

DESIGN AND CHARACTERIZATION ON PIEZOELECTRIC CANTILEVER AS A SELF-POWERED ACCELEROMETER

BONG YU JING

MASTER OF SCIENCE IN ELECTRONIC ENGINEERING

2016

Faculty of Electronics and Computer Engineering

DESIGN AND CHARACTERIZATION ON PIEZOELECTRIC CANTILEVER AS A SELF-POWERED ACCELEROMETER

Bong Yu Jing

Master of Science in Electronic Engineering

2016

DESIGN AND CHARACTERIZATION ON PIEZOELECTRIC CANTILEVER AS A SELF-POWERED ACCELEROMETER

BONG YU JING

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitled "Design and Characterization on Piezoelectric Cantilever as a Self-Powered Accelerometer" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	:
Date	:

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:
Supervisor Name	:
Date	:

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Piezoelectric cantilever working on direct piezoelectric effect has shown promising applications as a sensor as well as a micro-power generator depending on the amount of stress that is applied on the piezoelectric material at different range of frequencies. In this research, a self-powered accelerometer that consists of a wide-band energy harvesting power generator, a low operating frequency device acceleration sensor, and a signal conditioning circuit is designed. Piezoelectric cantilevers are being used in this research as a sensor to measure the vibration acceleration level and at the same time as a generator to power up the amplifier circuit. This research includes characterize the frequency response of the piezoelectric cantilever by altering its effective mass and length, design the selfpowered accelerometer system, and lastly verify the output of the self-powered system with battery powered system. The result shows that increasing the effective mass of the cantilever can reduce the resonant frequency of the cantilever, while reducing the effective length of the cantilever would increase the resonant frequency. The designed self-powered accelerometer is able to operate at broadened operating frequency range of 180-310 Hz with acceleration level of not lower than 0.8-g and is able to produce linear output with a sensitivity of 231.28mV/g-level. The piezoelectric generator is able to produced constant voltage output of 1.8V and power output not less than 80µW at operating condition. While for the sensor, signal is successfully amplified at a factor of 3.2 with error deviation less than 15%. The overall result is verified and shows good agreement of 5% error with conventional battery powered accelerometer system and compatible with standard vibration source.

ABSTRAK

Piezoelektrik julur telah menunjukkan potensi yang memberangsangkan dalam aplikasi sebagai penderia dan penjana kuasa-mikro bergantung kepada jumlah tegangan yang dikenakan ke atasnya. Kajian ini melibatkan reka bentuk satu sistem terbekal diri yang terdiri daripada penjana kuasa berjalur lebar, penderia untuk mengukur magnitude getaran yang berfungsi pada frequensi rendah, dan penguat yang menguatkan isyarat penderia, kekerapan operasi yang rendah sensor pecutan peranti dan litar penyesuaian isyarat direka. Piezoelektrik julur digunakan sebagai penderia untuk mengukur magnitude getaran dan pada masa yang sama sebagai penjana kuasa dengan menggunakan sumber getaran yang sama. Kajian ini termasuk pencirian tindak balas piezoelektrik julur dengan mengubah jisim pemberat and panjang julur, mereka bentuk sistem terbekal diri yang mengukur magnitude getaran, dan akhir sekali mengesahkan output sistem terbekal diri tersebut dengan sistem bateri.. Hasil kajian menunjukkan peningkatan jisim julur boleh mengurangkan frekuensi salunannya, manakala mengurangkan panjang julur akan meningkatkan frekuensi salunannya. Sistem yang direka berupaya untuk beroperasi pada frekuensi 180-310 Hz dengan magnitude getaran tidak kurang daripada 0.8-g dan mampu menghasilkan output linear dengan kepekaan 231.28mV/g. Penjana kuasanya mampu menghasilkan voltan 1.8V dan kuasa tidak kurang daripada 80µW. Manakala, isyarat yang dihasilkan oleh penderia berjaya dikuatkan pada faktor 3.2 dengan ralat tidak melebihi 15%. Keputusan keseluruhan telah disahkan dan menunjukkan hasil yang baik iaitu degan ralat tidak melebihi 5% apabila dibandingkan dengan sistem sedia ada yang beroperasi menggunakan bateri.

ACKNOWLEDGEMENT

I would like to express my utmost gratitude and appreciation to my supervisor, Dr Kok Swee Leong for his guidance throughout my graduate career. I truly appreciate his passion, patience and kindness that have made completing this dissertation a pleasure. Thanks also go to my co-supervisor, Dr. Mohd Shakir bin Md Saat for his helpful feedbacks and recommendations in this research.

Thanks are accorded to the financial support from Universiti Teknikal Malaysia Melaka (UTeM) for the scholarship award. Besides that, thanks for providing a great research environment and facilities for me to complete this research. I also like to acknowledge Mdm. Hafizah bte Adnan, Assistance Engineer for Electronics Industry Laboratory for her great cooperation and commitment in the laboratory session for this research. Also thanks to my fellow friends for their help and support.

Finally, my exceptional and grateful thanks also accorded to my beloved, parents and family members for giving me their endless support and motivation during my times of need. Thanks for believing in me.

TABLE OF CONTENTS

DI	ECLARAT	ION	
AI	PROVAL		
AI	BSTRACT		i
AI	BSTRAK		ii
A	CKNOWL	EDGEMENT	iii
TA	BLE OF	CONTENTS	iv
LI	ST OF TA	BLES	vii
LI	ST OF FIG	GURES	viii
LI	ST OF AP	PENDICES	xiv
LI	ST OF AB	BREVIATIONS	XV
LI	ST OF SY	MBOLS	xvii
LI	ST OF PU	BLICATIONS	xix
CI	HAPTER		
1.	INTROD	UCTION	1
	1.0 Overv	iew	1
	1.1 Proble	em Statement	4
	1.2 Objec	tives	6
	1.3 Scope	of Work	7
	1.4 Contri	ibutions	8
	1.5 Thesis	s Outlines	9
2.	LITERA	TURE REVIEW	11
	2.0 Introd	uction	11
	2.1 Piezoe	electricity	12
	2.1.1	Discovery of Piezoelectricity	12
	2.1.2	Development of Piezoelectricity	13
	2.1.3	Basic Operations of Piezoelectricity	16
	2.1.4	Types of Piezoelectric Materials and Structures	18
	2.1.5	Direct and Converse Piezoelectric Effects	20
	2.1.6	Piezoelectric Integrated Cantilever Structure	22
	2.1.7	Resonant Frequency Tuning	24
	2.2 Appli	cations of Piezoelectricity	28
	2.2.1	Generator - Energy Harvester	29
	2.2.2	Sensor - Accelerometer	30
		2.2.2.1 Principle of Piezoelectric Accelerometer	31
		2.2.2.2 Frequency Range of Piezoelectric Accelerometer	32
		2.2.2.3 Structural Design of Piezoelectric Accelerometer	33
		2.2.2.4 Advantages of Piezoelectric Accelerometer	36

iv

	2.3 Signal Conditioning Circuit – Op-amp	37
	2.4 Chapter Summary	39
3.	METHODOLOGY	41
	3.0 Introduction	41
	3.1 Preliminary Experiment	44
	3.1.1 Clamping Method Identification for Error Minimization	46
	3.1.2 Frequency Response Identification of Piezoelectric Cantilevers (Open Circuit Voltage)	47
	3.1.3 Impedance Matching Method	49
	3.1.4 Frequency Response Identification of Piezoelectric Cantilevers (Power)	49
	3.2 Piezoelectric Cantilevers as Micro-power Generator	50
	3.2.1 Proof Masses Verification	51
	3.2.2 Frequency Response Measurement for Multiple Cantilevers	52
	3.2.3 Impedance Matching for Multiple Cantilevers	53
	3.2.4 Performance Determination of Connected Multiple Cantilevers	56
	3.2.5 Phase Shift Measurement Method	57
	3.2.6 Performance Measurement of the Generator after Rectification	58
	3.3 Piezoelectric Cantilevers as Sensor	59
	3.3.1 Output Response Identification of Piezoelectric Cantilevers (Acceleration Level)	59
	3.3.2 Frequency Response Identification of Piezoelectric Cantilever With Length Variation	60
	3.3.3 Output Response Identification of Altered Piezoelectric Cantilevers (Acceleration Level)	61
	3.4 Self-powered System Integration	62
	3.4.1 Final Result Compilation of the Overall System	63
	3.4.2 Result Verification Method	64
	3.5 Chapter Summary	64
4.	RESULT AND DISCUSSION	66
	4.0 Introduction	66
	4.1 Preliminary Experiment Results (Preparation)	66
	4.1.1 Clamping Error Identification and Minimization	66
	4.1.2 Frequency Response of Piezoelectric Cantilevers (Open Circuit Voltage)	72
	4.1.3 Impedance Matching Result	73
	4.1.4 Frequency Response of Piezoelectric Cantilevers (Power Output)	76
	4.2 Piezoelectric Cantilevers as Micro-power Generator	78
	4.2.1 Proof Masses Variation Responses	78
	4.2.2 Frequency Response for Multiple Cantilevers	80
	4.2.3 Impedance Matching for Multiple Cantilevers	84

	4.2.3.1 Series Connection with Same Polarity	84
	4.2.3.2 Series Connection with Alternating Polarities	87
	4.2.3.3 Parallel Connection with Same Polarity	89
	4.2.3.4 Parallel Connection with Alternating Polarities	91
	4.2.4 Performance Measurement of Connected Multiple Cantilevers	93
	4.2.4.1 Series Connection with Same Polarity	94
	4.2.4.2 Series Connection with Alternating Polarities	96
	4.2.4.3 Parallel Connection with Same Polarity	98
	4.2.4.4 Parallel Connection with Alternating Polarities	101
	4.2.5 Phase Shifting of Cantilever with Proof Mass	103
	4.2.6 Performance of the Generator after Rectification	105
	4.3 Piezoelectric Cantilevers as Sensor	108
	4.3.1 Output Response of Piezoelectric Cantilevers (Acceleration Level)	108
	4.3.2 Frequency Response Piezoelectric Cantilever with Length Variation	109
	4.3.3 Output Response of Altered Piezoelectric Cantilever	112
	(Acceleration Level)	
	4.4 System Integration Performance Result	114
	4.5 Chapter Summary	119
5.	CONCLUSION	121
	5.0 Introduction	121
	5.1 Summary of Work	121
	5.1.1 Preliminary Experiment	121
	5.1.2 Piezoelectric Cantilevers as Micro-power Generator	122
	5.1.3 Piezoelectric Cantilevers as Acceleration Sensor	123
	5.1.4 Overall Integrated System	124
	5.2 Future Work	124
	5.2.1 Widen the Operating Frequency of the Generator	124
	5.2.2 Wireless Application of Overall System	125
RI	EFERENCES	126
AI	APPENDICES 13.	

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	Parameters for Theoretical Value Calculation	52

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Piezoelectric Direct Effect in an Open Circuit Configuration	17
2.2	Piezoelectric Direct Effect in Short Circuit Configuration	17
2.3	Schematic Diagram of the Electrical Domain (a) Before Polarization, (b) During Polarization and (c) After Polarization	18
2.4	Electromechanical Conversion through Piezoelectricity Phenomenon (Minazara et al, 2008)	20
2.5	Notation of Piezoelectric Axes	21
2.6	Cross-sectional View of Piezoelectric Configuration Mode, (a) d_{31} Mode and (b) d_{33} Mode	22
2.7	Types of Piezoelectric Cantilever	23
2.8	Piezoelectric based Cantilever with d_{31} Configuration	23
2.9	Piezoelectric based Cantilever with d_{33} Configuration	24
2.10	Illustration of Measurement Variables of Piezoelectric Cantilever	25
2.11	Hierarchy of Main Energy Harvesting Technologies	29
2.12	Illustration of Piezoelectric Active Element	31
2.13	Illustration for Principle of Piezoelectric Accelerometer	32
2.14	Frequency Response Curve	33
2.15	Basic Structural Design of Piezoelectric Accelerometer	34
2.16	Standard Symbol of Operational Amplifier	37
2.17	Inverting Configuration for Op-amp	38
2.18	Non- inverting Configuration for Op-amp	39

3.1	Flowchart for Research Methodology	42
3.2	Overall Experiment Set-up	43
3.3	Electrical to Mechanical to Electrical Conversion Mechanism	44
3.4	Piezoelectric Cantilevers with Similar Length but Different Width (Piezo System Inc, 2011)	45
3.5	Illustrations for the Different Clamping Methods (a) Using Screw (b) Using 1mm thickness Plasticine (c) Using 2mm thickness Plasticine	46
3.6	Illustration and Actual Photo indicating the Clamping Locations	47
3.7	Illustration and Actual Photo indicating the Clamping Location of Cantilever CS, CM, and CL	48
3.8	Illustration of the Experiment Set-up for Frequency Response of Piezoelectric Cantilevers (Voltage)	48
3.9	Illustration of the Experiment Set-up for Impedance Matching	49
3.10	Illustration of the Experiment Set-up for Frequency Response of Piezoelectric Cantilevers (Power)	50
3.11	Illustration of the Experiment Set-up for Proof Mass Verification	51
3.12	Photo of Cantilever CS, CM and CL before and after Proof Masses are added	53
3.13	Illustrations for the type of Connections	55
3.14	Illustration of phase shift measurement by using (a) Time Different Method and (b) Lissajous Pattern Method	57
3.15	Illustration of Experimental Set-up for Linearity Test	60
3.16	Illustration for Reducing Cantilever Length by Clamping Over	61
3.17	Illustration of Experimental Set-up for Linearity Test after Length Reduction	62
3.18	Block Diagram of the Overall System	63
3.19	Circuit Diagram of the Overall System	63
4.1	Box Plot for Frequency Responses of Cantilever CS Clamped at Location A Using Screw, Plasticine with 1mm Thickness, or Plasticine with 2mm Thickness Respectively	67

4.2	Box Plot for Frequency Responses of Cantilever CM Clamped at Location A Using Screw, Plasticine with 1mm Thickness, or Plasticine with 2mm Thickness Respectively	67
4.3	Box Plot for Frequency Responses of Cantilever CL Clamped at Location A using Screw, Plasticine with 1mm Thickness, or Plasticine with 2mm Thickness Respectively	68
4.4	Box Plot for Frequency Responses of Cantilever CS Clamped at Location A, B and C using Plasticine (1mm Thickness)	70
4.5	Box Plot for Frequency Responses of Cantilever CM Clamped at Location A, B and C using Plasticine (1mm Thickness).	70
4.6	Box Plot for Frequency Responses of Cantilever CL Clamped at Location A, B and C using Plasticine (1mm Thickness)	71
4.7	Frequency Responses for Cantilever CS, CM, and CL Respectively when Clamped at Location A, B and C using 1mm Plasticine	72
4.8	Output Responses (Voltage) for Cantilever CS, CM, and CL Respectively with Varies Load Resistance	74
4.9	Output Responses (Power) for Cantilever CS, CM, and CL Respectively with Varies Load Resistance	75
4.10	Output Response (Power) for Cantilever CS with Varies Load Resistance	75
4.11	Frequency Responses (Voltage) for Cantilever CS, CM, and CL respectively when connected to matching Load Resistance	76
4.12	Frequency Responses (Power) for Cantilever CS, CM, and CL respectively when connected to matching Load Resistance	77
4.13	Frequency Responses(Voltage) for Cantilever CL when Different Proof Mass is Added	78
4.14	Comparison of Experimental and Theoretical Resonance Frequency Shift based on Proof Mass Weight	79
4.15	Frequency Response in term of Output Voltage for Same Size Multiple Cantilevers	81
4.16	Frequency Response in term of Output Power for Same Size Multiple Cantilevers	81
4.17	Frequency Response in term of Output Voltage for Multiple Cantilevers with Proof Mass	82

Х

- 4.18 Frequency Response in term of Output Power for Multiple 83 Cantilevers with Proof Mass
- 4.19 Output Responses (Voltage) toward Varies of Load Resistance for 85 Cantilevers Connected in Series with Same Polarity Connection
- 4.20 Output Responses (Power) toward Varies of Load Resistance for 86 Cantilevers Connected in Series with Same Polarity Connection
- 4.21 Output Responses (Voltage) toward Varies of Load Resistance for 87 Cantilevers Connected in Series with Alternating Polarities Connection
- 4.22 Output Responses (Power) toward Varies of Load Resistance for 88 Cantilevers Connected in Series with Alternating Polarities Connection
- 4.23 Output Responses (Voltage) toward Varies of Load Resistance for 89 Cantilevers Connected in Parallel with Same Polarity Connection
- 4.24 Output Responses (Power) toward Varies of Load Resistance for 90 Cantilevers Connected in Parallel with Same Polarity Connection
- 4.25 Output Responses (Voltage) toward Varies of Load Resistance for 91 Cantilevers Connected in Parallel with Alternating Polarities Connection
- 4.26 Output Responses (Power) toward Varies of Load Resistance for 92 Cantilevers Connected in Parallel with Alternating Polarities Connection
- 4.27 Frequency Responses (Voltage) for Cantilevers Connected in Series 94 with Same Polarity Connection. (a) Two cantilevers are connected.
 (b) Three cantilevers are connected. (c) Four cantilevers are connected
- 4.28 Frequency Responses (Power) for Cantilevers Connected in Series 95 with Same Polarity Connection. (a) Two cantilevers are connected.
 (b) Three cantilevers are connected. (c) Four cantilevers are connected
- 4.29 Frequency Responses (Voltage) for Cantilevers Connected in Series 97 with Alternating Polarities Connection. (a) Two cantilevers are connected. (b) Three cantilevers are connected. (c) Four cantilevers are connected

- 4.30 Frequency Responses (Power) for Cantilevers Connected in Series 98 with Alternating Polarities Connection. (a) Two cantilevers are connected. (b) Three cantilevers are connected. (c) Four cantilevers are connected
- 4.31 Frequency Responses (Voltage) for Cantilevers Connected in 99 Parallel with Same Polarity Connection. (a) Two cantilevers are connected. (b) Three cantilevers are connected. (c) Four cantilevers are connected
- 4.32 Frequency Responses (Power) for Cantilevers Connected in Parallel 100 with Same Polarity Connection. (a) Two cantilevers are connected.
 (b) Three cantilevers are connected. (c) Four cantilevers are connected
- 4.33 Frequency Responses (Voltage) for Cantilevers Connected in 101 Parallel with Alternating Polarities Connection. (a) Two cantilevers are connected. (b) Three cantilevers are connected. (c) Four cantilevers are connected
- 4.34 Frequency Responses (Power) for Cantilevers Connected in Parallel 102 with Alternating Polarities Connection. (a) Two cantilevers are connected. (b) Three cantilevers are connected. (c) Four cantilevers are connected
- 4.35 Phase shift of Cantilevers with Proof Mass Attached obtained using 104 Time Different Method
- 4.36 Phase shift of Cantilevers with Proof Mass Attached obtained using 104 Lissajous Pattern Method
- 4.37 Frequency Response in term of Output Voltage Obtained Before and 106 After Rectified Using LTC3588-1
- 4.38 Frequency Response in term of Output Power Obtained Before and 106 After Rectified Using LTC3588-1
- 4.39 Output Voltage obtained after rectified with LTC3588-1 under 107 Variation of Acceleration Level
- 4.40 Output Voltage obtained under Variation of Acceleration Level 109
- 4.41 Output Voltage obtained under Variation of Acceleration Level with 109 Trendline and Error Bar
- 4.42 Frequency Response of the Cantilever after Length Reduction 110
- 4.43 Theoretical and Experimental Results for Effect of Length 111 Reduction of Cantilevers toward its Resonance Frequency

xii

4.44	Output Voltage obtained under Variation of Acceleration Level after Resonance Frequency Alteration	113
4.45	Actual Photo of the Complete System	114
4.46	Frequency Response Curve for Designed Generator and Sensor	115
4.47	Enlarged Frequency Response Curve for Designed Generator and Sensor	116
4.48	Output Signal Voltage in Response of Different Acceleration Level	117
4.49	Output Signal Voltage Before and After Amplification in Response of Different Acceleration Level	118
4.50	Verification Result of the Application	119

LIST OF APPENDICES

APPENDIX

TITLE

A1	Datasheet of Piezoelectric Cantilevers
A2	Datasheet of LTC3588-1
A3	Datasheet of TS1001
В	Photos from Laboratory Session

xiv

LIST OF ABBREVIATIONS

ABBREVIATION	DESCRIPTION
MEMS	Micro-Electro-Mechanical-System
AC	Alternating Current
CS	Small Sized Cantilever (Q220-A4-103YB)
СМ	Medium Sized Cantilever (Q220-A4-203YB)
CL	Large Sized Cantilever (Q220-A4-303YB)
CL1	Additional Large Sized Cantilever 1
CL2	Additional Large Sized Cantilever 2
CL3	Additional Large Sized Cantilever 3
CL1p	CL1 with Proof Mass Attached (0.15g)
CL2p	CL2 with Proof Mass Attached (0.50g)
CL3p	CL3 with Proof Mass Attached (1.00 g)
CC	Large Sized Cantilever that Act as Constant Cantilever
CLa	Large Sized Cantilever that Act as Accelerometer
DC	Direct Current
LTC3588-1	Nanopower Energy Harvesting Power Supply
PVDF	Polyvinylidenedifluoride
PZT	Lead Zirconium Titanite
RF	Radio Frequency
SFM	Scanning Force Microscopy

xv

SiO₂ Silicon Dioxide

ZnO Zinc Oxide

xvi

LIST OF SYMBOLS

SYMBOL	UNIT	DESCRIPTION
δ	m	Distance from Neutral Axis to the Centroid
		of Piezoelectric Layer
d	dimensionless	Piezoelectric Constant Matrix
D	C/m ²	Electric Displacement
$arepsilon^T$	F/m	Permittivity Matrix at Constant Stress
Ε	N/m	Elastic Modulus for Electrode Layer
E_f	N/C	Electric Field
f_n	Hz	Natural Frequency
fnew	Hz	New Resonant Frequency
h_b	m	Total Thickness of the Beam
Ι	m^4	Area moment of Inertia
k_{eq}	N/m	Equivalent Stiffness
k_{new}	N/m	New Stiffness of the Beam
l_b	m	Length of the Beam
l_{new}	m	New Effective Length of the Beam
m_b	Kg	Total Beam Mass
m_{eq}	Kg	Effective Mass
m_{eq}^{\prime}	Kg	Total Mass of Beam with Proof Mass

xvii

Included

$ ho_b$	Kg/m ³	Density of the Beam
Р	Ν	Force at that Particular Point
s ^E	m²/N	Matrix of Compliance Coefficients at
		Constant Electric Field Strength
S	dimensionless	Strain
t	dimensionless	Transposition of a Matrix
Т	N/m ²	Stress
W _b	m	Width of the Beam
ω_n	Hz	Angular Natural Frequency

xviii

LIST OF PUBLICATIONS

JOURNAL

 Bong, Y.J. and Kok, S.L., 2015. Characterization on Piezoelectric Cantilever for Its Linear Response at Low Frequency for Measuring Acceleration Level of Vibration. *Applied Mechanics and Materials*, 761, pp.579-583.

CONFERENCE PROCEEDINGS

- Bong, Y.J. and Kok, S.L., 2013.Demonstration of Self-Powered Accelerometer Using Piezoelectric Micro-Power Generator. In: *IEEE Student Conference on Research and Development (SCOReD) 2013*, Putrajaya, Malaysia, 16-17December 2013. IEEE Publisher.
- [2] Bong, Y.J. and Kok, S.L., 2014. Characterization on Piezoelectric Cantilever for Its Linear Response at Low Frequency for Measuring Acceleration Level of Vibration. In: *International Conference on Design and Concurrent Engineering (iDECON) 2014*, Melaka, Malaysia, 22-23September 2014.
- [3] Bong, Y.J., Kok, S.L. and Thong, L.W., 2014.Experimental Verification of Wide-Band Energy Harvesting using Piezoelectric Multi-cantilever with Resonant Frequency Variation. In: *Malaysian Technical Universities Conference on Engineering and Technology (MUCET) 2014*, Melaka, Malaysia, 10-11November 2014.