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ABSTRACT 

 

 

Energy harvesting from ambient sources has been a very familiar concept in recent years. 
In vibration based energy harvesting, resonant linear generators have been the most 
commonly adopted solution in the harvesting devices. However, several challenges appear 
when dealing with a linear resonant generator. Among the challenges are the effective 
power harvested by a linear generator is proportional to the cube of excitation frequency 
and the power is maximising for a narrow frequency bandwidth only. In this research, 
ocean wave motion vibration is selected as one of the low frequency sources and its 
frequency content is investigated. The frequency content is investigated by placing a shock 
and vibration recorder (MSR) at on-shore, near-shore and offshore at the east coast of 
Peninsular Malaysia. The measurement shows that the ocean motion vibration is 
distributed in the low frequency region. Thus, a device that can operate optimally with the 
low frequency-low amplitude input and has the ability to overcome the narrow frequency 
bandwidth is invented. Several magnet configurations are suggested to investigate the 
influences on the stiffness to the proposed design. In one proposed design, the stiffness 
behaviour of the system is studied by having two single magnets with similar poles 
(repulsive) and opposite poles (attractive) is placed oppositely. In the second proposed 
design considered, an oscillating single magnet is placed opposite to the double stationary 
magnets either attractive or repulsive modes. Another setting is obtained by having an 
oscillating magnet configured with the repulsive and attractive mode stationary magnets 
simultaneously. The stiffness of the configurations is related to the degree of non-linearity 
system. The non-linearity of the system can be adjusted by varying the magnets gap. The 
non-linear restoring force shows the influences of the linear stiffness and the non-linear 
stiffness of the system. In this thesis, the analytical solutions to estimate the characteristic 
behaviour of the magnet configurations are also studied. These proposed designs are then 
investigated with two main measurements. The quasi-static measurement is conducted to 
investigate the system stiffness and the dynamic measurement is conducted to investigate 
the characteristic of the response over a frequency range. It was found that the device is 
able to increase the frequency as well as amplifying the amplitude of the response. The 
result also shows that the effective configuration can be made by having the double 
stationary magnets compared to the single stationary magnet configuration. 
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ABSTRAK 

 

 

Penuaian tenaga dari sumber persekitaran telah menjadi konsep yang biasa dalam tahun-
tahun kebelakangan ini. Di dalam mod penuaian tenaga melalui getaran, penjana resonan 
linear adalah penyelesaian yang biasa digunakan dalam alat-alat penuaian. 
Walaubagaimanapun, beberapa cabaran muncul apabila menggunakan penjana resonan 
linear ini. Antara cabaran yang dihadapi untuk mendapatkan kuasa berkesan yang dituai 
oleh penjana resonan linear adalah berkadar dengan kuasa tiga frequensi pengujaan dan 
kuasa maksimum berlaku hanya dalam lebar jalur frekuensi yang sempit. Dalam kajian 
ini, getaran hasil dari gerakan ombak laut telah dipilih sebagai salah satu sumber 
berfrekuensi rendah dan kandungan kekerapannya dikaji. Kandungan kekerapan dikaji 
dengan meletakkan satu perakam kejutan dan kekerapan (MSR) di persisir pantai, 
pertengahan laut dan luar pesisir di pantai timur Semenanjung Malaysia. Pengukuran 
data menunjukkan getaran daripada ombak adalah di dalam jalur frekuensi yang rendah. 
Oleh itu, sebuah alat yang boleh beroperasi secara optimum dengan input frekuensi-
amplitud yang rendah dan mempunyai keupayaan untuk mengatasi jalur lebar frekuensi 
yang sempit telah dicipta. Beberapa konfigurasi magnet dicadangkan untuk menyiasat 
pengaruh pada kekukuhan dalam reka bentuk yang dicadangkan. Dalam cadangan yang 
pertama, tingkah laku kekukuhan system dikaji dengan mempunyai dua magnet tunggal 
dengan kutub yang sama (menolak) dan kutub yang berlainan (menarik) diletakkan secara 
bertentangan. Dalam reka bentuk kedua yang dicadangkan, satu magnet yang berayun 
diletakkan bertentangan dengan dua magnet pegun samada  mod menarik atau menolak. 
Tetapan lain diperoleh dengan meletakkan magnet yang berayun dikongfigurasikan 
dengan magnet pegun yang bermod menolak dan menarik secara serentak. Kekukuhan 
konfigurasi adalah berkait dengan tahap  bukan linear. Tahap bukan linear boleh diubah 
dengan menpelbagaikan jarak antara magnet. Tenaga yang tersimpan dalam bukan linear 
menunjukkan pengaruh daripada sistem kekukuhan linear dan kekukuhan bukan linear. 
Dalam tesis ini, penyelesaian dalam analisis untuk menganggarkan ciri-ciri perlakuan 
konfigurasi magnet juga dikaji. Penjana yang dicadangkan ini telah diuji dengan dua 
pengukuran utama. Pengukuaran kuasi- statik telah  dilakukan untuk mengkaji kekukuhan 
system dan pengukuran dinamik telah dilakukan untuk menyiasat  ciri-ciri tindak balas 
dalam frekuensi. Ini telah mendapati bahawa penjana ini dapat meningkatkan kekarapan 
dan juga meninggikan amplitud tindak balas. Hasil kajian juga menunjukkan bahawa 
konfigurasi berkesan  dapat dihasilkan dengan mempunyai dua magnet pegun berbanding 
konfigurasi magnet tunggal.  
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1. CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background 

Advances in technology has made it possible to develop wireless sensor networks 

(WSN) consisting of small and portable devices. Such WSN is not limited to environment 

monitoring only but also widely used in the health care monitoring, industrial monitoring, 

military applications and structural health monitoring. Traditionally, these devices require 

power source to operate the system. An obvious choice for power source is the battery 

(Powers, 1995, Roundy et. al., 2004). However, the use of WSN for a long time is 

constrained by the supply of energy due to limited battery lifetime. Thus, the batteries 

must be changed or recharged regularly to grant a continuous operation. In many cases, the 

need to replace batteries would be tough when devices are in hostile environments, remote 

locations (e.g. pipelines), or even in the case when they are embedded in structures such as 

pacemaker and cochlear implant. In addition, the process of recharging and replacing the 

battery increases the maintenance cost. Because of the limitations of batteries, alternative 

power sources are needed especially for low powered applications with long lifetime 

requirement. Ambient sources such as solar, thermal, vibration and wind are found to be 

beneficial for harvesting energy.  

Figure 1.1 shows the example of energy harvesting applications from the ambient 

sources. Figure 1.1(a) shows the installation of solar panels on the sideboards of balconies 
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at the residential building. Here, the solar supplied the power to integrate the energy 

system for heating, air-conditioning, natural ventilation and hot water for the residents 

applications (Zhai et. al., 2008). Torfs et. al. (2008) proposed a wireless 

electroencephalography (EEG) system which fully powered by human body heat using a 

thermo-electric generator as shown in Figure 1(b). Figure 1(c), on the other hand, shows an 

ideal self-powered pacemaker which converted the heart beat into electrical energy via 

electromagnetic induction of the piezoelectric effect (Sue and Tsai, 2012).  Figure 1(d) 

shows the windmill generator which is used to grind seeds to produce vegetable oils.  

                 
           (a)                                          (b) 

   
   (c)        (d)                                                 

Figure 1.1: The example of applications energy harvesting from the ambient sources; 
 a) Solar source [Source: (Zhai et. al., 2008)], b) Thermal source [Source: (Torfs et. 
al.,  2008)], c) Vibration  source [Source: (www.nlm.nih.gov)] and d) Wind source 

[Source: (Clark, 2014)].  
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