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ABSTRACT 

 

 

The use of novel microwave sensor on material characterization is an attractive idea. There 
are many applications that could benefit from this such as food industry, quality control 
and biomedical applications. The potential for highly accurate measurements of 
characterizing the material properties is offered by microwave resonant techniques at 
single or discrete set of frequencies.  Conventionally, coaxial cavity, waveguide, and 
dielectric resonators have been used for characterizing the properties of materials. 
However, there are also challenges that arise from these resonators. One of them is the 
problem of fabricating the sensors which increase the cost and the other one they require 
large amount of circuit size and consequently require similar processing capability which 
restrict their use in many important applications. Thus, planar resonant techniques have 
gained a considerable interest over the past few years due to their advantages such as low 
cost, ease of fabrication and compact in circuit size. Conversely, these techniques suffer 
from low sensitivity and poor Q-factors which constrain their use and limit the range of 
materials characterizing applications. Therefore, this thesis presents novel structures of 
planar microwave sensors for detecting and characterizing the dielectric properties in 
common solids materials which produce high Q-factor with capability to suppress 
undesired harmonic spurious. These planar resonator structures are based on novel 
metamaterial symmetrical split ring resonator (SSRR) with and without spurlines filters by 
employing the perturbation theory, in which the dielectric properties of the resonator affect 
the Q-factor and resonance frequency. The sensors are designed at operating frequency of 
2.2 GHz with resonant frequency ranging from 1 GHz to 10 GHz. As a results, the sensors 
achieve narrow resonance with low insertion loss and high Q sensitivity which peaked up 
to 652 at 2.2 GHz operating frequency. The circuit size of symmetrical split ring resonator 
is minimized about 30 % of total size by introducing spurlines filters. By using a specific 
experimental methodology, practical materials have been used as standards to validate the 
sensitivity of the sensors for permitting potentially material characterization and 
determination. In addition, a detailed sample thickness analysis has been carried out and 
accordingly the mathematical equation is derived to extract the materials with unknown 
properties. Experimentally, the measured and theoretical results are found in an excellent 
agreement with a 2 to 3 % possibility of typical error in the permittivity measurements. 
The average accuracy percentage of the measured results for all cases of the designed 
sensors is found within 97 to 98 % compared to those in literatures which has an average 
accuracy percentage of 91 to 92 % for the same tested standard materials. The most 
significant of using SSRR sensors with and without spurlines filters are to be used for 
various industrial applications such as food industry, quality control, bio–sensing medicine 
and pharmacy applications. It is believed that these techniques would lead for a promising 
solution of characterizing material particularly in determining material properties and 
quality.  



ii 
 

 

 

ABSTRAK 

 

 

Penggunaan penderia gelombang mikro terbaharu untuk pencirian bahan adalah satu idea 
yang menarik. Terdapat banyak aplikasi yang boleh mendapat manfaat daripada penderia 
baharu ini seperti industri makanan, kawalan kualiti dan aplikasi bio-perubatan. Potensi 
ukuran yang sangat tepat untuk mencirikan sifat-sifat bahan boleh ditawarkan oleh teknik 
gelombang salunan pada sesuatu atau pelbagai frekuensi. Secara konvensional, rongga 
sepaksi, pandu gelombang, dan resonator dielektrik telah digunakan untuk mencirikan 
sifat-sifat bahan. Walaubagaimanapun, terdapat juga cabaran yang timbul daripada 
penderia resonator ini. Antaranya adalah kekangan proses pembuatan penderia yang 
memerlukan kos yang tinggi serta saiz litar yang besar dan akibatnya menghadkan 
penggunaan penderia ini dalam banyak aplikasi penting. Oleh itu, teknik satah salunan 
telah mendapat minat yang tinggi sejak beberapa tahun kebelakangan ini kerana 
kelebihan mereka seperti kos rendah, kemudahan fabrikasi dan saiz litar yang padat. 
Tetapi, teknik ini mempunyai sensitiviti yang rendah dan kecil dari segi Q-faktor yang 
mengekang dan menghadkan penggunaannya dalam pelbagai aplikasi pencirian bahan. 
Oleh itu, tesis ini membentangkan struktur penderia gelombang satah untuk mengesan dan 
mencirikan sifat dielektrik dalam bahan-bahan pepejal yang mempunyai Q-faktor tinggi 
serta berupaya menyekat harmonik palsu yang tidak diingini. Struktur-struktur satah 
resonator adalah berdasarkan kepada bahan Symmetrical Split Ring Resonator (SSRR) 
dengan spurlines penapis dengan menggunakan teori usikan (Perturbation), di mana sifat-
sifat dielektrik resonator menjejaskan Q-faktor dan frekuensi resonan. Penderia 
gelombang mikro direka pada frekuensi operasi 2.2 GHz dengan kadar salunan yang 
bermula dari 1 GHz hingga 10 GHz. Dengan itu, penderia mencapai lebar jalur resonan 
yang sempit dengan mempunyai kehilangan sisipan yang rendah serta mempunyai 
sensitiviti Q tinggi yang sehingga 652 pada frekuensi 2.2 GHz. Saiz litar simetri Split Ring 
Resonator dikurangkan kira-kira 30% daripada jumlah saiz dengan memperkenalkan 
penapis spurlines. Dengan, menggunakan kaedah eksperimen tertentu, bahan-bahan 
praktikal telah digunakan sebagai piawai untuk mengesahkan sensitiviti penderia bagi 
membenarkan pencirian dan penentuanbahan. Dalam pada itu, analisa terperinci 
ketebalan sampel telah dikaji dan seterusnya persamaan matematik telah dihasilkan bagi 
mengeluarkan dan menentukan sifat bahan-bahan yang tidak diketahui. Daripada 
eksperimen, hasil yang diukur dan teori adalah mempunyai kolerasi sangat baik iaitu 
hanya sekitar 2 hingga 3% ralat dalam ukuran ketelusan. Purata peratusan ketepatan 
keputusan diukur untuk semua kes penderia yang dihasilkan adalah sekitar 97 hingga 98%, 
berbanding dalam kajian sedia ada yang mempunyai purata peratusan ketepatan sekitar 
91 hingga 92% bagi bahan untuk piawaian yang sama.  Penggunaan penderia SSRR 
dengan penapis spurlines adalah sangat penting untuk digunakan bagi pelbagai aplikasi 
industri seperti industri makanan, kawalan kualiti, bio-perubatan dan aplikasi farmasi. 
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Adalah dipercayai bahawa teknik-teknik ini akan membawa penyelesaian dalam pencirian 
sesuatu bahan terutamanya dalam menentukan sifat bahan dan kualitinya. 
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