

Faculty of Manufacturing Engineering

EFFECTS OF FIBER REINFORCEMENTS WEAVE PATTERNS ON THE MECHANICAL PROPERTIES OF HYBRID INTRAPLY LAMINA

Mohd Amirhafizan Bin Hj. Husin

Master of Science in Manufacturing Engineering

2016

EFFECTS OF FIBER REINFORCEMENTS WEAVE PATTERNS ON THE MECHANICAL PROPERTIES OF HYBRID INTRAPLY LAMINA

MOHD AMIRHAFIZAN BIN HJ. HUSIN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitled "effects of fiber reinforcements weave patterns on the mechanical properties of hybrid intraply lamina" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature Bin Husi : Name : 18/2016 8 Date •

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature : Supervisor Name : Date :

0 8 AUG 2018

Dr. Mohd Yuhazri Yaakob CEng Senior Ledurer Faculty of Mandacutrig Engineering Universii Teknikai Malaysia Meßitä Hang Taah Jaya 76100 Durian Tunggal, Melaka

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved mother, late father and family who taught me that even the largest task can be accomplished if it is done one step at a time.

ABSTRACT

Laminate hybrid composites can be classified into two structure types such as interply and intraply structure. This research focuses on the effect of weave designs on mechanical properties of the single ply or also known as intraply hybrid composite lamina made by vacuum infusion technique. The eighteen (18) specimen of intraply composites lamina were made by kenaf fiber and glass fiber as a reinforcement and unsaturated polyester resin as a matrix with three types composition which were kenaf fiber in warp and weft direction (100 % kenaf), kenaf fiber in warp direction and glass fiber in weft direction (WK - WG), and lastly glass fiber in warp direction and kenaf fiber in weft direction (WG – WK) in various weave designs which were plain, twill, satin, basket, mock leno and leno weave. By using different weave designs and different materials in warp and weft direction had significantly affect the mechanical strength. The lamina intraply composites from WG - WK had significantly highest tensile strength and better mechanical properties which were plain, twill, satin, basket, mock leno and leno weave increased about 61.1 %, 93.9 %, 101.0 %, 95.8 %, 145.7 % and 49.1 % respectively compared pure kenaf. The most effectiveness of weave design for lamina composite were twill weave and satin weave in WG – WK with tensile strength 93.85 MPa and 97.35 MPa respectively. Lastly the leno weave was found to be not effective weave design for lamina intraply composite. This is due to the structure and the fiber content of leno weave.

ABSTRAK

Komposit berlamina hibrid boleh diklasifikasikan kepada dua (2) jenis struktur seperti antara lapisan dan struktur bersilang. Kajian ini memberi tumpuan terhadap kesan reka bentuk anyaman terhadap tingkah laku mekanikal lapisan tunggal atau lapisan nipis komposit bersilang hibrid yang dibuat melalui teknik penerapan hampagas. Lapan belas (18) spesimen lapisan nipis komposit bersilang telah dihasilkan menggunakan gentian kenaf dan gentian kaca sebagai bahan penguat dan resin poliester tidak tepu sebagai bahan pengikat dengan tiga (3) jenis komposisi berbeza iaitu 100% gentian kenaf dalam meledingkan dan ke arah kain (100 % kenaf), gentian kenaf ke arah meledingkan dan gentian kaca ke arah kain (WK - WG), dan akhir sekali gentian kaca ke arah meledingkan dan serat kenaf ke arah kain (WG - WK) dalam pelbagai reka bentuk anyaman iaitu anyaman polos, anyaman kepar, anyaman satin, anyaman bakul, anyaman leno dan anyaman mock leno. Dengan menggunakan reka bentuk anyaman yang pelbagai dan bahanbahan yang berbeza dalam proses meledingkan, arah kain telah memberikan kesan yang ketara terhadap kekuatan tegangan. Komposit lapisan nipis bersilang daripada WG - WK mempunyai kekuatan tegangan yang ketara tertinggi dan sifat-sifat mekanikal yang lebih baik iaitu anyaman polos, anyaman kepar, anyaman satin, anyaman bakul, anyaman leno dan anyaman mock leno meningkat kira-kira 61.1 %, 93.9 %, 101.0 %, 95.8 %, 145.7 % dan 49.1 % masing-masing terhadap 100 % kenaf. Untuk reka bentuk anyaman yang paling berkesan untuk komposit lapisan nipis bersilang ialah tenunan kain kepar dan tenunan satin dalam WG - WK dengan masing-masing kekuatan tegangan 93.85 MPa dan 97.35 MPa. Akhir sekali, tenunan leno ialah reka bentuk anyaman yang tidak berkesan untuk komposit lapisan nipis bersilang, hal ini disebabkan oleh struktur dan kandungan seratnya.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Dr. Mohd Yuhazri Bin Yaakob from the Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Hasoloan Haery Ip from Faculty of Manufacturing Engineering, for his advice and suggestions in completing this project.

Particularly, I would also like to express my deepest gratitude to Mr. Farihan, the technicians from composite laboratory Faculty of Manufacturing Engineering. Mr. Azhar technician from material lab Faculty of Mechanical Engineering for their assistance and efforts in all the lab and analysis works.

Special thanks to all my colleagues, my beloved mother, late father and siblings for their moral support in completing this degree. Lastly, thank you to everyone who had been associated to the crucial parts of realization of this project.

TABLE OF CONTENTS

DECLARATION	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF APPENDICES	xiv
LIST OF ABBREVIATIONS	XV
LIST OF SYMBOLS	xvi
LIST OF PUBLICATIONS	xviii

CE	IAPT	ER	
1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	3
	1.3	Objective	4
	1.4	Scope of Research	5
	1.5	Rational of Research	6
2.	LIT	ERATURE REVIEW	8
	2.1	Introduction to Composite Material	8
		2.1.1 Lamina	10
		2.1.2 Laminate	12
	2.2	Thermoset Matrix Materials in Composite Structure	13
		2.2.1 Epoxy resin	14
		2.2.2 Polyester resin	16
	2.3	Reinforcement Materials	17
		2.3.1 Glass fiber	18
		2.3.2 Kenaf fiber	20
	2.4	Form of Woven Fabrics	23
		2.4.1 Weave patterns	26
	2.5	Interply and Intraply Composite Structure	28
	2.6	Testing Method	29
		2.6.1 Tensile test	30
		2.6.2 Flexural test	33
	2.7	Summary and Research Gap	34
	2.8	Conclusion	37
3.	ME	THODOLOGY	38
	2 1	Overview	20

11111		00
3.1	Overview	38
3.2	Design of Intraply Hybrid Lamina Composite	38
	3.2.1 Woven fabric designs	40
	3.2.2 Number of specimen	41
3.3	Raw Material Preparation	43

		3.3.1	Kenaf fib	er	43
		3.3.2	Glass fibe	er	44
		3.3.3	Unsaturat	ted polyester resin	45
	3.4	Fabric	ation Proc	ess of Lamina Composite Sample	47
		3.4.1	Weaving	process	47
		3.4.2	Vacuum i	infusion technique	50
		3.4.3	Curing pr	ocess	52
		3.4.4	Cutting p	rocess	53
	3.5	Testin	g		54
		3.5.1	Tensile te	est	54
		3.5.2	Areal den	usity test	56
		3.5.3	Morpholo	ogical analysis	57
4.	RES	SULT A	ND DISC	USSION	59
	4.1	Introd	uction		59
	4.2	Weav	ing Parame	eters of Intraply Lamina Composites	59
		4.2.1	Specimen	noverview	62
		4.2.2	Specimen	n of 100 % kenaf	62
		4.2.3	Specimen	n of WG – WK	69
		4.2.4	Specimen	n of WK – WG	76
		4.2.5	Weight fr	raction on 100% kenaf fiber woven	83
		4.2.6	Weight fr	action on WK – WG woven hybrid	85
		4.2.7	Weight fr	action on WG – WK woven hybrid	87
	4.3	Mech	anical and]	Physical Properties of The Lamina Composite	88
		4.3.1	Comparis	son weight on 100% kenaf, WG - WK and WK -	90
			WG in dr	y condition	
		4.3.2	Comparis	son weight on 100% kenaf, WG – WK and WK –	92
		4 2 2	WG in we	et condition	0.4
		4.3.3	Effect on	areal density	94
		4.3.4	I ensile pi	roperties	96
			4.3.4.1	100 % kenaf	96
			4.3.4.2	Effect of weave designs on tensile strength of WK – WG	97
			4.3.4.3	Effect of weave designs on the tensile strength of WG – WK	101
			4.3.4.4	Comparison effect of weave designs on the tensile	103
			S	strength of 100 % kenaf, WK – WG and WG – WK	
		4.3.5	Effect of	thickness on tensile strength	104
			4.3.5.1	Effect of thickness on tensile strength of 100% kenaf	106
			4.3.5.2	Effect of thickness on tensile strength of WK – WG	108
			4.3.5.3	Effect of thickness on tensile strength of WG – WK	109
			4.3.5.4	Comparison Effect of thickness on tensile strength of 100% kenaf WK – WG and WG – WK	112
		4.3.6	Effect of	weight on tensile strength	112
			4.3.6.1	Comparison effect of weight on tensile strength of 100 % kenaf, WK – WG and WG – WK	114
		4.3.7	Microsco	py observation	116
	4.4	Effect	iveness of	Weave Designs	120

5.	CO	NCLUSION AND RECOMMENDATIONS	123
	5.1	Conclusions	123
	5.2	Contributions to Knowledge	125
	5.3	Recommendation	126
RE	FER	ENCES	127
AP	PEN	DICES	145

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Number of plies used in laminate composite	12
2.2	A comparative average mechanical property of high performance fiber laminates	13
2.3	Properties of thermoplastic and thermoset matrix material	14
2.4	Properties of epoxy and polyester resin	15
2.5	Mechanical properties of clear- cast unreinforced polyester resin	16
2.6	Characteristic values for the density, diameter, and mechanical properties of natural fiber and synthetic fibers	18
2.7	Type of fibers used in hybrid laminate and the effect of hybridization	20
2.8	Physical properties of kenaf fiber	22
2.9	Fibers and weave patterns used	28
2.10	Overview of studies on literature review	36
3.1	Design of intraply hybrid lamina composite	41
3.2	Properties of kenaf fiber	44
3.3	Properties of E-glass fiber	45
3.4	Tensile Properties of the polyester resin	46
3.5	Specimen code meaning	47
4.1	Basic structural parameter of woven fabric samples for 100 % kenaf	60
4.2	Basic structural parameter of hybrid woven fabric samples for WG – WK	61

4.3	Basic structural parameter of hybrid woven fabric samples for WK – WG	61
4.4	Actual thickness of specimen	104
4.5	Weight of specimen	114
4.6	Mechanical properties of 100 % kenaf	121
4.7	Mechanical properties of WK - WG	121
4.8	Mechanical properties of WG – WK	121

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Type of reinforcements (a) particles, (b) flakes, (c) fillers, (d) short fiber, I long fiber, (f) mat fiber, (g) uni-directional, (h) bi-directional mat fiber and (i) uni-directional mat fiber	9
2.2	Classification of composite material	10
2.3	Composite, (a) lamina and (b) laminate	11
2.4	Common forms of fiber reinforcement, (a) continuous, (b) random, (c) particles, (d) flat flakes, (e) fillers	19
2.5	Kenaf plants in Pasir Puteh Kelantan	21
2.6	Warp and weft direction of woven fabric	24
2.7	A textile composite fan made by (a) SNECMA, (b) woven fabric and (c) fibers in woven fabrics	25
2.8	Schematics diagram of process, (a) performing and (b) resin injection molding process	25
2.9	Textile composite reinforcement (a) plain weave, (b) twill weave, (c) interlock, (d) NCF	26
2.10	Fabric construction diagram, (a) Plain weave, (b) Twill weave, (c) Satin weave, (d) Basket weave	27
2.11	Hybrid composite, (a) Intraply layer and (b) Interply layer	29
2.12	Various stacking sequences of composite laminate	31
2.13	Stress strain curves for laminates samples, (a) P1, Q1, Q2, pure matrix, (b) A1, A2, B2, (c) C2, D1, D2 (d) samples I1, I2, L1, N1, N2, M1	32
2.14	Carbon fiber with epoxy	34

2.15	Graphically representing the overview of the study on weave designs	37
3.1	Flow chart of methodology	39
3.2	Kenaf fiber yarn (a) close up and (b) bundle of yarn	44
3.3	Glass fiber	45
3.4	(a) Polyester Resin and (b) MEKP	46
3.5	Measuring of fiber (a) length of kenaf and glass, (b) thickness of glass and (c) thickness of kenaf	48
3.6	Weaving process of (a) 100 % kenaf, (b) WG – WK, (c) WK – WG and (d) WG – WK	48
3.7	Example of twill weave design made from 100% kenaf	49
3.8	Example of twill weave design made from WG – WK	49
3.9	Example of twill weave design made from WK – WG	50
3.10	Process flowchart for vacuum infusion process	51
3.11	Vacuum infusion process (a) arrangement of spesimen and (b) curing process in mould	52
3.12	Curing process (a) specimen left for 24 hours and (b) demould of specimen	52
3.13	Cutting process (a) Makita vertical band saw machine and (b) mesh flow cutting process	53
3.14	Laser cutting process (a) laser cutting machine, (b) cutting the specimen and (c) rectangular shape for tensile test	54
3.15	Geometry of tensile specimen according to ASTM, (a) with tabs and (b) without tabs	55
3.16	Universal testing machine instron 5969	55
3.17	Testing set up	56
3.18	Specimen dimension	57
3.19	The SEM machine	58
4.1	Plain weave specimen of 100 % kenaf (a) closed-up picture of specimen in dry condition and (b) the cross section of specimen in wet condition	63

- 4.2 Twill weave specimen of 100 % kenaf (a) closed-up picture of 64 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.3 Satin weave specimen of 100 % kenaf (a) closed-up picture of 65 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.4 Basket weave specimen of 100 % kenaf (a) closed-up picture of 66 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.5 Mock Leno weave specimen of 100 % kenaf (a) closed-up picture of 67 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.6 Leno weave specimen of 100 % kenaf (a) closed-up picture of 68 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.7 Plain weave specimen of WG WK (a) closed-up picture of 69 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.8 Twill weave specimen of WG WK (a) closed-up picture of 71 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.9 Satin weave specimen of WG WK (a) closed-up picture of 72 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.10 Basket weave specimen of WG WK (a) closed-up picture of 73 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.11 Mock Leno weave specimen of WG WK (a) closed-up picture of 74 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.12 Leno weave specimen of WG WK (a) closed-up picture of 75 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.13 Plain weave specimen of WK WG (a) closed-up picture of 76 specimen in dry condition and (b) the cross section of specimen in wet condition
- 4.14 Twill weave specimen of WK WG (a) closed-up picture of 78 specimen in dry condition and (b) the cross section of specimen in wet condition

4.15	Satin weave specimen of $WK - WG$ (a) closed-up picture of specimen in dry condition and (b) the cross section of specimen in wet condition	79
4.16	Basket weave specimen of $WK - WG$ (a) closed-up picture of specimen in dry condition and (b) the cross section of specimen in wet condition	80
4.17	Mock Leno weave specimen of $WK - WG$ (a) closed-up picture of specimen in dry condition and (b) the cross section of specimen in wet condition	81
4.18	Leno weave specimen of $WK - WG$ (a) closed-up picture of specimen in dry condition and (b) the cross section of specimen in wet condition	82
4.19	Specimen weight on 100 % kenaf fiber woven	84
4.20	Specimen weight on WK – WG woven hybrid	86
4.21	Specimen weight on WG – WK woven hybrid	89
4.22	Comparison weight on 100 % kenaf, WG – WK and WK – WG in dry condition	91
4.23	Comparison weight on 100 % kenaf, WG – WK and WK – WG in wet condition	93
4.24	(a) Specimen in dry condition (b) specimen in wet condition	94
4.25	Comparison density on 100 % kenaf, WK-WG and WG-WK	95
4.26	Effect of weave designs on tensile strength of 100 % kenaf	99
4.27	Effect of weave designs on tensile strength of WK – WG	100
4.28	Effect of weave designs on tensile strength of WG – WK	102
4.29	Comparison effect of weave designs on tensile strength of 100 % kenaf, WK – WG and WG – WK	105
4.30	Effect of thickness on tensile strength of 100 % kenaf	107
4.31	Cross section of basket weave	108
4.32	Cross section of basket weave 4/4	109
4.33	Effect of thickness on tensile strength of WK – WG	110
4.34	Effect of thickness on tensile strength of WG – WK	111

4.35	Comparison effect of thickness on tensile strength of 100% kenaf, $Wk - WG$ and $WG - WK$	113
4.36	Comparison effect of weight on tensile strength of 100% kenaf, Wk – WG and WG – WK	115
4.37	Scanning electron microscope tensile fractured of twill weave design (a) cross section area and (b) surface area	117
4.38	Scanning electron microscope tensile fractured of satin weave design (a) cross section area and (b) surface area	118
4.39	Scanning electron microscope tensile fractured of mock leno weave design (a) cross section area and (b) surface area	119
4.40	Comparison of mechanical properties on 100% kenaf, $WK - WG$ and $WG - WK$	122

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Sample of Weave Designs in Dry Condition for 100 % Kenaf	145
В	Sample of Weave Designs in Dry Condition for WK – WG	148
С	Sample of Weave Designs in Dry Condition for WG – WK	151
D	Sample of Weave Designs in Wet Condition for 100 % Kenaf	154
Е	Sample of Weave Designs in Wet Condition for WK – WG	157
F	Sample of Weave Designs in Wet Condition for WG – WK	160

LIST OF ABBREVIATIONS

ASTM	-	American Society for Testing and Materials
CNT	-	Carbon Nanotube
GIC	-	Fracture energy
KIC	-	Fracture toughness
LCM	-	Liquid Composite Molding
MEKP	-	Methyl Ethyl Ketone Peroxide
PLA	-	Polyactic acid
PVA	-	Polyvinyl alcohol
RTM	-	Resin Transfer Molding
SEM	-	Scanning Electron Microscope
UPE	-	Unsaturated polyester
UTM	-	Universal Testing Machine

LIST OF SYMBOLS

σ	-	Stress	
3	-	Strain	
σf	-	Stress at failure	
εf	-	Strain at failure	
θ	-	Degree	
°С	-	Degree Celcius	
mm	-	Millimetre	
m	-	Meter	
g	-	gram	
g/cm ³	-	Gram per centimeter cube	
g/cm ²	-	Gram per centimeter square	
m/s	-	Meter per second	
Wt. %	-	Weight percentage	
%	-	Percentage	
E	-	Modulus	
MPa	-	Mega pascal	
GPa	-	Giga pascal	
μm	-	Micrometer	
Kg	-	Kilogram	
L	-	Length	

W	-	Width
Н	-	Height
KPa	-	Kilo pascal
Hz	-	Hertz
W	-	Watts
V	-	Volts
J	-	Joules
N	-	Newton

xvii

LIST OF PUBLICATIONS

<u>Journal</u>

 Yuhazri, M.Y., Husin, M.A., Ching, L.Y. and Sihombing, H., 2015. A Review on Potential of Development New Weave Pattern Design using Glass Fiber and Kenaf Fiber for Intraply Composite. *International Journal of Integrated Engineering*, 7(2), pp. 1-9.

Intellectual Property

- 1. LY2015002111 Kenaf Engineered Fabric UTEMKEF
- 2. 2016003280 Kenaf Engineered Fabric UTEMKEF

Article News Published

1. Fabrik baharu pelbagai guna. Sinar Harian, 30 December 2015, p.8.

xviii

CHAPTER 1

INTRODUCTION

1.1 Background

Over the last decade, natural fiber reinforced polymer composite have been used by European automobile, especially in the manufacturing of door panels (Sanyang *et al.*, 2016), (seat back; headliners; package trays) (Kim *et al.*, 2011), dashboard (Sapuan *et al.*, 2011), and trunk liner (Faruk *et al.*, 2014). This trend has reached to other parts of the world, like United States and Asia (Ahmad *et al.*, 2015). In the Malaysia context, since there are abundant available natural fibers in Malaysia that can be economically processed into natural fiber polymer composites, the fiber gains became the top national commodity crop under the supervision of the Malaysian National Kenaf and Tobacco Board. This is due to the natural fiber composite has better ductility, toughness and increase tensile as well as flexural and impact strength significantly (Mansor *et al.*, 2013).

One of the mostly natural fibers used as the reinforcement for polymer composite in Malaysia is kenaf fiber. Theoretically, there are two or more different types of reinforcement materials for the hybrid composites (which are bounded in the same matrix and depending on the way of constituent's materials that are mixed together). The kenaf based polymer composites can be produced using either thermoset or thermoplastic matrix. Since kenaf fiber has superior toughness and high aspect ratio compared to other natural fibers (Salit, 2014), the major advantage of a natural composite material is the ability of controlling fiber alignment through arranging the layers and the direction of the fiber.