

Faculty of Electrical Engineering

AN OPTIMAL SWITCHING STRATEGY OF CASCADED H-BRIDGE MULTILEVEL INVERTER FOR HIGH-PERFORMANCE DIRECT TORQUE CONTROL OF INDUCTION MACHINES

Muhd Zharif Rifqi Bin Zuber Ahmadi

Master of Science in Electrical Engineering

2016

AN OPTIMAL SWITCHING STRATEGY OF CASCADED H-BRIDGE MULTILEVEL INVERTER FOR HIGH-PERFORMANCE DIRECT TORQUE CONTROL OF INDUCTION MACHINES

MUHD ZHARIF RIFQI BIN ZUBER AHMADI

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitled "An Optimal Switching Strategy Of Cascaded H-Bridge Multilevel Inverter For High-Performance Direct Torque Control Of Induction Machines" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

DEDICATION

Especially dedication is to my wife Wan Aida Mardiana Binti Wan Abdullah and my son Raisha Amani, not forgot to beloved mother Puan Che Rodiah Binti Che Ismail and my father En Zuber Ahmadi Bin Hassan Hilmi, my sister and brothers beloved

For taking care of me and educating me all these while. Also thank for their continuous prayers until I became what I'm now.

Also for my family

Dr Auzani Bin Jidin

Thank you very much

And not forgetting to all my relatives Especially Power Electronics and Drives Group The success belongs to us all May God bless all of us.....Amin

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion this dissertation/report is sufficient in terms of scope and quality as a partial fulfillment of Master of Electrical Engineering (Power Electronics and Drives).

Signature	:	
Name	:	
Date	:	

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Direct Torque Control (DTC) of induction machine has received wide acceptance in many adjustable speed drive applications due to its simplicity and high performance torque control. However, the DTC using a common two-level inverter poses two major problems such as higher switching frequency (or power loss) and larger torque ripple. These problems are due to inappropriate voltage vectors which are selected among a limited number of voltage vectors available in two-level inverter. The proposed research aims to formulate an optimal switching strategy using three-level Cascaded H-Bridge Multilevel Inverter (CHMI) for high performances of Direct Torque Control (DTC) of induction machines. By using three-level CHMI, it provides greater number of voltage vectors which can offer more options to select the most appropriate voltage vectors. The most appropriate voltage vectors are identified as the vectors that can produce minimum torque slope but sufficient to satisfy torque demands. The identification is accomplished by using an equation of rate of change of torque which is derived from the induction machine equations. The proposed strategy also introduces a block of modification of torque error status which is responsible to modify the status such that it can determine the most optimal voltage vectors from a look-up table, according to motor operating conditions. Some improvements obtained in the proposed strategy were verified via simulations and experimentations, as well as comparison with the conventional DTC using a two-level inverter. The improvements obtained are as follows; 1) minimization of switching frequency which is expected to reduce power loss, and 2) reduction of torque ripple. These two improvements are important requirements for excellent torque control in adjustable speed drive and high power applications.

ABSTRAK

Kawalan dayakilas langsung (DTC) bagi motor aruhan telah mendapat penerimaan yang luas di dalam kebanyakan aplikasi pemacu pelarasan laju disebabkan ianya ringkas dan kawalan dayakilas yang berprestasi tinggi. Namun begitu, DTC yang menggunakan sebuah dua peringkatan penyongsang yang biasa menimbulkan dua masalah besar iaitu frekuensi pensuisan yang tinggi (atau kehilangan kuasa) dan riak dayakilas yang besar. Masalah-masalah ini adalah disebabkan oleh vektor voltan tidak sesuai yang dipilih diantara bilangan terhad bagi vektor voltan yang terdapat dalam dua peringkatan penyongsang. Kajian yang dicadangkan bertujuan untuk memformulasi sebuah strategi pensuisan yang optimal menggunakan tiga peringkatan lata jejambat-H penyongsang berganda (CHMI) untuk prestasi tinggi bagi kawalan dayakilas langsung (DTC) motor aruhan. Dengan menggunakan tiga peringkatan CHMI, ia menyediakan bilangan lebih besar bagi vektor-vektor voltan yang mana boleh menawarkan lebih banyak pilihan untuk memilih vektor-vektor voltan yang sangat sesuai. Vektor-vektor voltan yang sangat sesuai tersebut dikenalpasti sebagai vektor-vektor yang boleh menghasilkan cerun dayakilas yang minimum tetapi mencukupi untuk memenuhi permintaan dayakilas. Pengenalpastian ini disempurnakan dengan menggunakan sebuah persamaan kadar perubahan davakilas yang diterbitkan daripada persamaan-persamaan motor aruhan. Strategi yang dicadangkan juga memperkenalkan sebuah blok bagi pengubahsuaian status ralat dayakilas yang mana bertanggungjawab mengubah status tersebut supaya ia boleh menentukan vektor-vektor voltan yang sangat optimal daripada sebuah jadual carian, berpandukan keadaan operasi motor. Beberapa penambahbaikan yang diperoleh dalam strategi yang dicadangkan telah disahkan menerusi simulasi dan pengujian, begitu juga perbandingan dengan DTC konvensional yang menggunakan sebuah dua peringkatan penyongsang. Penambahbaikan yang diperoleh tersebut adalah seperti berikut; 1) meminimumkan frekuensi pensuisan yang dijangka akan mengurangkan kehilangan kuasa, dan 2) pengurangan riak bagi dayakilas. Kedua-dua penambahbaikan ini adalah keperluan penting bagi kawalan dayakilas berprestasi tinggi dalam aplikasi-aplikasi pemacu pelarasan laju dan berkuasa tinggi.

ACKNOWLEDGEMENTS

ALHAMDULILLAH, I am grateful to ALLAH for His blessing and mercy of the His to make this project successful and complete in this semester. First of all, I would like to express to Universiti Teknikal Malaysia Melaka. The special thanks go to my helpful supervisor Dr Auzani Bin Jidin for giving invaluable guidance supervision, committed and sustained with patience during this project. The supervision and support that he gave truly help the progression and smoothness in the researh. In addition, I also wish to express to all the people involved in this thesis either directly or not, especially to the entire lecture who have taught me, thank you for the lessons that have been taught.

My sincere thanks go to all my friends in the one same guidance under Dr Auzani Bin Jidin, who are khairi, syamim , faezah, faiz, adel ,wan and ravin because willing to support and gives some knowledge to achieve the aim for this master project, Instead of that, special thanks I gave to another supporter friends who sincerely give their opinion and continuous guidance throughout this final year project.

Not forgotten also, thanks to my family especially to beloved my wife, my mother and father for their support and endless encouragement to successfully complete and realization of master project.

TABLE OF CONTENTS

9

DE	ECLAI	RATION	
DE	EDICA	ATION	
AP	PROV	VAL	
AB	BSTRA	ACT	i
AB	BSTRA	AK	ii
AC	CKNO	WLEDGEMENTS	iii
TA	BLE	OF CONTENTS	iv
LI	ST OF	TABLES	vi
LI	ST OF	FIGURES	vii
LI	ST OF	FAPPENDICES	XV
LI	ST OF	FABBREVIATIONS	XVİ
LI	ST OF	FPUBLICATIONS	xix
CE	IAPTI	ER	
1.	IN	TRODUCTION	1
	1.1	Research Background	1
	1.2	Problem statement	5
	1.3	Objectives of Research	6
	1.4	Scopes of Work	7
	1.5	Research Methodology	7
	1.6	Thesis Contributions	8

LITERATURE REVIEW 2.

3.

1.7 Thesis Outlines

LIT	ERATURE REVIEW	11
2.1	Introduction	11
2.2	Mathematical Modelling of Three-Phase Induction Machine	11
2.3	Voltage Vectors of Three-Phase Voltage Source Inverter (VSI)	16
2.4	Direct Torque Control of Induction Machines	18
	2.4.1 Principle of Direct Torque Control	19
	2.4.1.1 Control of Stator Flux	19
	2.4.1.2 Control of Torque	23
	2.4.2 Structure of DTC Hysteresis-Based Induction Machine	27
2.5	Major Problem of the Conventional DTC	30
2.6	Performance Improvements of Direct Torque Control	32
	2.6.1 Space Vector Modulation (SVM) Based DTC	32
	2.6.2 Carrier Based Modulation of DTC	37
	2.6.3 Application of Multilevel Inverter in DTC	41
2.7	Chapter Conclusion	43
RES	SEARCH METHODOLOGY	45
3.1	Introduction	45
3.2	Mapping of Voltage Vectors Available in the 3-Level CHMI	46
	3.2.1 3-Level Cascaded H-Bridge Multilevel Inverter (CHMI)	46

3.2.2 Definition of Space Voltage Vector
3.2.3 Voltage Vectors of 3-Level CHMI on *d-q* Voltage Vector Plane 51

iv

3.3	Prop	osed O	ptimal Switching Strategy	54
		3.3.1	Effects of Different Voltage Vector Applications on	54
			Torque Dynamic Behaviours	
		3.3.2	Identification of Optimal Voltage Vectors	59
		3.3	3.2.1 Improvement 1: Minimization of Switching Frequency	59
		3 3	3.2.2 Improvement 2. Reduction of Torque Ripple	67
		333	Selection of Amplitude Vectors based on Torque	74
		5.5.5	Error Status	7-
		334	Modification of Torque Error Status	77
		335	Definition of Flux Sectors for Selecting Ontimal	85
		5.5.5	Vectors	05
		3.3.6	Look-up Table for Selecting Optimal Voltage Vectors	86
	3.4	Propo	sed Control Structure	87
	3.5	Simul	ation Model of the Proposed DTC	88
		3.5.1	Three-Phase Induction Motor	91
		3.5.2	Calculation of Stator Voltage Components	91
		3.5.3	Calculation of Stator Current Components	93
		3.5.4	Estimations of Stator Flux and Electromagnetic Torque	94
		3.5.5	Detection of Flux Sectors	94
		3.5.6	Modification of Torque Error Status	97
		3.5.7	Look-up Table for Selecting Voltage Vectors	99
	3.6	Descri	iption of the Experimental Setup	99
		3.6.1	DS1104 R&D controller board	101
		3.6.2	Current Measurement Circuit	105
		3.6.3	DEO Board / Field Programmer Gate Array (FPGA)	106
		3.6.4	Power Circuit or Voltage Source Inverter (VSI) And	108
			Gate Drives	
		3.6.5	Induction motor	111
	3.7	Chapt	er Conclusion	113
4.	RES	SULT A	AND DISCUSSION	114
	4.1	Introd	uction	114
	4.2	Perfor	mance Analysis of Switching Frequency	114
	4.3	Perfor	mance Analysis of DTC based on Torque Control Loop	125
		4.3.1	Case 1: A Step Change of Reference Torque from	125
			0.7 Nm to 2.5 Nm	
		4.3.2	Case 2: A Step Change of Reference Torque from	134
			2.5 Nm to 0.7 Nm	
	4.4	Perfor	mance Analysis of DTC based on Speed Control Loop	142
	4.5	Chapt	er Conclusion	146
5.	CON	NCLUS	SION AND RECOMMENDATIONS	147
	5.1	Conclu	usions	147
	5.2	Recon	nmendations	149
REF	TERF	NCES		151
APP	PEND	ICES		161

LIST OF TABLES

TABLE	TITLE	PAGES
2.1	Look-up Table for Selecting Voltage Vectors	30
3.1	Selection of the Most Suitable Amplitude of Vectors in the	75
	Conventional DTC	
3.2	Selection of the Most Suitable Amplitude of Vectors in the	76
	Proposed Method	
3.3	Selection of the Most Optimal of Voltage Vectors in the	87
	Proposed Method	
3.4	Induction Machine Parameters	113
4.1	Switching Frequency for Various Hysteresis Bandwidths	116
	at Low Speed Operation for (a) the Conventional DTC,	
	and (b) the Proposed DTC using 3-Level CHMI	
4.2	Switching Frequency for Various Hysteresis Bandwidths	117
	at Medium Speed Operation for (a) the Conventional DTC,	
	and (b) the Proposed DTC using 3-Level CHMI	
4.3	Switching Frequency for Various Hysteresis Bandwidths	122
	at High Speed Operation for (a) the Conventional DTC,	
	and (b) the Proposed DTC using 3-Level CHMI	

LIST OF FIGURES

FIGURE

TITLE

PAGE

1.1	Structure of FOC of Induction Machine	2
1.2	Structure of DTC of Induction Machine	3
1.3	Problem of Larger Torque Ripple in Hysteresis-Based DTC	6
2.1	Cross-section of a single pole-pair three-phase machine	13
2.2	A Three-Phase Voltage Source Inverter (VSI)	17
2.3	Voltage vectors with corresponding switching status that available in	17
	the Three-Phase Voltage Source Inverter (VSI)	
2.4	Trajectory of Stator Flux to Form a Circular Locus	21
2.5	Two-Level Flux Hysteresis Comparator	22
2.6	Typical Waveforms of the Stator Flux, the Flux Error and the Flux	22
	Error Status in Hysteresis-Based DTC	
2.7	The Variation of δ_{sr} with Application of (a) Active Forward Voltage	25
	Vectors, (b) Zero Voltage Vectors, (c) Active Reverse Voltage Vectors	
2.8	Three-Level Torque Hysteresis Comparator	26

2.9	Typical Waveforms of the Torque, the Torque Error and the Torque	26
	Error Status in Hysteresis-Based DTC	
2.10	Structure of basic DTC-hysteresis based induction machine	27
2.11	Problems of Larger torque Ripple and Variable Switching Frequency	31
	in DTC	
2.12	Reference of Space Voltage Vector based on (2.30)	34
2.13	Generation of Switching of Vectors and its Effect on Torque	35
	Variations	
2.14	Structure of DTC-SVM (as Proposed in (Lascu et al., 2000))	36
2.15	Structure of DTC with Dithering Signals (as Proposed in	38
	(Noguchi et al., 1999))	
2.16	Structure of DTC with a Constant Switching Frequency Torque	39
	Controller (as Proposed in (Jidin et al., 2011))	
2.17	Significant Reduction of Torque Ripple with Application of Higher	40
	constant Switching Frequency (a) at Low Carrier Frequency (b) at	
	High Carrier Frequency	
2.18	Types of Multilevel Inverter Topologies (a) Cascaded H-Bridge (b)	43
	Neutral Point Clamped (c) Flying Capacitor (for a Single-Phase)	
3.1	A 3-level Cascaded H-Bridge Multilevel Inverter (CHMI)	48
3.2	A simplified H-Bridge Inverter	48
3.3	Definition of space voltage vector in terms of complex numbers and viii	51

d-q axis component voltage on the d-q voltage vector plane.

3.4	Voltage vectors with corresponding switching status that available in	53
	3-level CHMI	
3.5	Control of stator flux vector to track its reference (into a	55
	counterclockwise) with a suitable voltage vector application	
3.6	Control of Torque using the Proposed Method (dotted line) and the	64
	Conventional DTC (solid line) at Low Speed Operations. (a) the	
	Selection of Voltage Vectors and (b) the Variation of Torque in the	
	Hysteresis Band	
3.7	Control of Torque using the Proposed Method (Dotted Line) and the	65
	Conventional DTC (Solid Line) at Medium Speed Operations. (a) the	
	Selection of Voltage Vectors and (b) Variation of Torque in the	
	Hysteresis Band	
3.8	Control of Torque using the Proposed Method (Dotted Line) and the	66
	Conventional DTC (Solid Line) at High-Speed Operations (a) the	
	Selection of Voltage Vectors and (b) Variation of Torque in the	
	Hysteresis Band	
3.9	Control of Torque using the Proposed Method (Dotted Line) and the	71
	Conventional DTC (Solid Line) at Low Speed Operations. (a) the	

Torque Waveforms (b) the Torque Error Waveforms, and (c) the

Torque Error Status Waveforms

3.10	Control of Torque using the Proposed Method (Dotted Line) and the	72
	Conventional DTC (Solid Line) at Medium Speed Operations. (a) the	
	Torque Waveforms (b) the Torque Error Waveforms, and (c) the	
	Torque Error Status	
3.11	Control of Torque using the Proposed Method (Dotted Line) and the	73
	Conventional DTC (Solid Line) at High Speed Operations. (a) the	
	Torque Waveforms (b) the Torque Error Waveforms, and (c) the	
	Torque Error Status Waveforms	
3.12	Capability of Control of Torque at a Constant Flux which Constraints	80
	by Amplitude of Vectors, i.e. Short Amplitude for Region 1, Medium	
	Amplitude for Region 2 and Long Amplitude for Region 3	
3.13	Flowchart of Modification of Torque Error Status	84
3.14	Proposed Two Flux Sector Definitions for (a) Optimal Switching of	86
	Short and Long Amplitude of Vectors and (b) Optimal Switching of	
	Medium Amplitude of Vectors	
3.15	Proposed Control Structure of DTC with Inclusion of a Modification	88
	of Torque Error Status	
3.16	Simulation Model of the Complete Structure of the Proposed DTC	90
3.17	Simulation Model of a Three-Phase Induction Machine (Subsystem5	92

in Figure. 3.16) of Torque Error Status

3.18	Simulation Model of Calculation of Voltage Components	93
	(Subsystem4 in Figure. 3.16)	
3.19	Simulation Model of Calculation of Current Components	93
	(Subsystem3 in Figure. 3.16)	
3.20	Simulation Model of Estimations of Stator Flux and Electromagnetic	96
	Torque (Subsystem2 in Fig. 3.16)	
3.21	Flowchart of Detection of Flux Sectors (MATLAB Function2 in Figure.	97
	3.16)	
3.22	Simulation Model of Modification of Torque Error Status	98
	(Subsystem1 in Figure. 3.16)	
3.23	Complete Experimental Set-up (a) Block Diagrams (b) Picture of	101
	Experimental Set-up	
3.24	DS1104 R&D Controller Board	102
3.25	A pair of current sensor in implement on the hardware	106
3.26	FPGA and Level Shifter Circuits	108
3.27	Gate Driver for IGBTs (a) Schematic (b) Picture	109
3.28	Power Inverter (a) Schematic of Single-Phase Inverter (b) Picture of	111
	Three-Phase Cascaded H-Bridge Multilevel Inverter (CHMI)	
3.29	A Three-Phase Induction Motor Connected to a DC Generator as a	112

Loading Unit

4.1	Three-Dimension Graph of Switching Frequency for Various	122
	Hysteresis Bandwidths at Low Speed Operation, for (a) the	
	Conventional DTC, and (b) the Proposed DTC	
4.2	Three-Dimension Graph of Switching Frequency for Various	123
	Hysteresis Bandwidths at Medium Speed Operation, for (a) the	
	Conventional DTC, and (b) the Proposed DTC	
4.3	Three-Dimension Graph of Switching Frequency for Various	124
	Hysteresis Bandwidths at High Speed Operation, for (a) the	
	Conventional DTC, and (b) the Proposed DTC	
4.4	Simulation and Experimental Results of Torque T_e , Stator Flux φ_s ,	126
	Phase Voltage v_{an} and Phase Stator Current i_a , when a Step Change	
	of Reference Torque from 0.7 Nm to 2.5 Nm is Applied in the	
	Conventional DTC	
4.5	Magnified Images of the Correspond Simulation and Experimental	127
	Results Shown in Figure. 4.4.	
4.6	Simulation and Experimental Results of Torque T_e , Stator Flux φ_s ,	128
	Phase Voltage v_{an} and Phase Stator Current i_a , when a Step Change	
	of Reference Torque from 0.7 Nm to 2.5 Nm is Applied in the	
	Proposed DTC	

4.7	Magnified Images of the Correspond Simulation and Experimental	129
	Results Shown in Figure. 4.6.	
4.8	Comparison of DTC Performances for a Step Change of Reference	132
	Torque from 0.7 Nm to 2.5 Nm, applied in (a) the Conventional	
	DTC, and (b) the Proposed DTC	
4.9	Magnified Images of Experimental Results Obtained in Figure. 4.8,	133
	where (a) the Conventional DTC, and (b) the Proposed DTC	
4.10	Simulation and Experimental Results of Torque T_e , Stator Flux φ_s ,	135
	Phase Voltage v_{an} and Phase Stator Current i_a , when a Step Change	
	of Reference Torque from 2.5 Nm to 0.7 Nm is Applied in the	
	Conventional DTC	
4.11	Magnified Images of the Correspond Simulation and Experimental	136
	Results Shown in Figure. 4.10	
4.12	Simulation and Experimental Results of Torque T_e , Stator Flux φ_s ,	137
	Phase Voltage v_{an} and Phase Stator Current i_a , when a Step Change	
	of Reference Torque from 2.5 Nm to 0.7 Nm is Applied in the	
	Proposed DTC	
4.13	Magnified Images of the Correspond Simulation and Experimental	138
	Results Shown in Figure. 4.12	
4.14	Comparison of DTC Performances for a Step Change of Reference	141

xiii

Torque from 2.5 Nm to 0.7 Nm is applied in (a) the Conventional DTC, and (b) the Proposed DTC

4.15	Magnified Images of Experimental Results Obtained in Figure. 4.14,	142
	where (a) the Conventional DTC, and (b) the Proposed DTC	
4.16	Simulation and Experimental Results for a Step Change of Reference	144

Speed from 20 to 120 rad/s is applied to the Conventional DTC

4.17 Simulation and Experimental Results for a Step Change of Reference 145Speed from 20 to 120 rad/s is applied to the Proposed DTC

LIST OF APPENDICES

APPE	NDIX TITLE	PAGE
А	Matlab source code listing	161
В	VHDL source code listing	169
C	Simulation model for Experiment	175
D	List of achievement	177

LIST OF ABBREVIATIONS AND SYMBOLS

d , q	-	Direct and quadrature of the stationary reference frame
d^r , q^r	-	Real and imaginary and real of the rotor
i_{s}, i_{r}	-	Stator and rotor current space vector in stationary reference frame
$R_r R_s$	-	Rotor and stator resistance
Ls	-	Stator self-inductance
Lr	-	Rotor self-inductance
L_m	-	Mutual inductance
$ar{arphi}_{s,ar{arphi}_r}$	-	Stator and rotor flux linkage space vector in reference frame
i_{rd}, i_{rq}	-	d and q components of the rotor current in stationary reference frame
i _{sd} , i _{sq}	-	d and q components of the stator current in stationary reference frame
V _{sd} , V _{sq}	-	d and q-axis of the stator voltage in stationary reference frame
$arphi_{sd}$, $arphi_{sq}$	-	d and q components of the stator flux in stationary reference frame
$ar{v}_s$	-	Voltage vectors
n	-	Numbers of phase
$i_{a,b}i_{b}i_{c}$	-	Current phase a,b and c
L	-	Self-inductance
T_e	-	Electromagnetic Torque
T_e^*	-	References of torque

xvi

ε_T	-	Output torque error
σ_T	-	Output torque status
$ heta_r$	-	Angle with respect to rotor axis
$ heta_s$	-	Angle with respect to stator axis
δ_{sr}	-	Different angle between stator flux linkage and rotor flux linkage
V _{dc}	-	DC link voltage
$S_a^+ S_b^+ S_c^+$	-	Switching states of phases a,b and c
Р	-	Pairs of pole
$ heta_{sec}$	-	Angle of sector definition
$\omega_{_{r}}$	-	Rotor electrical speed in rad/s
v _{dc}	-	DC link voltage
$\mathcal{E}_{oldsymbol{arphi}}$	-	Output flux error
$arphi_s^*$	-	References of flux
φ_s	-	Flux estimate
σ_{arphi}	-	Output flux status
σ	-	Total flux leakage factor
\bar{v}_{xN}	-	Inverter phase voltage
v_{xN}	-	Phase stator voltages
DTC	-	Direct Torque Control
IM	-	Induction Motor
VSI	-	Voltage Source Inverter
FOC	-	Field Oriented Control
DSC	-	Direct Self Control

xvii

AC	-	Alternating Current
DC	-	Direct current
DSP	-	Digital Signal Processor
ADC	-	Analog Digital Converter
DAC		Digital Analog Converter
FPGA	-	Field Programmer Gate Array
SVM	-	Space Vector Modulated
UB	-	Upper Band
LB	-	Lower Band
IGBT	-	Insulated Gate Bipolar Transistor
CHMI	-	Cascaded H-Bridge Multilevel Inverter
NPCMI	-	Neutral Point Clamp Multilevel Inverter
FCI	-	Flying Capacitor Inverter

DT - Sampling period

xviii

LIST OF PUBLICATIONS

Journal Paper

Muhd Zharif Rifqi Zuber Ahmadi, Auzani Jidin, Maaspaliza Azri, Khairi Rahim Tole Sutikno,"Improved Torque Control Performance In Direct Torque Control Using Optimal Switching Vectors", *International Journal of Power Electronic and Drive System (IJPEDS).*, Vol.5, No 3,February 2015,pp. 441- 452., ISSN: 2088-8694.

Published Conference Proceeding

Ahmadi, Muhd Zharif Rifqi Zuber.; Jidin, A.; Othman, M.N.; Jamil, M.L.M.; Sutikno, T.; Nair, R., "High efficiency of switching strategy utilizing cascaded Hbridge multilevel inverter for high-performance DTC of induction machine," *Energy Conversion (CENCON), 2014 IEEE Conference on*, vol., no., pp.287,292, 13-14 Oct. 2014.

Ahmadi, Muhd Zharif Rifqi Zuber.; Jidin, A.; Binti Jaffar, K.; Othman, M.N.; Nagarajan, R.N.P.; Jopri, M.H., "Minimization of torque ripple utilizing by 3-L CHMI in DTC," *Power Engineering and Optimization Conference (PEOCO), 2013 IEEE 7th International*, vol., no., pp.636,640, 3-4 June 2013.

Ahmadi, Muhd Zharif Rifqi Zuber.; Jidin, A.; Othman, M.N.; Jopri, H.; Manap, M., "Improved performance of Direct Torque Control of induction machine utilizing 3level Cascade H-Bridge Multilevel Inverter," *Electrical Machines and Systems (ICEMS), 2013 International Conference on*, vol., no., pp.2089,2093, 26-29 Oct. 2013.