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ABSTRACT 

 

 

Pneumatic artificial muscle (PAM) is a rubber tube clothed with a sleeve made of twisted 
fiber-code, and is fixed at both ends by fixture. It has a property like a spring, which enables 
it to change its own compliance by the inner air pressure. The advantages of pneumatic 
system such as high power-to-weight ratio, compactness, ease of maintenance, inherent 
safety and cleanliness led to the development of McKibben muscle and PAM actuators. 
However, the drawbacks of PAM, for example, the air compressibility and the lack of 
damping ability of PAM bring dynamic delay to the pressure response and cause oscillatory 
motion to occur. It is not easy to realize the PAM motion with high accuracy and high speed 
due to all the non-linear characteristics of pneumatic mechanism. In this thesis, an 
antagonistic-based PAM system is designed and presented. Two identical PAM actuators are 
connected in parallel and vertical direction which imitate the human biceps-triceps system 
and emphasize the analogy between the artificial muscle and human skeletal muscle behavior. 
Some past control algorithms on the positioning control of PAM mechanisms are discussed. 
In this thesis, a practical control method, namely enhanced-PID controller is proposed to 
control the trajectory motion of the PAM actuators. The development and modeling of the 
experiment setup are explained, followed by the driving characteristics of the PAM system. 
Two simple and straight forward steps are demonstrated as the design procedures of the 
enhanced-PID controller. The control structure of the proposed controller consists of a PID 
element, Compensator A and Compensator B. The effectiveness of the proposed control 
algorithm is validated in sinusoidal continuous motion. The tracking performance of the 
enhanced-PID controller is compared with a classic PID controller, showing that the control 
performance of the enhanced-PID controller is satisfactory and better in dealing with highly 
non-linear PAM system. 
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ABSTRAK 

 

 

Otot tiruan pneumatik (PAM) merupakan sejenis tiub getah dengan lengan yang diperbuat 
daripada kod serat, dan ditetapkan pada kedua-dua perlawanan hujung. Ia mempunyai ciri 
seperti spring, yang membolehkannya menukar pematuhan sendiri dengan tekanan udara 
dalaman. Kelebihan sistem pneumatik seperti kuasa tinggi kepada nisbah berat badan, 
kompak, kemudahan penyelenggaraan, keselamatan dan kebersihan yang wujud membawa 
kepada pembangunan otot McKibben dan penggerak PAM. Walau bagaimanapun, 
kelemahan PAM, sebagai contohnya kebolehmampatan udara dan kekurangan redaman 
keupayaan PAM membawa kelewatan dinamik kepada tindak balas tekanan angin dan 
seterusnya menyebabkan gerakan ayunan berlaku. Memang adalah tidak mudah untuk 
merealisasikan gerakan PAM dengan ketepatan dan kelajuan yang tinggi disebabkan oleh 
semua ciri-ciri bukan linear mekanisme pneumatik. Dalam tesis ini, sistem PAM yang 
bertentangan telah direka dan dibentangkan. Dua batang penggerak PAM yang sama 
disambungkan dalam arah selari dan tegak supaya meniru sistem bisep-trisep manusia serta 
menekankan analogi antara otot tiruan dan tingkah laku otot rangka manusia. Beberapa 
algoritma kawalan lama yang menekankan kawalan kedudukan mekanisme PAM telah 
dibincangkan. Dalam tesis ini, satu kaedah kawalan yang praktikal, iaitu pengawal 
peningkatan PID telah dicadangkan untuk mengawal gerakan trajektori dari penggerak 
PAM. Pembangunan dan pemodelan persediaan eksperimen telahpun diterangkan, diikuti 
oleh ciri-ciri memandu sistem PAM. Sebanyak dua langkah mudah sahaja yang diperlukan 
telah ditunjukkan sebagai prosedur reka bentuk pengawal peningkatan PID. Struktur 
kawalan pengawal yang dicadangkan terdiri daripada elemen PID, pemampas A dan 
pemampas B. Keberkesanan algoritma kawalan yang dicadangkan tersebut disahkan dalam 
eksperimen berasaskan gerakan berterusan sinusoidal. Prestasi pengesanan pengawal 
peningkatan PID telah dibandingkan dengan pengawal PID klasik, menunjukkan bahawa 
prestasi kawalan pengawal peningkatan PID adalah memuaskan dan lebih baik dalam 
menangani sistem PAM yang tidak linear. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The human science and technology are getting more advanced as the world is moving 

forward. Machines and robots are created in order to replace human power. This is because 

the developed machineries are able to conduct complex work load in a shorter time and more 

safe condition as compared to the work being carried out by the human being. The motions 

of machines and robots rely on their own actuation systems as they function in providing 

forces, torque or any form of mechanical motion to the system in order to move. 

There are three major groups of actuators or mechanisms applied to power motion 

control, such as electric-driven electro-mechanics, hydraulic and pneumatic. Electric system 

is commonly used as the actuator technology for most of the robotic applications nowadays. 

The advantages such as easy to use, simplicity, low cost and so on cause electric system to 

be widely used and applied on actuation system for the machines. However, electric actuator 

system suffers from the disadvantage of low power-to-weight ratio. Due to the low power-

to-weight ratio of electric actuator system as compared to hydraulic and pneumatic systems, 

some industries prefer to use hydraulic or pneumatic systems as their machine actuator. 

However, pneumatic system is more preferable than hydraulic system by the industrial. The 

major advantages of pneumatic systems are their compactness, low cost, east of maintenance, 

and high power-to-weight ratio characteristic as compared to that of electric and hydraulic 

system. Therefore, these advantages have led to the development of novel actuator such as 

McKibben muscle or Pneumatic Artificial Muscle (PAM). 
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PAM has several advantages over conventional pneumatic cylinders, such as high 

force-to-weight ratio, flexibilities in installation and lower compressed air. However, 

difficulties arise when dealing with the modeling controllers for high positioning 

performance of PAM systems due to their highly nonlinear performance which results from 

compressibility of the air. As a result, a controller is necessary needed to help in achieving 

high positioning performance, stability and robustness in the system. 

Up to now, various control methods have been designed and evaluated for PAM 

mechanisms. These proposed control methods can be categorized as classical control, 

intelligent control and model-based control. The conventional proportional-integral-

derivative (PID) control is a classical controller that utilizes model-free control algorithms, 

including a feedback control action u(t) that utilizes the sum of three control parameters. PID 

controller is still a control approach that widely used in industrial due to its simplicity in 

structure and design procedure. With the appropriate selection of the three control 

parameters, the PID control can achieve the desired output and achieve the effectiveness. 

In this research, an enhanced-PID controller based antagonistic control for PAM is 

proposed. The design and constructed PAM mechanism consists of two parallel PAM that 

provide a rotational antagonistic motion. It is a biologically inspired configuration that 

commonly applied in a therapy robot and as a breaking system in the industrial area. The 

effectiveness of the proposed controller is evaluated experimentally in tracking motion with 

various amplitudes and frequencies. 

 

 


