megabyte              |
| MHz | - | Megahertz             |
| rpm | - | Revolution per minute |
| TB  | - | Terabyte              |
| V   | - | Volt                  |
|     |   |                       |



### LIST OF PUBLICATIONS

Ang Teoh Ong, Zulkifilie Bin Ibrahim, Suzaimah Ramli (2013). Computer Machine Vision Inspection on Printed Circuit Boards Flux Defects, American Journal of Engineering and Applied Sciences 6(3): 263-273, 2013.

Ang Teoh Ong, Aouache Mustapha, Zulkifilie Bin Ibrahim, Suzaimah Ramli, Boo Chai Eong (2015). Real-Time Automatic Inspection System for the classification of PCB Flux Defects. American Journal of Engineering and Applied Sciences, 2015.

THE 6th International Conference on Postgraduate Education Image Processing Based Method For Printed Circuit Boards Flux Defects Detection. Main Hall UTeM, Melaka, 17 - 18 December 2014.

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Background

PC-Based vision technology has been developed and utilized as a part of a wide range of industry territory applications. One of the vision inspection applications is machine vision inspection on detect of the printed circuit board (PCB). Machine vision inspection is critical because it evacuates the deformities subjective elements and gives quantitative, quick and dimensional evaluations. PCBs typically contain complicated and definite format pattern designs; with this reason manual visual inspection is extremely exhausting and can caused many human errors. On the other hand, automatic machine vision systems are very consistent, accurate, fast and do not get exhausted.

PCB mechanically supports as well as electrically connection for electronic components using conductive tracks etched the copper sheets laminated onto a non-conductive substrate. However, more complex PCB consists of components like resistors, capacitors and other electronic components in the substrate. PCB is expensive to design but allows automated manufacturing and assembly providing potentially more reliable, cheaper to manufacture and faster in production. Automated PCB defects machine vision inspections require the features extraction of data information from the defective appearance area. The purpose of this vision inspection process is to recognize and allocate the potential defects, which these defects will affect the quality and the PCB final products

functionality. Figure 1.1 below show the PCBA (Printed Circuit Board Assembly) general process flow chart in PCB industry manufacturing sector. The process involved SMT process for bottom and top level, MI (Manual Insert) process and finally assembly and test process. This research main focus is machine vision inspection algorithm technique on PCB flux defects, which has been applied in process AOI - Bottom, AOI - Top and Manual Insert AOI - Bottom.



Remark: \* Depend on the board design



🔘 Universiti Teknikal Malaysia Melaka

Initially, PCB's artwork generation was a full-time manual process performed on clear Mylar sheets at a scale of generally 2 or 4 times the desired size. Modern practice comprises computers that handle almost every task automatically and less labor intensive. Pattern-matching method is the most commonly image processing technique used in the machine vision application. Due to the rapid development in computer technology, this method became practicable and affordable. In addition, frame grabber was used to transmit the images from camera to computer and follow by image processing analysis.

The manual inspection of PCB defects might cause labor intensive and subjects to human error and inconsistent grading which can be solved by automatic inspection process with "Computer Machine Vision Inspection". This system applies a connectivity approach to detect the fatal defects such as PCB board printing and labelling, circuit bridging and scratches. Furthermore, this system is able to identify the marking of the components, components orientation, missing components, and so on.

Consequently, a computer machine vision system is proposed for image detection, localization, segmentation and classification of flux defect on PCBs with different orientation. Total Automation Control System is implemented in this design which includes the mechanical PCB loader/un-loader, pneumatic robotic arm with vacuum cup, vision inspection station and final classification station to determine the acceptance of the allowable PCB flux. This research has been well designed by utilizing all the combined knowledge of mechanical, electrical, electronic, communications and software engineering to develop an integrated machine to identify and monitor the flux defects on PCB. As a results, this automated machine can be used to separate the PCBs defects board from good ones.

#### 1.2 Computer Vision System

Computer technology is in progress and becoming more powerful, computer vision equipment is presently moderately economical. Computer vision system basically requires a camera, a frame grabber and a computer. Now days, a basic computer vision system can be supported with personal computers which including a camera and others interface components. Never the less, there are also high performance computer vision system which can be very costly.

Automatic visual inspection of PCB boards is developed by using computer vision techniques to evaluate the performance and various PCB board defects. The fault detection strategy is very critical in this design and it is based on referential inspection method where the board artwork or a manufactured board without errors is chosen as a benchmark. The PCB defects can be classified into two main categories, the fatal defects (reject units) and no defects (accept units). This system is very effective to detect the fatal defects by subtracting the reference board image from the tested board image using image comparison technique and subsequently separates the good and defect boards.

The computer machine vision inspection system investment in the PCB manufacturing processes, not only could prevent problematic boards from escaping to the field, but also prevent catastrophic failure on the aerospace vehicles and the loss of human life. The fluxes must be detected and cleaned before the PCB been coated and sent for final inspection. Once the PCB been coated, the PCB need to be reworked with additional side effect onto the PCB quality.

#### **1.3** Motivation for Research

The motivation for this research is to overcome the problems at the existing inspection on PCB flux defects, which was done in manual system by operator. This manual inspection is slow and brings more mistakes due to human error. Automatic computer vision inspection makes the inspection process faster and more consistent than manual inspection. In addition, the cost will be reduced significantly in long run with the return of investment less than two years period. Since the percentage of PCB flux defects is high, there subsists a prospect of introducing and implementing a computerized PCB inspection system to remove the subjective aspects rather than manual inspection. At the same time, the automated PCB examination system provides real time assessment of the PCB quality inspection.

#### **1.4 Problem Statement**

The main disadvantage of manual inspection of PCB defects are human mistakes, labour intensive and inconsistent result in evaluating. Problem statement might be varied depending on the inspection components and their respective features. In this case the inspection is carried out after all the PCB components have soldered. The problem statement together with error, components feature and solution applied is summarise in the table below.

| Table 1.1: PCB inspe | ection problem | statements |
|----------------------|----------------|------------|
|----------------------|----------------|------------|

| PCB Inspection Problem Statement Summary |                                                                                                        |                                                 |                                                                                                                |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| To Inspect                               | Errors                                                                                                 | Features/Properties                             | Solution Suggested                                                                                             |  |
| Pads                                     | <ul> <li>Missing</li> <li>Degraded</li> <li>Polarity(+ve/-ve)</li> <li>Orientation/Position</li> </ul> | <ul><li>Metallic lustre</li><li>Shape</li></ul> | <ul> <li>Diffuse<br/>illumination</li> <li>Thresholding</li> <li>Pattern Matching</li> <li>Position</li> </ul> |  |

🔘 Universiti Teknikal Malaysia Melaka