

Faculty of Information and Communication Technology

HYBRID SOFTWARE ARCHITECTURE FOR DOCTOR-PATIENT CONSULTATION

Omar Mukhtar Bin Hambaran

Master of Science in Information and Communication Technology

2016

HYBRID SOFTWARE ARCHITECTURE FOR DOCTOR-PATIENT CONSULTATION

OMAR MUKHTAR BIN HAMBARAN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Information and Communication Technology

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitle "Hybrid Software Architecture for Doctor-Patient Consultation" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Omar Mukhtar Bin Hambaran
Date	:	30 Jun 2016

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Information and Communication Technology.

Signature	:
Supervisor Name	: Assoc. Prof. Dr Mohd Khanapi Abd Ghani
Date	: 30 Jun 2016

DEDICATION

To my beloved mother and father, Rosina bt Abd Ghani and Hambaran bin Abd Samad.

ABSTRACT

This aim of the research is to solve an inadequate performance of the conventional approach in capturing clinical finding during doctor-patient consultation, by designing and implementing the proposed hybrid software architecture. Doctor-patient consultation is a crucial process in diagnosing and capturing clinical findings of patient problem. Currently, most doctor-patient consultation used conventional ways of capturing clinical findings by using paper"s note, note book, manually entered digital records, and so on. With these conventional ways, the number of patient to be treated properly in the consultation process is less than the number of patients that had been registered per day. This problem most probably caused by the low performance of process and system response time, system interruption, and inadequate integrated system that make patients" health records difficult to be accessed seamlessly across other modules in health information system. The proposed architecture incorporates hybrid technique that could operate during online and offline situation by utilizing local and central data storage. This architecture also provide fast track search using International Clinical Diseases version 10 (ICD-10) and Read Clinical Term (CTV3) for doctors to clerk in clinical findings such as diagnosis, symptoms, medication and other related clinical notes. The research was conducted through case study approach by way of structured and semi-structured interview at Health Centre of UTeM. The findings from the data collection and validation showed that the proposed architecture is suitable to be used but requires minor modification. Application of this hybrid architecture dramatically reduces the time taken and improves response time for doctor to capture patient health record during doctor-patient consultation process.

ABSTRAK

Tujuan penyelidikan adalah untuk menyelesaikan masalah prestasi yang tidak mencukupi kepada pendekatan konvensional dalam merekod penemuan klinikal semasa rundingan doktor-pesakit, dengan menghasilkan dan menghasilkan seni bina perisian yang hybrid. Perundingan doktor-pesakit adalah satu proses yang penting dalam mendiagnosis dan merekod penemuan klinikal berkenaan masalah pesakit. Sehingga kini, kebanyakan proses perundingan antara doktor dan pesakit menggunakan cara konvensional iaitu merekod penemuan klinikal dengan menggunakan kertas nota, buku nota, rekod digital yang dimasukkan secara manual, dan sebagainya. Dengan cara-cara konvensional itu, bilangan pesakit akan dirawat dengan betul dalam proses perundingan tersebut adalah kurang daripada jumlah pesakit yang telah berdaftar setiap hari. Masalah ini kemungkinan besar disebabkan oleh prestasi proses dan tindak balas sistem yang rendah, gangguan terhadap proses sistem yang banyak, dan sistem tidak bersepadu yang membuatkan rekod kesihatan pesakit tidak bergerak lancar ke mana-mana modul lain dalam sistem maklumat kesihatan. Pendekatan metodologi yang digunakan dalam penyelidikan ini adalah menggunakan kajian kes dan alat pengukur berkomputer. Seni bina yang dicadangkan dalam kajian ini menggunakan teknik hibrid dengan storan dalam dan luar talian, termasuk Carian Laju yang menggunakan Kod Penyakit Klinikal Antarabangsa versi 10 (ICD-10) bagi doktor untuk membuat carian samada simtom-simtom yang biasa atau ubat-ubatan, dan teknik yang menggunakan pengaksesan rangkaian yang lancar untuk penyelenggaraan rekod kesihatan pesakit secara berterusan dan lancar tidak mengira apa jua keadaan kejatuhan rangkaian. Penggunaan kerangka kerja hibrid ini mengurangkan masa yang diambil secara mendadak dan meningkatkan masa tindak balas untuk doktor dalam merekod rekod klinikal pesakit semasa proses perundingan doktor dan pesakit.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Allah for the will and spirit He has given me, to further complete my study. Thank you to my family for the full support they had given me throughout my study. Thank you to my fiancé and all my lab mates that always cheering me up while my study.

Finally I would like to thank my supervisor, Assoc. Prof. Dr. Mohd Khanapi Abd Ghani who has provided excellent guidance to me throughout my research.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF APPENDICES	xii
LIST OF ABBREVIATIONS	xiii
LIST OF PUBLICATIONS	XV

CHAPTER 1

1.	IN	FROD	UCTION		16
	1.1	Overv	iew		16
	1.2	Resea	rch Objec	tives	17
		1.2.1	To provi	ide a critical study and comparison of the existing architecture	17
		1.2.2	To devel	lop a hybrid software architecture for doctor-patient	
			consulta	tion process in clinical information system.	18
		1.2.3	To valid	ate the hybrid software architecture.	18
		1.2.4	To revis	e a proposed architecture of the hybrid approach in a	
			doctor-p	atient consultation computerized systems from the	
			validated	d architecture.	19
	1.3	Resea	rch Quest	ion	19
	1.4	The P	roblem an	d Its Context	20
	1.5	Signif	icant of S	tudy	21
	1.6	Scope	of Study		22
	1.7	Organ	ization of	the Report	24
C	HAF	PTER 2			
2.	LI	FERA 7	TURE RE	EVIEW	26
	2.1	Introd	uction		26
	2.2	Overv	iew of He	alth Information System	26
		2.2.1	Health I	nformation System	27
			2.2.1.1	E-Health	28
			2.2.1.2	Telemedicine	29
			2.2.1.3	Tele-Health	30
			2.2.1.4	Hospital Information System	32
			2.2.1.5	Mobile health	34

2.2.1.6	Pervasive Health System	36
2.2.1.7	EMR and HER	36

4

2.2.2	Significant of Health Information System in Healthcare	37
2.2.3	The component of Health Information System	38

	2.3 Evaluating of Health Information System Architecture and Framework	40
	2.3.1 Early Approach to the Health Information System Framework	40
	2.3.2 Review of the Health Information System Framework	44
	2.3.2.1 Saman Iftikhar model: A framework based on OWL-S for	
	healthcare Information provision	45
	2.3.2.2 Wu et al. (2014) Model: A framework for	
	Questionnaire-Based Healthcare Application Development	46
	2.3.2.3 Jelena Mirkovic model: A framework for the development	
	of ubiquitous patient support systems	48
	2.3.2.4 Intan Najua model: A Proposed Framework for Healthcare	
	Portal in Malaysia to encourage Knowledge Sharing	50
	2.3.2.5 Eswara Reddy model: An Efficient Cloud Framework	
	for Health Care Monitoring System	52
	2.3.2.6 M.K. Abd Ghani framework: The Design of Flexible	
	Front End Framework for Accessing Patient Health Records	
	through Short Message Service	58
	2.4 Conclusion	61
	2.5 Summary	62
at		
	HAPTER 3 METHODOLOGY	63
5.	3.1 Introduction	63
	3.2 Overview of Research Methodology	63
	3.2.1 Research Strategy	63
	3.2.2 Research Design	64
	3.2.3 Research Processes and Classification	64
	3.2.4 Research Methodology Process	66
	3.3 Selection Methodologies	66
	3.3.1 Find Research Domain	67
	3.3.2 Do Literature Review on Current Research	68
	3.3.3 Find and Revise Case Study on Current Architecture	69
	3.3.4 Plan Instruments or Tools for Conducting Research	69
	3.3.4.1 Interview & Questionnaire	70
	3.3.4.2 Software to measure	70
	3.3.5 Do Study on Current System and Current Data	70
	3.3.6 Develop Software System based on Proposed Architecture	71
	3.3.7 Conduct Scenarios and Architecture Validation	71
	3.3.8 Data Analysis and Data Comparison	72
	3.3.9 Revise the Architecture	73
	3.4 Conclusion	73
	3.5 Summary	74
ст		
	HAPTER 4 A PROPOSED HYBRID SOFTWARE ARCHITECTURE	75
7.	4.1 Introduction	75
	4.1 Introduction 4.2 Conceptual Architecture Design	75 75
	4.2.1 The offline components.	76
	4.2.1 The online components.	76
	1.2.2 The online components.	10

4.3 Proposed Hybrid Architecture	77
4.4 Summary	81
CHAPTER 5	
5. TESTING AND VALIDATING THE ARCHITECTURE	82
5.1 Introduction	82
5.2 Undertaking the Validation	82
5.3 System Testing	83
5.3.1 The development of E-Clinical Support System (ECSS)	83
5.3.1.1 Current Architecture	84
5.3.1.2 Proposed Architecture	86
5.3.2 Summary of system testing results	89
5.4 Discussion of the case study investigation.	91
5.4.1 Background of Case Study Organization	91
5.4.1.1 Background of Universiti Teknikal Malaysia Melaka	91
5.4.1.2 Background of UTeM Health Centre	92
5.4.2 Feedback on the Applicability Analysis of Hybrid Software	
Architecture Model for Doctor-Patient Consultation System.	94
5.5 Revised Architecture	123
5.6 Discussion and Amendments of Hybrid System Architecture	124
5.7 Summary	124
CHAPTER 6	
6. CONCLUSION	126
6.1 Introduction	126
6.2 Summary of Completed Works	126
6.3 Contributions	129
6.4 Limitations and Constraints	130
6.5 Reflections	132
6.6 Further Research	133
REFERENCES	135
APPENDICES	141

LIST OF TABLES

TABLE	TABLE	PAGE
2.1	Studies on the Selected Health Information System Architecture.	41
2.2	6 relevant models related to the research.	44
2.3	6 relevant models related to the research and related characteristic.	45
3.1	Classification of main types of research	64
3.2	Source of Information.	68
5.1	Explanations of arrow line usage in Figure 5.1 and Figure 5.2.	84
5.2	The comparison of response time between current architecture and	
	HybridCIS architecture.	89

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Existing architecture.	17
1.2	Research focuses area for developing the architecture.	18
1.3	Scope of HyDPC Research.	23
2.1	The six key components of a Health Information System.	38
2.2	Semantic Registry allowing central and distributed computing	46
2.3	System Context Diagram in QH framework	47
2.4	Possible usage scenarios of CONNECT 2.0 framework.	49
2.5	The CONNECT mobility framework.	50
2.6	Theoretical framework for Malaysian Healthcare Portal	51
2.7	Proposed cloud framework for healthcare monitoring system (CHMS).	54
2.8	Layered architecture of CHMS.	55
2.9	Measure of Response time in CHMS with varying no. of concurrent users	s. 57
2.10	Measure of throughput in CHMS.	58
2.11	The FFeF component diagram.	60
3.1	Summary of research methodology	67
4.1	Schematic diagram of HyDPC architecture.	77
4.2	Proposed Hybrid Software Architecture	
	(Omar Mukhtar et al. 2015).	79
5.1	Process flow during availability and non-availability of network in	
	UTeM clinic.	85
5.2	HybridCIS process flow during availability and non-availability of	
	network in UTeM clinic.	86
5.3	The interface of consultation process that use HybridCIS architecture.	88
5.4	Example of Response-Time Measurement Function in Next button.	88

5.5	Organization Chart of UTeM Health Centre.	93
5.6	Percentage of respondent by gender.	94
5.7	Percentage of respondent position.	95
5.8	Percentage of respondent working years in Healthcare Industry.	95
5.9	Percentage of respondent experience using CSS before.	96
5.10	Percentage of respondent spend time with work using ECSS.	96
5.11	Percentage of method those respondents prefer to capture clinical	
	records.	97
5.12	Percentage of how easy ECSS been used by the respondent.	97
5.13	Percentage of ECSS response time.	98
5.14	Percentage of how frequent network interruption happen per	
	month while using ECSS.	98
5.15	Percentage causes of network interruption while using ECSS.	99
5.16	Percentage of network interruption while capturing clinical records.	100
5.17	Percentage of data seamlessly across ECSS.	100
5.18	Percentage of response time while searching patient during	
	patient registration.	101
5.19	Percentage of system interruption while searching particular	
	patient during patient registration.	101
5.20	Percentage by the respondent on how accurate providing	
	patient's information.	102
5.21	Percentage by respondent on response time of saving process	
	of new patient.	103
5.22	Percentage by respondent of system interruption while saving	
	new patient information.	103
5.23	Percentage by respondent on accuracy of information search that	
	same as information on patient master index.	104
5.24	Percentage of respondent describes response time on process of	
	updating patient information.	105
5.25	Percentage of respondent on system interruption while updating	
	patient information.	105
5.26	Percentage of respondent on patient information retrieved after	
	updating into database is accurate as updated.	106

5.27	Percentage of respondent on describe response time of registration	
	process of patient into patient queue.	107
5.28	Percentage of respondent on system interruption during patient	
	registration process into patient queue.	107
5.29	Percentage of respondent describe response time while selecting	
	process of patient from queue list.	108
5.30	Percentage of respondent on system interruption while selecting	
	patient from queue list.	109
5.31	Percentage of respondent on accuracy of patient information	
	viewed in doctor-patient consultation same as retrieved from	
	patient queue.	109
5.32	Percentage of respondent describe response time on importing	
	process of patients' health record from external devices into local	
	storage.	110
5.33	Percentage of respondent on system interruption while importing	
	patients' health record from external devices into local storage.	111
5.34	Percentage of respondent on accuracy of information viewed in	
	doctor-patient consultation same as information copied from	
	external devices.	111
5.35	Percentage of respondent describes response time on search process	
	of clinical terminology and clinical coding.	112
5.36	Percentage of respondent on system interruption while searching	
	process of clinical terminology and clinical coding.	113
5.37	Percentage of respondent on accuracy of clinical terminology viewed	
	as information driven from database.	113
5.38	Percentage of respondent describes response time on patients'	
	discharge process.	114
5.39	Percentage of respondent on interruption while patient's discharge	
	process.	115
5.40	Percentage of respondent on accuracy of patient's medical history	
	viewed same as clinical records entered by the doctor.	115
5.41	Percentage of respondent describes response time on viewing	
	medical slips.	116
	1	

5.42	Percentage of respondent on interruption of viewing and printing			
	medical sips.	117		
5.43	Percentage of respondent on accuracy of information printed on			
	medical slips is accurate as requested.	117		
5.44	Percentage of respondent describes response time of order process			
	during doctor-patient consultation.	118		
5.45	Percentage of respondent on system interruption while perform			
	order process during doctor-patient consultation.	119		
5.46	Percentage of respondent on order information requested can be			
	accessed and shared across modules within ECSS.	119		
5.47	Percentage of respondent describes response time on electronic			
	drug order arrived to pharmacy department.	120		
5.48	Percentage of respondent on system interruption while receiving			
	electronic drug order at pharmacy department.	121		
5.49	Percentage of respondent on accuracy of drug order information			
	received at pharmacy department same as requested.	121		
5.50	Percentage of respondent on time normally taken for completing a			
	task for each patient.	122		
5.51	The revised Proposed Hybrid Software Architecture.	123		

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
А	Questionnaire of Applicability Analysis of Hybrid Software		
	Architecture Model for Doctor-Patient Consultation System.	140	

LIST OF ABBREVIATIONS

HyDPC	-	Hybrid Software Architecture for Doctor-Patient Consultation
CIS	-	Clinical Information System
EMR	-	Electronic Medical Records
EHR	-	Electronic Health Records
HIS	-	Health Information System
UTeM	-	Universiti Teknikal Malaysia Melaka
PAS	-	Patient Administration System
HRMIS	-	Human Resource Management Information System
WHO	-	World Health Organization
WTO	-	World Trade Organization
ATA	-	American Telemedicine Association
HIT	-	Health Information Technology
CDS	-	Computerized Decision Support
LMIC	-	Low and Middle Income Countries
HIMSS	-	Healthcare Information and Management Systems Society
CTIA	-	Cellular Telephone Industries Association
GWAS	-	Genome-Wide Association Studies
HMN	-	Health Matrix Network
ICT	-	Information and Communication Technology
HIMS	-	Health Information Management System
PHR	-	Personal Health Records
IDE	-	Integrated Development Environment
SDK	-	Software Development Kit
ADT	-	Android Developer Tools
KM	-	Knowledge Management

IT	-	Information Technology
MOH	-	Ministry Of Health
FFeF	-	Flexible Front-end Framework

LIST OF PUBLICATIONS

Proceeding

Omar Mukhtar Hambaran, Mohd Khanapi Abd Ghani; Designing Hybrid software architecture For Capturing Clinical Findings During Doctor-Patient Consultation, E-Proceeding Of Software Engineering Postgraduates Workshop (Sepow), Pp. 47, 2013

Journal

Omar Mukhtar Hambaran, Mohd Khanapi Abd Ghani, Raja Rina Raja Ikram, Burhanuddin Mohd Aboobaider; Implementation Of Hybrid software architecture In Clinical Information System: A Case Study Of A Malaysian Clinic, Arpn Journal Of Engineering And Applied Sciences, Vol 10, Iss 20, Pp. 9891- 9895, 2015

CHAPTER 1

INTRODUCTION

1.1 Overview

Doctor-patient consultation plays a very important role in diagnosis of many clinical findings. Currently, most doctor-patient consultation used conventional ways of capturing clinical findings using paper's note, note book, manually entered digital records, and so on. With these conventional ways, the number of patient to be treated properly in the consultation process is less than the number of patients that had been registered per day. This research will provide a better way to fasten the process of doctor-patient consultation using a hybrid model of software architecture from different models from the literature review findings.

Currently, most patients always need to go to hospitals for consultation. Thus, because of many patients await their doctor; they need to wait till their name being called. Plus, patients who lived in rural area will suffer a lot from travelling frequently especially to have repeating consultation compare to those in urban area although those in urban area affected by other factor like traffic jam that caused the travel period became long. For the additional knowledge, the use of normal narrowband in a telemedicine system for transporting the patients" health records across healthcare facilities nationwide does not make sense due to issues of telecommunication reliability, speed and responsiveness. This research will provide a seamlessly solution for the doctor-patient consultation process in any condition of a network downtime.

1.2 **Research Objectives**

This research examines case studies of usage of computerized systems using hybrid and non-hybrid approach, and feedback from subject matter experts in the doctor-patient consultation. The objectives of the research are summarized as follows:

- a. To analyze and compare Health Information System Architecture to be used as input for developing the proposed architecture.
- b. To develop Hybrid System Architecture for doctor-patient consultation (HyDPC).
- c. To develop, test, and validate prototype for HyDPC.
- d. To compare the result between clinical information systems that uses current software architecture and the proposed hybrid system architecture.

A brief description of the research objectives are in the following subsections:-

1.2.1 To provide a critical study and comparison of the existing architecture

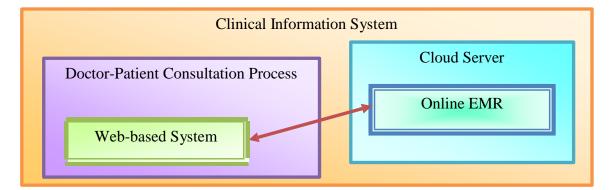


Figure 1.1: Existing architecture.

Figure shows that there exists relational between the doctor-patient consultation process and web-based cloud system requirements. However, the scope of hybrid computerized systems has yet to reduce online dependencies. This research objective is vital to provide an overview to the study and identify research issues. This section shall be addressed by a literature review of the main components of a review of doctor-patient consultation, a review of hybrid architecture, and a review of capturing clinical findings. Key components of the existing architecture shall be identified to establish the initial architecture.

The scope of comparison analysis is based on current Health Information System such as HRS, Hospital Information System, E-Health, and EMR and EHR.

1.2.2 To develop a hybrid software architecture for doctor-patient consultation process in clinical information system.

Based upon finding and input from first objective, the architecture will be developed. Hybrid software architecture shall be developed based on a Subjective-Objective-Assessment-Plan method from the critical study of the existing architecture. The main functionality shall revolve the low response-time in the consultation process. Figure 1.2 shows the research focus area for developing the architecture. The development of architecture shall focus on the integration and harmonization of capturing patient"s Electronic Medical Records (EMR) using hybrid approach to improve response-time in doctor-patient consultation process.

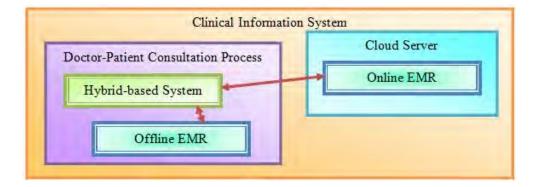


Figure 1.2: Research focuses area for developing the architecture.

1.2.3 To validate the hybrid software architecture.

After the proposed architecture has been designed and developed, a validation need to be conducted. Validation of the architecture will be performed through system prototype implemented in healthcare centre of UTeM.