

Faculty of Electrical Engineering

TEMPERATURE CONTROL AND INVESTIGATION of PARABOLIC DISH BASED CONCENTRATING SOLAR POWER (CSP) IN MALAYSIA ENVIRONMENT

Liaw Geok Pheng

Master of Science in Electrical Engineering

2016

🔘 Universiti Teknikal Malaysia Melaka

TEMPERATURE CONTROL AND INVESTIGATION OF PARABOLIC DISH BASED CONCENTRATING SOLAR POWER (CSP) IN MALAYSIA ENVIRONMENT

LIAW GEOK PHENG

A thesis submitted

in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Temperature Control and Investigation of Parabolic Dish Based Concentrating Solar Power (CSP) In Malaysia Environment" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Liaw Geok Pheng
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

Signature	:	
Name	:	Datuk Professor Dr. Mohd Ruddin Bin Ab Ghani
Date	:	

DEDICATION

To my beloved husband, mother and father

for their enduring love, encouragement, motivation, and support

ABSTRACT

In the Renewable Energy Act 2011, the focus is on solar energy particularly the solar Photovoltaic, whereby the solar thermal, such as the Parabolic Dish Concentrating Solar Power (CSP) is not given enough attention. This could be due to the lack of a thorough investigation of implementing solar CSP in the Malaysia environment. Nowadays, even though many researchers continue to investigate and study about Parabolic Dish based on Concentration Solar Power (CSP), the findings are not conclusive and do not provide accurate evidence and proof on the potential of CSP development in Malaysia. The missing link in the Parabolic Dish Stirling Engine system model is the control systems, which vary the amount of working gas in the Stirling engine. The temperature of the heater in PD system which has been modelled is easily overheated that which will cause damage to the heater material that will lead to low output efficiency, high thermal losses and effect to the lifespan of the PD system. Therefore, the primary aim of this project was to design a control system to maximize output efficiency during a normal operation by maintaining the heater/absorber temperature at the highest safe operating point to prevent excessive range of threshold to avoid damage to the heater material besides carry out a fundamental investigation on solar CSP, by focusing on Parabolic Dish type in the Malaysia environment. Recent literatures which address the CSP were reviewed. The preliminary considerations and basic thermodynamics of the Stirling engine were to derive a model of dish and Stirling engine. According to literature, the PD system achieves the highest solar for electric efficiency and it is small and modular among CSP technologies. The proposed model showed the idea of PD systems with control system model which vary the amount of working gas in the Stirling engine. The control systems were designed using Matlab /Simulink 2012a. Based on the developed linearized model, an improved temperature controller with transient droop characteristic and Mean Pressure Control (MPC) has been proposed. This temperature controller is effective in reducing the temperature that will improve the performance of the PD system. The overall performance of the system improved more than 78% in output power and energy. Besides, the system can improve in term of sensitivity compare with the PD system without compensate. In addition, the system also reduce thermal losses up to 97.6% which shows significant improvement for the output efficiency to the system. The analysis shows that the PD system is feasible in term of technical but not economically feasible. Unless, when levelised tariff of solar thermal is increase more than RM20.2499/kWh by electrical policy similar as photovoltaic, then the PD system is economic feasible in the Malaysia environment at the moment.

ABSTRAK

Akta Tenaga Baharu 2011, tumpuan kepada tenaga solar adalah terutamanya kepada Photovoltaic solar, di mana haba suria, seperti Dish Parabolic Concentrating Solar Power (CSP) tidak diberi perhatian yang cukup. Ini boleh disebabkan oleh kekurangan penyiasatan secara menyeluruh terhadap pelaksanaan CSP solar dalam persekitaran Malaysia. Pada masa kini, walaupun ramai pengkaji berterusan untuk menyiasat dan mengkaji tentang Dish Parabolic Concentrating Solar Power (CSP), tetapi dapatan kajian ini tidak membuat kesimpulan dan menyediakan tepat jelas dan membuktikan bahawa potensi pembangunan CSP di Malaysia. Walau bagaimanapun, pautan yang hilang dalam Dish Parabolic yang sudah dimodelkan adalah sistem kawalan, dengan mengubah jumlah gas bekerja dalam enjin Stirling ini. Suhu pemanas dalam sistem PD yang dimodelkan adalah terlalu panas dan akan menyebabkan kerosakan kepada bahan pemanas, kecekapan output yang rendah, kehilangan haba yang tinggi dan memberi kesan jangka hayat sistem PD. Oleh itu, yang terutamanya bertujuan projek ini adalah untuk mereka bentuk sistem kawalan untuk memaksimumkan kecekapan pengeluaran semasa operasi biasa dengan mengekalkan pemanas / suhu penyerap di tertinggi titik operasi yang selamat dan mencegah melebihi julat ambang untuk mengelakkan kerosakan kepada bahan pemanas dan juga untuk menjalankan siasatan asas kepada solar CSP, memberi tumpuan kepada Dish Parabolic dalam suasana Malaysia. Sesetengah penulisan yang alamat dikaitkan kerja-kerja penyelidikan dengan karya ini dikaji. Pertimbangan awal dan termodinamik asas enjin Stirling yang dibentangkan untuk terbitan model hidangan dan enjin Stirling kajian. Walau bagaimanapun, juga mengkaji teknologi CSP dan pembangunan CSP. Dari kajian literatur, ia dapat disimpulkan bahawa dari beberapa jenis teknologi CSP, sistem PD mencapai solar tertinggi kepada kecekapan elektrik, kecil dan modular. Model yang dicadangkan menunjukkan idea sistem PD dengan model sistem kawalan dengan mengubah jumlah gas bekerja dalam enjin Stirling ini. Sistem kawalan direka dengan menggunakan Matlab / Simulink 2012 a. Berdasarkan model lelurus maju, pengawal suhu yang lebih baik dengan transient droop characteristic dan Mean Pressure Control (MPC) telah dicadangkan. Ini pengawal suhu amat berkesan dalam mengurangkan suhu dan prestasi yang lebih baik sistem PD. Prestasi keseluruhan sistem ini meningkatkan lebih daripada 78% pada output kuasa dan tenaga yang dihasilkan. Selain itu, ada yang sangat jelas lebih baik dalam sistem apabila sensitiviti berbanding sistem PD tanpa pampasan, dan penurunan haba kehilangan sehingga 97.6% yang secara langsung mempunyai peningkatan yang ketara untuk kecekapan output kepada sistem. Walau bagaimanapun, kajian ini mempunyai mendedahkan analisis teknikal dan ekonomi sistem PD di bawah persekitaran Malaysia. Daripada analisis ini menunjukkan bahawa sistem PD boleh dilaksanakan dari segi teknikal tetapi tidak boleh dilaksanakan dari segi ekonomi. Kecuali, apabila tarif levelised solar haba adalah peningkatan lebih daripada RM20.2499 / kWh oleh dasar elektrik sama seperti photovoltaic, maka sistem PD adalah ekonomi boleh dilaksanakan dalam persekitaran Malaysia.

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Datuk Prof. Dr. Mohd Ruddin bin Ab.Ghani for the continuous support of my M.Sc. study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me during the time of research and writing of this thesis. I could not have imagined having a better supervisor and mentor for my M.Sc. study. Besides my supervisor, I would like to thank my co. supervisor: Prof. Madya Gan Chin Kim for his encouragement, insightful comments, and guidance. Without their continued support and interest, this project would not have been same as presented here. My sincere appreciation also extends to all my classmate and others who have provided assistance at various occasions. Their views and tips are useful indeed. Lastly, I am grateful to all my family members.

TABLE OF CONTENTS

DE(CLAF	RATION	
DEI	DICA	TION	
ABS	STRA	СТ	i
ABS	STRA	К	ii
ACH	KNO	WLEDGEMENTS	iii
TAF	BLE (OF CONTENTS	iv
LIS	ГОБ	TABLES	vi
LIS	Г ОF	FIGURES	viii
LIS	Г ОF	APPENDICES	xi
LIS	Г ОF	ABBREVIATIONS	xii
LIS	Г ОF	SYMBOL	xiv
LIS	T OF	PUBLICATIONS	xviii
CHA	АРТ Е	CR .	
1.	IN	TRODUCTION	1
	1.1	Introduction	1
	1.2	Research Motivation	4
	1.3	Problem Statement	5
	1.4	Research Objective	5
	1.5	Contribution of Research	6
	1.6	Scope of Research	6
	1.7	Thesis Outline	7
2.	LIT	ERATURE REVIEW	8
	2.1	Introduction	8
	2.2	Research and Background Study	8
	2.3	Solar Thermal Technology	10
		2.3.1 Linear Concentrator	11
		2.3.2 Point Concentrator	13
	2.4	Summary and comparison between CSP technologies	15
	2.5	Past and Current of Parabolic Dish Development	18
		2.5.1 1984-1988 Technology	18
		2.5.2 1991-1998 Technology	19
		2.5.3 2007-2014 Technology	22
	2.6	Temperature Control System for PD Stirling Engine	25
		2.6.1 Summary Previous Works Related to Project	30
2.7	Para	bolic Dish System Overview	33
		2.7.1 Collector	34
		2.7.2 Receiver	35
		2.7.3 Stirling Engine	39
		2.7.4 Regenerator	49
		2.7.5 Stirling Engine Working Fluids	50
		2.7.6 Control System	51
	2.8	Proposed Model	54
		2.8.1 Modelling of 25kW Parabolic Dish System	54
		2.8.2 Control System	55
		2.8.2.1 Pressure Control System	56

		2.8.2.2 Temperature Control System	59
	2.9	Chapter Summary	61
3.	ME	THODOLOGY	62
	3.1	Introduction	62
	3.2	Development of 25 kW PD System Modelling using Matlab	
		Simulink and Meteonorm.	64
	3.3	Site Selection	65
	3.4	DNI Data	66
		3.4.1 Yearly DNI data	67
		3.4.2 Monthly DNI data	67
		3.4.3 Daily DNI data	68
	3.5	Temperature Control System Design for 25KW PD System	68
	a (3.5.1 Transient Droop Compensation	70
	3.6	Modeling of Command Pressure Control	71
		3.6.1 Command Pressure versus Total Mass Relationship, Kp	12
		3.6.2 Modelling of Solenoid Valve, K_v and Γ_v	15
	27	3.6.2 Controller luning, Gp	/6
	3.7	Chapter Summary	//
4.	RES	SULT AND DISCUSSION	78
	4.1	Introduction	78
	4.2	Heater Temperature	78
	4.3	Thermal Losses	80
		4.3.1 Radiation Losses	82
		4.3.2 Convection Losses	83
	4.4	Srirling Engine Gross Power Output	86
	4.5	Annual Net Power Output Generation (W)	88
	4.6	Yearly Energy (kWh)	90
	4./	Capacity Factor (%)	91
	4.8	Capital Cost	91
	4.9	Net Present Value (NDV)	92
	4.10	Fossibility of the DD System under Malaysia Environment	95
	4.11	Sensitivity Analysis and Comparison on the Result of 25 KW PD	95
	7.12	System Modelling with Uncompensated System	95
		4 12 1 Heater Temperature	96
		4 12.2 Thermal Losses and Stirling Engine Gross Power Output	97
		4 12 3 Annual Output Power Annual Energy and LCOE	100
	4.13	Chapter Summary	102
5	CON	NCLUSION AND DECOMMENDATIONS	
э.	FOR	R FUTURE RESEARCH	103
	5.1	Conclusion	103
	5.2	Attainment of Research Objectives	105
	5.3	Significance of Research Outcome	106
	5.4	Recommendation For Future Research	107
RF	FERF	NCES	108
AP	PEND	ICES	123

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TABLETITLE		PAGE
2.1	Classification of linear and point concentrator for CSP	10
2.2	Different between CSP technologies	16
2.3	Temperature control system used by Li, et al. (2014)	26
2.4	Temperature control system used by Li, et al. (2014a)	26
2.5	Temperature control system used by Zhi, and Jian (2014)	27
2.6	Temperature control system used by Li, and Dong (2012).	28
2.7	Temperature control system used by Dustin, et al. (2010)	28
2.8	Temperature control system used by Dustin (2010)	29
2.9	Temperature control system used by Dustin (2009)	29
2.10(a) The summary of all the previous work related to the project and the proposed model that implement to the project after studied		
2.10(b)Design and Performance Specification for Dish/Stirling Systems		
2.11	The Parabolic Dish System Overview	34
2.12	Type of thermal losses	38
2.13	Comparison between difference working fluid in Stirling engine	51
2.14	Control system in power conversion unit	52
2.15	Concentrator Parameter for 25 kW PD system modelling	55
2.16	Receiver and Stirling Engine Parameter for 25 kW PD system	55
2.17	The pressure commanded by the TCS	60
3.1	Yearly DNI Data and the Latitude Longitude for five Locations	

	in Malaysia	66
3.2	The range of the daily solar irradiance for George Town in Malaysia	68
4.1	Capacity factor for George Town in Malaysia	91
4.2	The annual energy, capacity factor, and LCOE for George Town in Malaysia	95
4.3	Sensitivity analysis of LCOE, capacity factor, and energy performance between PD system with and without compensator	101

LIST OF FIGURES

FIGU	RE TITLE	PAGE
2.1(a)	Solar collector assembly	11
2.1(b)	Detail of Parabolic Trough	11
2.2	Operation of Fresnel Reflector	12
2.3	Operation of Advanced Design	12
2.4(a)	Solar Tower	13
2.4(b)	Operation of solar tower	13
2.5(a)	3D of Parabolic dish	14
2.5(b)	2D of Parabolic dish	14
2.6(a)	The comparison of system efficiency among different technologies	s. 24
2.6(b)	The comparison of net electricity produced by differen technologies.	24
2.7	Main components of a dish/Stirling system	33
2.8	Concentrator and receiver block diagram	36
2.9(a)	Thermodynamic state diagrams of ideal Stirling cycle of P-V diagram	40
2.9(b)	Thermodynamic state diagrams of ideal Stirling cycle of T-S diagram	40
2.10	Engine arrangement and piston operation	41
2.11(a)	Arrangement of the compartments for ideal adiabatic analysis	44
2.11(b))Temperature distribution of ideal adiabatic model	44
2.12	A generalized cell of the working space	44

C Universiti Teknikal Malaysia Melaka

2.13	Four-cylinder double-acting kinematic configuration of Stirling engine	49
2.14	Operational Framework for Parabolic Dish (PD) performance simulation	54
2.15	Dish Stirling Engine control system diagram	56
2.16	Pressure control system connection to Stirling engine	58
3.1	The flow chart of project	63
3.2	Overall block diagram of the 25 kW PD system	65
3.3	The yearly DNI Data for George Town in Malaysia	67
3.4	The monthly DNI data for George Town in Malaysia	67
3.5	Block diagram of dish-Stirling absorber temperature control Scheme	69
3.6	Temperature Control Scheme based on Temperature Droop Characteristic and Mean Pressure Control (MPC)	69
3.7	Overall PD modelling system with temperature control system.	69
3.8	Pressure versus temperature relationship with droop characteristic.	70
3.9	Structure of the droop controller of the temperature control system	71
3.10	Block diagram of the droop controller of the temperature control system.	71
3.11	Block diagram of MPC within the temperature control scheme	71
3.12	MPC system block diagram.	72
3.13	Simplified temperature distribution	73
4.1	The annual heater temperature for Parabolic Dish Stirling Engine	79
4.2	The yearly total thermal losses produced by the system and is linearly increases along with the increase of DNI	81
4.3	The monthly radiation losses produced from January to Dec in George Town Penang, Malaysia	83
4.4	The monthly convection losses produced from January to Dec in George Town Penang, Malaysia	85

4.5	The comparison between the yearly convection and radiation losses in George Town	85
4.6	Monthly output power for Stirling engine from January to December in George Town, Penang, Malaysia	87
4.7	PD Stirling engine gross power output over a year	88
4.8	Monthly output power for Stirling engine from January to December in George Town, Penang, Malaysia	89
4.9	The annual energy for George Town in Malaysia	90
4.10	The comparison between heater temperature with and without the compensator	97
4.11	The comparison between thermal losses with and without the compensator	99
4.12	The comparison between gross power Stirling engine with and without the compensator	99
4.13	The comparison between yearly net power output with and without the compensator	100
4.14	The comparison between yearly energy with and without the compensator	101

LIST OF APPENDICES

APPI	ENDIX TITLE	PAGE
А	Parameters of The Dish, Stirling Engine, and Control System.	122
В	Total Result of Parabolic Dish Stirling Engine	123

LIST OF ABBREVIATIONS

DSSPG	Dish Stirling Solar Power Generation
HTS	High Temperature Superconducting
SPTR	Stirling Pulse Tube Refrigerator
LSG	Linear Synchronous Generator
PWM	Pulse-Width Modulated
CF	Capacity factor
CSP	Concentrating Solar Power
DNI	Direct Normal Irradiation
TCS	Temperature Control System
PCS	Pressure Control System
MPC	Mean Pressure Control
LCOE	Levelised Cost of Electricity
NREL	National Renewable Energy Laboratory

NPV	Net Present Va	lue			
O&M	Operating and I	Management			
PD	Parabolic Dish	Parabolic Dish			
PV	Photovoltaic				
PCU	Power Convers	ion Unit			
RE	Renewable Ene	rgy			
R&D	Research and D	vevelopment			
SBP	Schlaich-Berge	rmann and Partner			
SAIC	Science Applic	ations International Corp).		
SES	Stirling	Energy	Systems	Inc.	

LIST OF SYMBOLS

A _{aperture}	Aperture area for the concentrator
A _{aperture}	The concentrator aperture area
A _r	Receiver aperture area
С	Geometric concentration ratio
CC	Total capital cost
С	Commanded mass flow rate
c _p	The absorber material specific heat capacity
d	Focal point diameter
D_{con}	Diameter for the concentrator
dm_c	The change of mass for working gas in the compression space
dm _e	The change of mass for working gas in the expansion space
dm_h	The change of mass for working gas in heater
dm_k	The change of mass for working gas in cooler
dm _r	The change of mass for working gas in regenarator
DQ_h	The rate of heat transfer in heater
DQ_{I}	Rate of heat transfer to the receiver
DQ_k	The rate of heat transfer in cooler
DQ_r	The rate of heat transfer in regenerator
dv_c	Dead space volumes compression
dv_e	The dead space volumes of expansion

D_p	Permanent droop
3	Effective emissivity of the cavity aperture
Ε	The net amount of energy produced over a year
E	Unshaded aperture area
f	Focal length
gA_SV	Mass flow in the solenoid valve
G_p	Mean Pressure Regulator
h	Convection coefficient
Ι	Interest rate on capital
I _{DNI}	Direct Normal Irradiation
K _c	Concentrator Gain
K _R	Receiver Gain
K _L	Receiver Loss Gain
Kv	Gain constant and of the valve
K _p	Total Mass Relationship
М	Total Mass
m_h	Mass for working gas in heater
m_k	Mass for working gas in cooler
m_r	Mass for working gas in regenerator
n	Life of the system.
Ø	Crankshaft angle
Ø	Intercept factor
\overline{P}_{mean}	Mean Pressure
\overline{P}_{max}	Maximum Mean Pressure
\overline{P}_{min}	Minimum Mean Pressure

P _{gross}	Power gross
P _{heat}	Power Heat
P _{in,rec}	Solar power intercepted by the receiver
P _{net}	Net power output
P _{parasitic}	Parasitic power
q _{conv}	Convection losses
pst	High pressure storage tank pressure
Q _h	Heat transfer to the Stirling engine
Q_L	Heat loss of the absorber
q _{rad}	Radiation losses
Q_{total}	Receiver thermal losses
R	Gas Constant
T _{amb}	Ambient temperature
T _c	Compression temperature
T _e	Expansion temperature
T_r	Regenerator temperature
T_h / \overline{T}_h	Heater temperature
T _{set}	Temperature Set Point
$\overline{T}_{h,max}$	Maximum Heater Temperature
$\overline{T}_{h,min}$	Minimum Heater Temperature
T_k	Cooler temperature
Tv	Time constant of the valve
V	Heater material volume
<i>V</i> _c	Compression space volumes
Ve	Expansion space volumes

v_r	Regenerator space volumes
V_{de}	Dead Space Volume (Expansion Space)
V_{dc}	Dead Space Volume (Compression Space)
Vs	Cylinder swept volume
α_c	Displacement angle of the compression space
α_e	Displacement angle of the expansion space
γ	Ratio of specific heats
ηconc	Concentrator efficiency
ηο	Optical efficiency
θi	Incident angle cos
ρ	Density material for heater
ρ	Reflectivity of the concentrator
σ	Stefan Boltzmann's constant
Ø _{rim}	Concentrator rim angle
$\Delta \overline{T}_h$	Different of the Maximum and Minimum Temperature
$\Delta \overline{P}_{mean}$	Different of the Maximum and Minimum Pressure

LIST OF PUBLICATION

The following publications have been achieved by this research work

Journals:

- Liaw Geok Pheng, Rosnani Affandi, Mohd Ruddin Ab Ghani, Chin Kim Gan, Zanariah Jano, Tole Sutikno (2014), "A Review of Parabolic Dish-Stirling Engine System Based on Concentrating Solar Power". TELKOMNIKA (Telecommunication Computing Electronics and Control), 12(4), pp. 1142-1152. (Scopus)
- Liaw Geok Pheng, Rosnani Affandi, Mohd Ruddin Ab Ghani, Chin Kim Gan, Jano, Zanariah (2015), "Stirling Engine Technology for Parabolic Dish-Stirling System Based on Concentrating Solar Power (CSP)". Applied Mechanics and Materials, 785, pp. 576–580. http://doi.org/10.4028/www.scientific.net/AMM.785.576. (Scopus)
- 3) Liaw Geok Pheng, Mohd Ruddin Ab Ghani, Rosnani Affandi, Chin Kim Gan, Zanariah Jano, Nur Huda (2015), "Receiver Temperature Control of the Parabolic Dish Stirling Engine. MAGNT Research Report (ISSN. 1444-8939), vol. 3 (8). pp 142-149. (Scopus)
- Rosnani Affandi, Liaw Geok Pheng, Mohd Ruddin Ab Ghani and Chin Kim Gan (2015), "The Effects of Solar Irradiance, Reflecting Material and Intercept Factor to the Solar Power Intercepted by Receiver 1kW Parabolic Dish". Applied

MechanicsandMaterials,785,pp.581–585.http://doi.org/10.4028/www.scientific.net/AMM.785.581. (Scopus)

- Sosnani Affandi, Mohd Ruddin Ab Ghania, Chin Kim Gana, Liaw Geok Pheng (2014), "The Impact of the Solar Irradiation, Collector and the Receiver to the Receiver Losses in Parabolic Dish System". Procedia - Social and Behavioral Sciences, 195, pp. 2382–2390. http://doi.org/10.1016/j.sbspro.2015.06.220. (Scopus)
- 6) Mohd Ruddin Ab Ghani, Liaw Geok Pheng, Rosnani Affandi, Chin Kim Gan, Jano, Zanariah (2015), "Investigate the Feasibility of Parabolic Dish (PD) Based on Several Prospective Factors in Malaysia". Recent Advance in Renewable Energy Sources, ISBN: 978-61804-303-0 pp. 121-130. (Scopus)

Conferences:

- Geok Pheng Liaw, Rosnani Affandi, Mohd Ruddin Ab Ghani, Chin Kim Gan & Jano Zanariah (2015), " Stirling Engine Technology for Parabolic Dish-Stirling System Based on Concentrating Solar Power (CSP)". World Conference on Technology, Innovation And Entrepreneurship (WCTIE 2015), 28 – 30 May 2015.
- Rosnani Affandi, Geok Pheng Liaw, Mohd Ruddin Ab Ghani & Chin Kim Gan (2015), " The Impact of the Solar Irradiation, Collector and the Receiver to the Receiver Losses in Parabolic Dish System. World Conference on Technology, Innovation And Entrepreneurship (WCTIE 2015), 28 – 30 May 2015.
- 3) Liaw Geok Pheng, Rosnani Affandi, Mohd Ruddin Ab Ghani, Gan Chin Kim, Zanariah Zano. (2015), "Study the Feasibility of Parabolic Dish (PD) from Several Prospective Criteria in Malaysia Environment. Malaysian Technical Universities Conference on Engineering and Technology (MUCET 2015), 11-13 October 2015.