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ABSTRACT 

 

 

This thesis proposes an adaptive traffic prioritization algorithm over ad hoc 
network using IEEE 802.11e standard that defines a set of Quality of Service 
enhancements for wireless LAN applications through modifications to the Media Access 
Control (MAC) layer. The IEEE 802.11e standard aims to provide enhancements that 
allow traffic with specific requirements to be treated differently from normal traffic. 
Enhanced Distributed Channel Access (EDCA) is a fundamental and mandatory 
contention-based channel access method of IEEE 802.11e which delivers traffic based on 
differentiated Access Category (ACs). Each AC has its own queue and set of EDCA 
parameter values. Although IEEE 802.11e has been widely implemented in commercial 
hardware, the EDCA parameters are normally preset with some default values 
recommended by the standard. By default, the values of EDCA parameters are not open for 
changes. This has limited the performance as from literature review, a proper EDCA 
parameter manipulation will improve the network throughput performance. However, most 
existing research works on IEEE 802.11e EDCA parameter optimization are done either 
analytically or in simulated environments and hence are unable to provide its effectivenes 
in realistic scenarios. This is largely due to the several hurdles associated with real-life 
implementations which prohibit them to do so, such as hardware limitations, software 
restrictions, coding bugs in the wireless cards driver and so on.These challengess form part 
of the motivations behind this work. This thesis first investigates the impacts of EDCA 
parameters on the network performance and link conditions using open source software 
and commercially available hardware in ad hoc mode. An adaptive prioritization scheme 
(APS) is then proposed. The results obtained show that the proposed APS algorithm can 
improve the single-AC throughput performance up to 10.82% when compared to static 
EDCA. In dual-AC scenario, APS can improve the throughput performance up to 9.93% as 
compared to static EDCA, while another scheme in existing literature, R-AIFSN shows 
inconsistency in throughput performance. It is also found that the improvement is more 
significant in terms of the queue occupancy.  
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ABSTRAK 

 

 

Tesis ini membentangkan penyesuaian algoritma prioriti trafik melalui rangkaian 
mesh menggunakan standard IEEE 802.11e. Tujuan utama IEEE 802.11e standard adalah 
menyediakan trafik dengan keperluan khusus untuk dilayan secara berbeza daripada trafik 
normal. Peningkatan Edaran Channel Akses (EDCA) adalah satu kaedah akses saluran 
berdasarkan pemahaman asas dan mandatori IEEE 802.11e yang menghantar trafik 
berdasarkan Kategori Akses berbeza (PB). Setiap AC mempunyai giliran sendiri dan juga 
nilai-nilai parameter EDCA yang berbeza. Walaupun IEEE 802.11e telah diaplikasikan 
secara meluas, parameter EDCA biasanya tetap berdasarkan nilai yang telah ditakrifkan 
dalam standard IEEE 802.11e. Secara default, nilai parameter EDCA tidak dibuka untuk 
perubahan. Walau bagaimanapun, terdapat keperluan untuk mengubah nilai EDCA 
parameter dalam keadaan tertentu. Berdasarkan kajian literatur, pelarasan EDCA 
parameter yang tept akan merubah maksimum truput sesuatu trafik. Dalam kesusasteraan, 
kebanyakan kerja-kerja penyelidikan yang berkaitan dengan IEEE 802.11e dilakukan, 
sama ada secara analitik atau oleh simulasi. Ini adalah disebabkan oleh beberapa 
masalah yang berkaitan dengan pelaksanaan realistik, seperti batasan perkakasan, 
gangguan, noise latar belakang, kekangan perisian dan tidak kurang juga, pengekodan 
pepijat dalam driver kad wayarles. Walau bagaimanapun, hasil dari simulasi sahaja sukar 
untuk membuktikan keberkesanannya dalam senario realistik. Di samping itu, kajian IEEE 
802.11e berdasarkan platform simulasi tidak dapat disahkan tepat berbanding keputusan 
yang diperolehi dari kajian sebenar. Bahagian pertama dalam tesis ini telah dilaksanakan 
bertujuan untuk menyiasat kesan parameter EDCA terhadap prestasi rangkaian dan 
pautan kondisi dengan menggunakan perisian sumber terbuka dan perkakasan boleh 
didapati secara komersial dalam rangkaian mesh sebenar. Kedua karya ini menilaian 
kaedah yang dicadangkan, skim prioriti adaptif (APS) dengan IEEE 802.11e statik dalam 
rangkaian mesh sebenar. Keputusan yang diperolehi daripada kerja ini menunjukkan 
bahawa algoritma DPS boleh meningkatkan prestasi AC tunggal sehingga 9.36% untuk 
sasaran AC berbanding statik EDCA. Dalam dua scenario AC,peningkatan lebih ketara 
pada penggunaan barisan, sementara itu dari segi truput pula peningkatan sehingga lebih 
9,93% manakala keputusan R-AIFSN pula menunjukkan ketidakselarasan truput.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Quality of Service (QoS) is a demanding feature in wireless networks. Without QoS 

all types of traffic will be treated equally and hence real-time or time-critical applications 

will be affected when traffic congestion occurs. IEEE 802.11e (IEEE, 2005) was 

introduced in 2005 to provide better QoS for time-critical applications such as real-time 

video streaming and voice over internet protocol (VoIP) over IEEE 802.11 Wireless Local 

Area Networks (WLANs) (IEEE, 1999). In order to provide the QoS function, a new 

medium access control (MAC) scheme called enhanced distributed channel access (EDCA) 

is introduced. EDCA supports up to eight user priorities mapped into four access categories 

(ACs), i.e. voice (AC1), video (AC2), best-effort (AC3), and background (AC4). In each 

AC, there is a transmission queue to buffer the outgoing packets. In EDCA, four new 

parameters are introduced, i.e. minimum and maximum contention windows (CWmin and 

CWmax), arbitrary interframe spacing (AIFS) and transmission opportunity limit (TXOP 

limit). These parameters are used to control the waiting time of each packet before its 

transmission attempt and the duration allowed to occupy the channel. With EDCA, packets 

from different ACs are given different transmission priorities.   

There is a need to change the EDCA parameters in response to different network 

conditions so that the network performance can be further optimized. This work therefore 

mainly focuses on developing an algorithm which is able to adapt the selected EDCA 
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parameters according to network condition so that the traffic from different ACs can fully 

utilize the channel.  

1.2 Problem with IEEE 802.11e 

In IEEE 802.11e standard, EDCA parameters are preset with some default values. 

As shown in Figure 1.1, the default values enforce longer waiting time on the lower 

priority ACs (i.e. AC3 and AC4), and shorter waiting time on the higher priority ACs (i.e. 

AC2 and AC1). The Short Interframe Space (SIFS) provides the required interframe 

spacing in between frame exchanges. As for Arbitration Interframe Space (AIFS), some 

default values have been chosen with respect to the delay sensitivity of various traffic types. 

The EDCA parameters cause the lower priority ACs to have lower data transfer rate or 

throughput as compared with the higher ACs even though only traffics from lower priority 

ACs exists in the network. When this happens, the bandwidth is considered wasted.  

 

Figure 1.1 Different EDCA parameters values for different ACs 

Bandwidth wastage is the condition where the channel not fully utilized by the 

network traffic. One way to overcome bandwidth wastage problem is to adaptively assign 

the traffic from lower AC to higher AC based on the network condition.  

Although a significant amount of works have been done on improving network 

performance through dynamic EDCA parameters optimization, they were mostly carried 

out in a simulated environment. Very few works are actually looking into dynamic 



3 
 

adaption of EDCA parameters value in the actual hardware in real-time. In fact, most 

commercial on the shelf and/or open source wireless platforms or systems are not capable 

of supporting such dynamic manipulation of EDCA parameters, especially for wireless 

nodes operating in ad hoc mode. Fortunately due to the work done by (Simon, 2012), real-

time modifications of EDCA parameter are made possible in Linux based hardware with 

only one single command. 

Since IEEE 802.11e can only provide four ACs which are preset at the source, 

mapping between IP layer QoS (DiffServ) and MAC layer QoS (IEEE 802.11e) is 

necessary in order to provide an end to end QoS. Since DiffServ is defined at the IP layer, 

user may tag the incoming traffic based on its IP address, port number so it can be assigned 

to the desired AC supported by IEEE 802.11e. As shown in Figure 1.2, data traffic from 

the higher layer is passed down to the MAC layer and during the process its DiffServ value 

is mapped into the respective IEEE 802.11e’s AC. Some of the commercial routers support 

this DiffServ and IEEE 802.11e mapping but for the open source community (Linux), such 

mapping is limited to the certain hardware drivers, protocols, and Linux distributions. The 

detail operation of the IP layer and MAC layer QoS mapping in Linux open source is 

further discussed in Chapter 2. 

 

Figure 1.2 Mapping between IP layer DiffServ value and MAC layer 802.11e AC 
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1.3 Contribution 

This research work provides better QoS for the wireless network specifically for 

multiple user networks with different types of traffics. 

In this work, an Adaptive Prioritization Scheme (APS) is proposed for IEEE 

802.11e WLANs, which can adaptively optimize IEEE 802.11e EDCA parameters in order 

to provide QoS according to network traffic condition. This work shows that the proposed 

scheme provides more granular and consistent performances as compared with static 

EDCA parameters used in the standard IEEE 802.11e. It also demonstrates better 

performances than the scheme proposed by (Gaur, S. & Cooklev, T., 2007), which is the 

closest scheme to APS according to existing literature.  

Other contributions of this research work include better understanding of the effects 

of IEEE 802.11e parameters on the network performance under different loading scenarios. 

Such knowledge is critical when designing and implementing APS in the real hardware. 

1.4 Problem Statement  

During traffic congestion, AC3 has a lower maximum transfer rate as compared 

with AC2. Even there is only AC3 traffic in the network, the default EDCA parameters 

value for AC3 forces the packet with AC3 to wait longer than the packet with AC2. 

Furthermore, static EDCA parameters may lead to unsatisfactory performance for some 

stations and data streams. Shifting the traffic from lower priority AC to higher priority AC 

may increase the maximum transfer rate but in turn raises some other issues which will be 

explained later. The detail scenario is depicted in Figure 1.3. As shown, both file transfer 

protocol (FTP) traffic and user datagram protocol (UDP) traffic flow to node A as AC3 

traffic. Due to that the throughput for both traffics are divided equally. At node A, since 


