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1. INTRODUCTION 
 

1.1 Malnutrition: 

The term ‘Malnutrition’ is used to refer to a number of diseases, each with a specific cause 

related to one or more nutrients (for example, protein, iodine or calcium) and each characterized  

by cellular imbalance between the supply of nutrients and energy on the one hand, and the 

body’s demand for them to ensure growth maintenance, and specific functions, on the other. 

Malnutrition is an important indicator of child health. It is now recognized that 6.6 million out of 

12.2 million deaths among children under-five – or 54% of young child mortality in developing 

countries – is associated with malnutrition (1).  In addition to the human suffering, the loss in 

human potential translates into social and economic costs that no country can afford (1). Protein-

Energy malnutrition (PEM) is one of the most serious health problems in resource poor countries 

where PEM accounts for more than 35% deaths of children aged less than five years and 11% of 

the total burden of disease (2). WHO estimates that 175 million children in the developing world 

are malnourished as indicated by low weight for age and 230 million are stunted as indicated by 

height for age (3). It is estimated that more than half of the young children in south Asia suffer 

from protein – energy malnutrition, which is about five times the prevalence in the Western 

hemisphere, at  least three times the prevalence in the Middle East and more than twice that of 

east Asia (1). Protein-energy malnutrition (PEM) is one of the most serious health problems in 

Bangladesh (4). India has the highest percentages of undernourished children in the world (1). In 

1990, only 53 developing countries had reliable national data on the prevalence of underweight 

in young children; however, by 1995, 97 countries had such data, and 95 countries also had data 

on stunting and wasting where, stunting refers to chronic malnutrition (1) (low height for age 

indices) and wasting is acute malnutrition as indicated by the child’s weight for age indices (1).
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1.2  Risk Factors associated with Malnutrition: 

The etiology of childhood malnutrition is not very simple as it involves interactions of the 

biological, cultural and socioeconomic factors (4). In most South Asian countries, poverty, high 

population density, low status of women, poor antenatal care, high rates of low birth weight, 

unfavourable child caring practices, and poor access to child healthcare are the underlying 

contributors to the development of PEM (5). In some regions, such as sub-Saharan Africa and 

south Asia, stagnation of nutritional improvement combined with a rapid rise in population has 

resulted in an actual increase in the total number of malnourished children (1). Several factors 

are responsible for high undernutrition in India.  Some of these are related to poverty and poor 

access to nutrition and health care and could be remedied within a short period. India has the 

dubious distinction of having a very high prevalence of low birth weight (LBW).  In any 

community, under-five children are one of the most vulnerable groups for nutritional 

deficiencies, owing to many factors ranging from Low Birth Weight to maternal ill health to 

socio-economic and environmental factors (6). Estimates based on available data from 

institutional deliveries and smaller community – based studies suggested that nearly one-third of 

all Indian infants weigh less than 2.5 kg at birth.  Studies carried out by Ghosh and co-workers in 

the seventies (7) have shown that LBW children have a low trajectory for growth in infancy and 

childhood. Internally displaced people deserve special care, as they constitute a large proportion 

World Wide.  These groups of people are vulnerable to many health crises as they are triggered 

by many risk factors such as lack of shelter, poor personal hygiene and poor environmental 

sanitation, outbreaks of diseases, war, drought, famine and shortage of food. National surveys  

indicate that a third of the children from high income group who have not experienced any 

deprivations are undernourished.   The high undernutrition rates among children appears to be 
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mainly due to high low birthweight rates, poor infant and young child feeding and caring 

practices. Malnutrition is an important indicator of child health.  A significant contributing factor 

to infant and child mortality, poor nutritional status during childhood also has implications for 

adult economic achievement and health (8). A study from South India suggested that the risk 

factors for severe malnutrition were found to be low mother’s education, low family income, 

more among boys, use of firewood or coal for cooking and defecation within premises (9). 

1.3 Generalized Estimating Equations: 

Generalized Estimating equations (GEE) are extensions of linear regression analysis which are 

applied when there are repeated observations (responses) obtained from the same individual. As 

the response from each individual is obtained over time, these observations are not independent 

and hence the usual regression analysis is not applicable. There is considerable correlation as the 

responses are obtained from the same individual. Hence the GEE method accounts the 

correlation as a nuisance parameter and thereby included in the model as a covariate. The 

correlation structure is decided a prior which may be a difficult task especially when the outcome 

is a categorical variable. However, GEE is still robust for a wrong choice of correlation.  

1.4 Random Effects Model or Multilevel Modeling (MLM): 

Multilevel modeling (MLM) is being applied extensively over the past 10 years. In many 

situations, data is usually collected in a hierarchical manner. For example, data may be collected 

from individuals from the same household. Hence it is expected that there could be some 

correlation in the responses if they are obtained from the individuals from the same household 

and thereby the observations are not independent failing to the usual assumptions of linear 

regression analysis. Multilevel analysis accounts for the dependency and the correlation at each 

level. Multilevel analysis can also be applied if repeated observations are taken from the same 
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individual. In such a situation, individuals are cluster and each unit of repeated measurement 

within that individual are the next level.  

1.5 Markov Chain: 

Mathematical models represent real world problems or phenomena by formal system (10). They 

offer several advantages over empirical studies, as well as a number of disadvantages. Among 

the advantages are the identification of the variables in a quantitative problem that have the most 

impact on the system, and in particular the ability to ask “What if?” questions of the model.  

The Markov chain model has several attractive features that stem from the central assumption of 

the model: the probability of arriving in stat j, given that the process is in state i at time T, 

(known as a transition probability), is determined only by i and j. This strong assumption yield a 

homogeneous Markov Chain. Chronic diseases such as neurologic, cardiovascular and rheumatic 

disorders seem to obey the Markov assumption. The Markov model uses data on the probability 

of transition from one clinical status or disease state to another disease state to derive under 

certain assumptions, the duration of time spent in each disease state.  It is possible to determine 

the future probability that a patient will be in each disease state from information on the current 

disease state. 

Silverstein et al. demonstrated that the natural history of systemic lupus erythematosus in fact 

can be modeled as a homogeneous chain, and thus validate an assumption made by earlier users 

of the Markov model. 

Multistate models can be used to describe changes in patient’s health condition over time. In a 

study of chronic illness, these models classify patients into one of the finite number of distinct 

states at any given point during his or her follow-up. These states represent various health 

conditions, and the transition times correspond to the times at which these changes occur (11).  
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Another feature of Markov models is the natural division of a population into cohorts of different 

health states. With this allocation, and measure of QOL superimposed on the model, one can 

calculate state specific measures of health status or utility. These results can be incorporated into 

clinical decision analyses, using the Markov chain as a utility structure. Such modeling is 

particularly appropriate for cost-effectiveness analysis, wherein resources and health benefits are 

accrued incrementally, rather than summarized at the end of the model. The ideal population 

upon which to perform stochastic modeling is a true inception cohort, but such investigations are 

now just underway.  

1.5.1 Mean first passage and Sojourn time: 

Mean First Passage Time: 

The Markov model uses data on the probability of transition from one clinical status or disease 

state to another disease state to derive under certain assumptions, the duration of time spent in 

each disease state.  Since clinical data are often available on the likelihood of a patient’s disease 

becoming more active or going into remission, it is often possible to calculate the duration of 

time in each disease state, and a life expectancy under the assumption of Markov Model, when 

one of the state (final state) is an absorbing state, such as death, where there is no possibility to 

transit from there. However, in situation such as malnutrition there is no such absorbing state. In 

such situation besides estimating the duration of time spent in each state, it is useful, to estimate 

the mean first passage time for a subject to transit from one state to another first time, for 

example, the mean first time for subject to transit from severe malnutrition state to normal state. 

This will help physicians to plan interventions effectively. Estimation of such time will help 

physicians and the epidemiologist to study the impact of staying in that state, for example, in 

severe malnutrition for some time and its impact on mental development in children.  
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Sojourn time: 

Using the transition probabilities, it is imperative to estimate the expected duration stay in each 

state of disease. For example, how long a child is expected to be in severe malnutrition or in 

normal state. This can be done for both Markov models with absorbing and non-absorbing state. 

This will help the therapists to plan treatment options for specific duration to reverse the disease 

progression. 

1.6 Markov Regression: 

In usual regression the hypothesized variables are associated with the outcome after adjusting for 

other known risk factors and confounders. In Markov regression the concept of current disease 

state depends on the previous state of the disease. That is, when we model the duration of disease 

and the probability of transition from one state to another, the conditional probability concept or 

the hazard concept is incorporated in the regression analysis. Thus in chronic disease 

epidemiology, if the current state of the disease depends on the previous state, then it is 

appropriate to consider Markov regression. This also adjusts for other risk factors, confounders, 

besides the previous state information. 

Several alternate approaches are available for examining longitudinal data on health states of a 

patient. Deciding which method to use often depends on the questions that need to be answered 

(11). A correlated ordinal model may suffice if one is interested in estimating the relation 

between the probability of being in a particular health state and time since diagnosis. If the 

objective is to predict time to event probabilities, a survival model can be implemented in which 

a time-dependent covariate may be used to express events that may affect a person’s health 

condition. Multistate models are particularly useful for describing the complexities of a disease 

process (12). They are more applicable when interest lies in estimating the instantaneous rate of 
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transition between various states, estimating the probability of transition from one state to 

another within a specific time period, or estimating the average period of single stay in a state 

(mean sojourn time) and also risk factors. 

When patients are followed continuously and transition times are subject only to right censoring, 

a wide range of multistate modeling and estimation strategies are available (13). In realty, 

however, it is often not possible to observe patients continuously throughout the course of 

disease, especially when patients are assessed by a physician only at periodic clinic or home 

visits. In these cases, the exact times of state-to state transitions other than death are interval-

censored. The transition is only known to have occurred within a bounded time interval, usually 

assessments. Under intermittent observation, the data available for an individual consist of the 

assessment times and the states that are occupied at each of these times. Data emerging from this 

observation scheme pose a variety of estimation on transition times and the fact that the number 

and timing of assessments may vary dramatically across patients. In such occasions, the Markov 

regression would be appropriate. 
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2. AIMS AND OBJECTIVES 
 
The main aim of the thesis is to find if malnutrition was associated with any of household factors 

from which the child was taken for the study such as type of fuel used for cooking, education of 

the mother and father, sex of the child, etc. 

 

The objectives of the thesis are: 

1. To estimate the first mean passage time which indicates the average time spent by a child 

to move from one state to another 

2. To find risk factors of using GEE and Random effects model 

3. To find risk factors of protein energy malnutrition using Markov regression with 

transition probabilities  

4. To find the risk factors using Markov Regression with transition intensity rates 

5. To compare the results obtained from GEE and Markov regression models using 

transition probabilities and transition intensities and to evaluate the coverage probabilities 

of the 95% CIs obtained using the above methods.  
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3. REVIEW OF LITERATURE 

 

3.1 Definition of Malnutrition:  

World Health Organization (WHO) defined the term ‘malnutrition’ as a condition that refers to a 

number of diseases each with a specific cause related to the cellular imbalance of one or more 

nutrients like protein, iodine and/or calcium and the body’s demand to ensure growth, 

maintenance and proper functioning. Malnutrition can disable, maim or even kill. In the past few 

years, there is an economic growth and seems to be an improvement in food supplies, health 

conditions, availability of educational resources and social services but malnutrition seems to 

persisting virtually in all countries of the world (1). 

 

3.1.1 Indices for measuring Malnutrition:  

Growth assessment best defines the nutritional status of children. There are various 

anthropometric indices that are used to assess child’s growth status. But the most widely used 

anthropometric index to determine nutritional status is Z scores (14). The standard indices of 

physical growth that describes the nutritional status of children is presented as height-for-age, 

weight-for-height, weight-for-age and BMI. Each of the above nutritional status is expressed in 

standard deviations from the median. Each index provides different information about growth 

and body composition which is used to assess the nutritional status. The height-for-age index is 

an indicator of linear growth retardation and cumulative growth deficits. Children whose height-

for-age Z scores is below minus two standard deviations are considered short for their age 

(stunted) and are chronically malnourished. Children below minus three standard deviations from 

the median are considered to be severely stunted. The weight-for-height index measures body
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mass in relation to the body length and describes the current nutritional status. Children below -

3SD are considered severely thin (wasted) and are acutely malnourished. Weight-for-age is a 

composite index of height-for-age and weight-for-height. It takes into account both acute and 

chronic malnutrition. Children below -3SD are considered to be severely underweight. An article 

from Chile had suggested BMI Z scores as an index of underweight. The classification using 

BMI Z scores have been used recently in clinical settings. Children whose BMI Z score was less 

than -3SD were considered as severely underweight (15).  

 

3.2 Prevalence of Malnutrition:  

In 1990, the WHO fact sheet reported that only 53 developing countries had reliable national 

data on the prevalence of underweight in young children; by 1995, 97 countries had such data, 

and 95 countries also had data on stunting and wasting. It is estimated that more than half of the 

young children in south Asia suffer from protein energy malnutrition, which is about five times 

the prevalence in the Western hemisphere, at  least three times the prevalence in the Middle East 

and more than twice that of east Asia.  Estimated for sub-Saharan Africa indicate that the 

prevalence is approximately 30%. In some regions, such as sub-Saharan Africa and south Asia, 

stagnation of nutritional improvement combined with a rapid rise in population has resulted in an 

actual increase in the total number of malnourished children.  Currently, over one thirds of the 

world’s malnourished children live in Asia (especially south Asia), followed by Africa and Latin 

America (1). 

A study in 2009 reported that malnutrition was a contributing factor to infant mortality and also 

has implications for adult economic achievement and health. The article also reported that 

Pakistan has half of its children aged five years or less are stunted, over a third are underweight
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and a quarter of all births are low weight. These high levels of malnutrition contribute to about 

half of the 740,000 children deaths that occur every year in Pakistan (16).  

Protein-Energy malnutrition (PEM) is one of the most serious health problems in Bangladesh too 

where PEM accounts for 35% of deaths of children aged less than five years and total burden of 

disease. There were earlier reports that were reported in the same article that, severely 

underweight children aged 6-59 months had more than eight fold increased mortality (4). 

Another study reported that India has the highest percentages of undernourished children in the 

world (17). 

Malnutrition is also a significant problem in older children. It was indicated that there is very 

little known about the state of nutrition but some studies conducted in 1980s indicate that 

malnutrition is a significant problem with prevalence ranging from 47-70% in male school 

children in rural Pakistan. Within 7-10 year age, 36% were underweight, 39% stunted and 20% 

wasted. The prevalence of underweight in children between 5-7 years was 26% underweight, 

32% stunted and 8% wasted (18). 

The national nutrition survey in Bangladesh found that 29% of under-five children were 

moderately underweight and 12% were severely underweight according to weight-for-age 

Zscores. The prevalence of underweight decreased over the follow-up from the years 1987 to 

2002 in a national school-based annual population surveys in 6 year old children (15). 

 The prevalence of under nutrition under 3 years of age in India as reported using the NFHS 2 

data found that 45% of children were stunted, 47% underweight and 16% were wasted (19). In 

another study in children between 5-7 years of age in south India reported that 8.2% of children  

were severely malnourished as classified using weight-for-age percentiles. The prevalence of 

moderate malnutrition was 30% as reported in the study (9).  
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3.3 Risk Factors: 

Most of the studies reviewed addressed many risk factors for the prevalence of malnutrition 

among children. A lot of studies reported that malnutrition was mainly a severe problem in 

resource poor developing countries. 

A study done in Bangladesh reported that most South Asian countries, poverty, high population 

density, low status of women, poor antenatal care, high rates of low birth weight, unfavorable 

child caring practices, and poor access to child healthcare are the underlying contributors to the 

development of PEM. The study used children from 6 to 24 months who reported to Dhaka 

Hospital of the International Center for Diarrheal Disease. The results of the study showed that 

major risk factors were related to parental education, employment, income, child birth order and 

early feeding practices. The study showed that there were no significant differences between the 

age groups, area of residence and year of enrollment. Results showed that weight-for-length Z 

score was -2.71 (sd = 0.76) for those children who had <-3 SD weight-for-age Z scores as 

compared to those children in the >2.5 WAZ scores which was -0.55 (sd = 1.12). The results also 

showed that number of children in the family was also a contributing factor for less WAZ score. 

It was also found that severely-underweight children were more likely to have undernourished 

mothers (BMI < 18.5 kg/m2). The other factor that influenced the risk of underweight was the 

‘education level’ of mother. Mothers who completed <5 years of education were more likely to 

have undernourished children. Children who had shorter duration of predominant breastfeeding 

had 2.3 times odds of having <-3 WAZ scores as compared to children who had >2.5 WAZ 

scores. Children who came from families which had monthly income of <5000 had nearly 3  

times the odds of having <-3 WAZ score. The other risk factors that contributed to higher risk of 

having <-3 Z scores were higher birth order, occupation of father (4). 
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A stratified multistage random sampling study in Uganda was done to assess the dietary and 

environmental factors influencing stunting and other poor nutritional status of children <30 

months. The study consisted of 261 children where 70% were from rural areas and remaining 

30% were from semi-urban. The study findings were that older children had higher incidence of 

stunting than younger children. The study showed that current breastfeeding and age of weaning 

were not associated with incidence of stunting and underweight. Children who had never 

consumed milk showed a higher incidence of underweight, children who were fed foods on low 

energy density of stunting and not underweight. The other findings that were included in the 

study were that age of the mother, parity, occupation and number of children had no influence on 

stunting and underweight. The study showed that better education of mother had less stunted 

children. None of the infants whose mothers’ education was primary were stunted. Children from 

rural areas were more underweight than those from urban and low socio-economic families had 

more underweight children in urban areas. Unprotected source of water was also one of the 

important factor that contributed to more underweight. Type of fuel used for cooking was also 

another factor that contributed to the underweight among children. Families who used charcoal 

or paraffin had lower under weighed children as compared to those families that used firewood 

for cooking. The adjusted analysis from the same study showed families with very low economic 

status had 2.6 times the odds of children being underweight as compared to families that were 

mid-upper status. Families that used protected source of water were 21% less likely to have 

underweight children as compared to those families that did not use protected source of water to 

drink (20). In Sudan, (21) a total of 327 children from 200 families were enrolled into a study. 

According to WHO criteria, the prevalence of malnutrition was 56.1% with 30% mild, 13.1 % 

moderate, and 12.8% severely nourished. The study did not show that age of child, sex, lack of 
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immunization and lack of breast feeding were not very influencing factors of malnutrition. 

However, another study from Kenya suggested that lack of immunization was a contributing 

factor to malnutrition among children. The prevalence of Kwashiorkor and marasmus in Uganda 

seemed to be increasing and led to 40% of deaths to malnutrition alone. Hence a study was 

conducted to compare the feeding practices, health facility utilization and socio-demographic 

factors of mothers or caretakers of malnourished children with those of well nourished. This 

study concluded that some socio-economic factors were associated with severe PEM. Some of 

those risk factors are early cessation of breastfeeding, failure to complete the primary course of 

immunization and coming from economically disadvantaged household, without any livestock 

and living in mud walled dwellings. However, type of occupation and education level of the 

mothers did not seem to have any significant influence on nutrition status. The other important 

finding of this study was that children from urban setting were associated with severe 

malnutrition and in fact all children from urban area were mostly from slum areas in Kampala.  

Another study that was conducted in Brazil to find the risk factors for protein energy 

malnutrition in pre-school children found that birth weight of the child, presence of upper 

respiratory infections, gravida and parity were the most important to be considered. There were 

233 children involved in the study. The Z scores for weight-for-age and weight-for-height were 

calculated from the anthropometric measurements of the infants. The children included in the 

study were <72 months of age. The children were classified malnourished if the weight-for-age 

and height-for-age Z score was less than -2 SD, and weight-for-height Z score less than -1 SD.  

The prevalence of malnutrition was found using three different indices which were Gomez, 

Waterlow and OMs. The prevalence of 2nd degree malnutrition according to Gomez was 3.1% 

whereas, according to Waterlow and OMS the prevalence was 36.6% and 17.6% respectively. 
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The significant risk factors that were associated with weight-for-age were birth weight, number 

of pregnancies, birth order, body mass index of the mother and maternal weight. The significant 

factors associated with weight-for-height were birth weight, age of mother at birth of the child, 

The birth weight had shown a relative risk (RR) of 5.7 with 95% confidence interval to be 2.1-

15.2. The factors associated with height-for-age were also birth weight, age of the mother at 

birth, maternal height, Body mass index of the mother, birthplace of mother and father. This 

study had birth weight as a factor that was important for weight-for-age, weight-for-height and 

height-for-age indices (22).  

A case control study from Bangladesh was done to see the characteristics of children aged 6-24 

months with or without severe underweight of those who reported to the Dhaka Hospital. There 

were 507 children with weight-for-age Z score (WAZ) <-3 and 500 children from the same 

communities with WAZ > -2.5. The study results were presented as parental or family factors 

that may be associated with the presence of severe underweight and other factors that are 

pertaining to the child that may be associated with the presence of severe underweight. The 

family factors that were associated were age of the mother, weight of the mother, height of the 

mother, body mass index of the mother, education of the mother (in years), education of the 

father, family income, number of children under five in the family and total number of children 

in the family. From the other factors, birth order of >=3 had an odds of 1.6 times of having WAZ 

<-3 as compared to birth order <3. If there was no predominant breastfeed for 4 months then 

there was 2.7 times the odds of having WAZ <-3 (underweight) as compared to a child who had 

breastfeed for complete 4 months. If BCG vaccination was not given, then that child had 4.6 

times the odds of being underweight as compared to child who had BCG vaccine. The other 

important factors that were significant in the ‘child factor’ was using unsanitary latrine. These 
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above factors were unadjusted factors. The adjusted factors that contributed for underweight 

were teen aged mother, education of the mother, predominant breastfeeding for 4 months, 

education of the father, monthly family income, undernourished mother, shorter mother and 

father’s job category. If the mother was a teen aged person then there was 3 times the odds of 

having underweight child. If the mother was undernourished, then there was nearly 4 times the 

odds of having underweight baby. If the mother was illiterate or had less than five years of 

education, then there was nearly 3 times the odds of having underweight baby (4). 

 A cohort study was conducted was in south India in the year 1982 had also reported on the risk 

factors of malnutrition. This study had reported the factors associated with underweight at 

baseline measurement. The anthropometric data was collected for children between the ages 5 – 

7 years for every six months for seven times after baseline. The children were graded as mild 

(70-80%), moderate (60-70%) or severely (<60%) malnourished based on weight-for-age 

percentiles. There were 2496 children at baseline. The overall prevalence of moderate 

malnutrition was 30% and severe was nearly 8%. The boys had higher prevalence of severe 

malnutrition. The adjusted ordinal logistic regression analysis results found that boys had 1.3 

times the odds of having severe malnutrition as compare to girls. If the yearly family income was 

<=2000 rupees then there was 1.7 times the odds of having malnutrition as compared to family 

income being >8000 rupees per year. Illiterate or just literate mothers had 1.3 times the odds of 

having malnourished children as compared to mothers who had secondary or college education. 

The mothers who had primary or middle school education also had 1.5 times the odds of having 

malnourished children as compared to mothers who had secondary or college education. If the 

families used dung or fire wood for cooking, then there was 1.4 times the odds of having 

moderate or severe malnutrition as compared to families that used gas or kerosene for cooking. If 
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the defecation was within the premises then there was more likely that the child had moderate or 

severe malnutrition as compared to defecation done in open fields. The other interesting finding 

was type of roof. If the type of roof was thatched, then there was a high odds of having moderate 

or severe malnourished child as compared to houses that had RCC or pukka type roofs (9). 

 

3.4 Generalized Estimating Equations:  

Need to perform Generalized Estimating Equations (GEE): 

The generalized estimating equations (GEE) method, an extension of the quasi-likelihood 

approach, is being increasingly used to analyze longitudinal and other correlated data, especially 

when they are binary or in the form of counts consist of the age- and sex-standardized heights 

and data on the covariates gender and socioeconomic status) of 144 children in a sample of 54 

randomly selected households in Mexico. The results presented as Odds ratio (OR) were 

compared using the logistic regression analysis. The result using the logistic regression analysis 

was found to be 9 whereas after adjusting for the correlation using GEE it was found to be 5.4 

(23). 

A study was done to present that if a longitudinal data was modeled using regression techniques 

that ignore correlation biased estimates of the regression parameter variances occur. This was 

illustrated using the childhood health intervention in Brazil which showed that standard errors 

differed substantially by about 50% on an average for the two models where the two models 

were logistic regression and GEE that incorporated within correlation. The “months” variable 

was less associated in the correlated model than the naïve model. The naïve model overestimated  

the standard errors (24). 
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A study explains the structure of GEE with count responses. The main challenge mainly in a 

longitudinal data is when data are correlated within subject such as that provided in longitudinal 

studies and also in which data are clustered within subgroups. Failure to incorporate correlation 

of responses can lead to incorrect estimation of regression model parameters especially when the 

correlations are very large. This incorrect estimation has been demonstrated using a study that 

collected data from a laboratory that involved assembling Lego objects over five consecutive 

sessions. The responses are not normally distributed because they consist of count of the number 

of trips out of the room. The other variables that were correlated to the outcome were the object 

that needs to be assembled, the size of the object. The data was analyzed using Poisson 

distribution with independent correlation structure, Poisson distribution with unstructured 

correlation and Poisson distribution with one dependent autoregressive correlation. (25).  

 

Working Correlation structures and its bounds: 

In a longitudinal data analysis using GEE, the variance is considered as nuisance parameter. In 

some situations, it is important to understand the structure of the variability the same as 

understanding the mean structure. Moreover, treating the variance structure as a nuisance 

parameter can lead to misleading conclusions (26). 

A study reported the complication in using GEE especially for discrete outcomes. In GEE 

analysis, the dependence is modeled using the working correlation matrix that is estimated using 

the method of moments. An unbiased estimating equation that is optimal under some conditions 

is used to estimate the regression parameters. The process is iterated between estimation of the 

regression and the working correlation parameters until convergence. However, one has to be 

cautious on the bounds of the correlation parameters imposed by the nature of the random 
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variables and inferences drawn from such bounds may be unreliable. As an illustration, there was 

a study to test the efficacy of self-help relapse-prevention booklets for smokers who had already 

achieved initial abstinence at baseline. The authors analyzed the data using GEE with logit link 

function with smoking status as the repeated outcome, group and time as the model factors. It 

was noted that the correlation bounds were outside the estimated correlation. Hence the 

recommended method was to select the correlation estimate within the correlation bounds (27). 

Generalized linear model analyses of repeated measurements typically rely on simplifying 

mathematical models of the error covariance structure for testing the significance of differences 

in patterns of change across time. The robustness of the tests of significance depends, not only on 

the degree of agreement between the specified mathematical model and the actual population 

data structure, but also on the precision and robustness of the computational criteria for fitting 

the specified covariance structure to the data. GEE solutions utilizing the robust empirical 

sandwich estimator for modeling of the error structure were compared with general linear mixed 

model (GLMM) solutions that utilized the commonly employed restricted maximum likelihood 

(REML) procedure. Under the conditions considered, the GEE and GLMM procedures were 

identical in assuming that the data are normally distributed and that the variance-covariance 

structure of the data is the one specified by the user. The question addressed in this article 

concerns relative sensitivity of tests of significance for treatment effects to varying degrees of 

misspecification of the error covariance structure model when fitted by the alternative 

procedures. Simulated data that were subjected to Monte Carlo evaluation of actual Type I error 

and power of tests of the equal slopes hypothesis conformed to assumptions of ordinary linear 

model ANOVA for repeated measures except for autoregressive covariance structures and 

missing data due to dropouts. The actual within-groups correlation structures of the simulated 
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repeated measurements ranged from AR(1) to compound symmetry in graded steps, whereas the 

GEE and GLMM formulations restricted the respective error structure models to be either AR(1), 

compound symmetry (CS), or unstructured (UN). The GEE-based tests utilizing empirical 

sandwich estimator criteria were documented to be relatively insensitive to misspecification of 

the covariance structure models, whereas GLMM tests which relied on restricted maximum 

likelihood (REML) were highly sensitive to relatively modest misspecification of the error 

correlation structure even though normality, variance homogeneity, and linearity were not an 

issue in the simulated data. Goodness-of-fit statistics were of little utility in identifying cases in 

which relatively minor misspecification of the GLMM error structure model resulted in 

inadequate alpha protection for tests of the equal slopes hypothesis. Both GEE and GLMM 

formulations that relied on unstructured (UN) error model specification produced non-

conservative results regardless of the actual correlation structure of the repeated measurements. 

A random coefficients model produced robust tests with competitive power across all conditions 

examined (28). 

 

Some authors have argued that Chaganty and Joe (2004, 2006) have argued that the GEE 

correlation structures are not correlations at all, but rather weighted matrices.  Their claim is 

based on the supposition that the range of correlations for multivariable binary distributions – 

i.e., Bernoulli distributions – are based on the marginal means, which they believe preclude the 

working correlation from being the true correlation of the data (29, 30).  

 

A study was conducted that compared the GEE and random coefficient analysis. These two 

techniques are the most commonly used techniques that adjust for the correlations between the 
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responses when an individual is measured repeatedly over time. The data used for the 

comparison was from the Amsterdam Growth and Health study investigating the longitudinal 

relationship between lifestyle and health in adolescence and young adulthood. There were six 

measurements on 147 observations. The main hypothesis was to find the relationship between 

serum cholesterol levels and physical fitness at baseline, body fatness and smoking behavior 

classified as smoking or non-smoking and gender.  The serum cholesterol levels were expressed 

in mmol/liter or categorized into upper and lower tertiles respectively. The results were 

compared using the continuous outcome and binary outcome between GEE and random 

coefficient model. The results from the study was that the GEE and random coefficient model for 

continuous outcome was similar but there was a difference in the standard errors when 

dichotomous outcome was considered for analysis (31).  

 

Choice of Correlation Structure: 

A study reported that although GEE is becoming popular in handling correlated response data in 

longitudinal studies, due to an attractive property that one can use some working correlation 

structure that may be wrong but the resulting regression coefficient estimate is still consistent 

and asymptotically normal. One such convenient choice is independence model which is treating 

the correlated responses as if they are independent. However, for time-varying covariates there is 

a dilemma in using independence correlation model as it may be very inefficient producing 

biased estimates. Hence this study proposed resampling methods like bootstrap methods to do 

the estimation and this is illustrated through an application to the Lung Health Study that 

investigated the effects of smoking cessation on lung function and on the symptom of chronic 

cough (32).  
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There was a study that compared several approaches to select the best working correlation 

structure and it was suggested that all approaches be used to select correlation structure and then 

decide on the best correlation and the problem spreads more when there is a small sample size 

(33).  

 

Quasi Likelihood estimation: 

Correlated response data are common in biomedical studies. Regression analysis based on the 

 GEE is an increasingly important method for such data. However, there seem to be few model-

selection criteria available in GEE. The well-known Akaike Information Criterion (AIC) cannot 

be directly applied since AIC is based on maximum likelihood estimation while GEE is non-

likelihood based. The authors proposed a modification to AIC, where the likelihood is replaced 

by the quasi likelihood and a proper adjustment is made for the penalty term. Its performance is 

investigated through simulation studies. For illustration, the method is applied to a real data set 

(34). 

Selecting an appropriate working correlation structure is pertinent to clustered data analysis 

using GEE because an inappropriate choice will lead to inefficient parameter estimation. A study 

investigated the well-known criterion of QIC for selecting a working correlation structure, and 

has found that performance of the QIC is deteriorated by a term that is theoretically independent 

of the correlation structures but has to be estimated with an error. This lead to propose a 

correlation information criterion (CIC) that substantially improves the QIC performance. 

Extensive simulation studies indicate that the CIC has remarkable improvement in selecting the 

correct correlation structures. They also illustrated findings using a data set from the Madras 

Longitudinal Schizophrenia (35).  
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The generalized estimating equation is a popular method for analyzing correlated response data. 

It is important to determine a proper working correlation matrix at the time of applying the 

generalized estimating equation since an improper selection sometimes results in inefficient 

parameter estimates. The authors proposed a criterion for the selection of an appropriate working 

correlation structure. The proposed criterion is based on a statistic to test the hypothesis that the 

covariance matrix equals a given matrix, and also measures the discrepancy between the 

covariance matrix estimator and the specified working covariance matrix. They evaluated the 

performance of the proposed criterion through simulation studies assuming that for each subject, 

the number of observations remains the same. The results revealed that when the proposed 

criterion was adopted, the proportion of selecting a true correlation structure was generally 

higher than that when other competing approaches were adopted (36). 

The method of generalized estimating equations for regression modeling of clustered outcomes 

allows for specification of a working matrix that is intended to approximate the true correlation 

matrix of the observations. A study investigated the asymptotic relative efficiency of the GEE for 

the mean parameters when the correlation parameters are estimated by various methods. The 

asymptotic relative efficiency depends on three features of the analysis, namely (i) the 

discrepancy between the working correlation structure and the unobservable true correlation 

structure, (ii) the method by which the correlation parameters are estimated and (iii) the ‘design’, 

by which we refer to both the structures of the predictor matrices within clusters and distribution 

of cluster sizes. Analytical and numerical studies of realistic data‐analysis scenarios show that 

choice of working covariance model has a substantial impact on regression estimator efficiency. 

Protection against avoidable loss of efficiency associated with covariance misspecification is 
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obtained when a ‘Gaussian estimation’ pseudo likelihood procedure is used with an AR(1) 

structure (37). 

The GEE technique is often used in longitudinal data modeling, where investigators are 

interested in population-averaged effects of covariates on responses of interest. GEE involves 

specifying a model relating covariates to outcomes and a plausible correlation structure between 

responses at different time periods. While GEE parameter estimates are consistent irrespective of 

the true underlying correlation structure, the method has some limitations that include challenges 

with model selection due to lack of absolute goodness-of-fit tests to aid comparisons among 

several plausible models. The quadratic inference functions (QIF) method extends the 

capabilities of GEE, while also addressing some GEE limitations (38).  

There was a study that showed the difficulties with GEE particularly with logistic regression 

GEE analysis. There are also other authors who have considered these claims to be based more 

on semantics than on statistics especially for binary response models (39). 

 

3.5 Random Effects Model:  

 

When is a Random effects model applied: 

A study reported the appropriate application, interpretation and compared with straightforward 

marginal models like GEE approaches. This study addressed the limits that needed to be placed 

on interpretation of the coefficients and inferences derived from random-effects models 

involving binary outcomes. The other issue is the diagnostic checks that are appropriate for 

evaluating whether such random effect models provide adequate fit to the data. These issues 

were addressed by means of an extended case study using data on adolescent smoking from a 
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large cohort study. The authors also applied Bayesian estimation methods to fit discrete-mixture 

alternative to the standard logistic-normal model and posterior predictive checking was used to 

assess the model fit. The authors described surprising parallels in the parameter estimates from 

the logistic-normal and mixture models and used them to question the interpretability of the 

subject specific regression coefficients from the standard multilevel approach. Positive predictive 

checks suggested a serious lack of fit of both multilevel models. The authors expressed that 

lessons learnt from the case study provided guidance for further investigations (40).  

A study reported the situation when random coefficient models must be applied. Regression 

models with random coefficients arise naturally in both frequentist and Bayesian approaches to 

estimation problems. They are becoming widely available in standard computer packages under 

the headings of generalized linear mixed models, hierarchical models, and multilevel models. I 

here argue that such models offer a more scientifically defensible framework for epidemiologic 

analysis than the fixed-effects models now prevalent in epidemiology. The argument invokes an 

antiparsimony which is that models should be rich enough to reflect the complexity of the 

relations under study. It also invokes the countervailing principle that you cannot estimate 

anything if you try to estimate everything (often used to justify parsimony). Regression with 

random coefficients offers a rational compromise between these principles as well as an 

alternative to analyses based on standard variable-selection algorithms and their attendant 

distortion of uncertainty assessments. These points are illustrated with an analysis of data on diet, 

nutrition, and breast cancer. Random effect models are also known as random coefficient 

models. The random coefficients models are also methods that adjust for the correlation in 

longitudinal data. These models like GEE can also be applied when there are repeated responses 

from the same individual where each individual is considered as a cluster. Random coefficients 
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models provide the variance from which correlation termed as Intraclass correlation coefficient 

(ICC) is calculated. Maximum likelihood is the standard methods of estimation for linear mixed 

models. However, evaluation of likelihood is computationally difficult. The log likelihood is 

maximized using numerical integration (41).  

 

Intraclass Correlation Coefficient (ICC): 

A study was done that compared multilevel methods with the traditional methods where the 

outcome which was the number of alcohol-free weeks per patient during 1 year. The study had 2 

level models. The comparison of results were based on a hypothetical observational PBRN 

(practice-based research network) study and simulated database to illustrate the findings. The 

data set consists of 500 patient-level observations. Patients were randomly sampled from 1 

physician in each of 5 clinics (100 patients per physician), with 3 clinics located in an urban area 

and 2 in a rural setting. In a simple 2-level model, the sources of variance are within-groups and 

between-groups. Using a PBRN context with patients sampled from clinics, the total variation in 

patient outcomes can be partitioned into 2 variance components: within-clinics variance (ie, 

variance among patients in the same clinic) and between-clinics variance (ie, variance between 

patients in different clinics). When patients within groups are very similar to each other, we have 

less information than we would have from the same number of patients obtained in a simple 

random sample. An important measure that describes these dependencies in the data is the 

intraclass correlation coefficient (ICC); this statistic measures the extent to which individuals 

within the same group are more similar to each other than they are to individuals in different 

groups. The estimated ICC indicates that the ratio of the between-clinic variance to the total 

variance is about 55%, calculated as ICC = 1.76/(1.76 + 1.41), suggesting that patients within 
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clinics are more similar to each other than to those at other clinics. Had the researchers ignored 

the hierarchical structure of the data and used traditional analytic approaches, they would have 

erroneously concluded that physician advice had little or no influence on patient alcohol 

consumption behavior. On the other hand, all the HLMs that assess the relationship between 

physician time advising patients on alcohol consumption and patient behavior lead to the 

conclusion that physician advice is effective, at least in some settings (42). 

An adolescent study was done that included 8th and 10th grades with varying amounts of cigarette 

smoking experience. These were categorized into three categories such as < 6cigarettes, 6-99 and 

100+ cigarettes. The outcome was physiological sensation change categorized into five ordered 

categories such as -2, -1, 0, 1 and 2. The ICC was found to be 0.44 suggesting that there was 

correlation within subjects. The study showed that physiological sensation diminishes as 

smoking level increases (43). 

 

Estimation procedures for count data in random effect models: 

In the social and health sciences, data are often structured hierarchically, with individuals nested 

within groups. This was presented using dyadic data. Dyadic data represent a special case of 

hierarchically clustered data, with individuals nested within dyads. Dyads constitute a special 

case of hierarchically structured data with variation at both the individual and dyadic level. 

Analyses of data from dyads pose several challenges due to the interdependence between 

members within dyads and issues related to small group sizes. Multilevel analytic techniques 

have been developed and applied to dyadic data in an attempt to resolve these issues. In this 

article, the authors described a set of analyses for modeling individual- and dyad-level influences 

on binary outcomes using SAS statistical software; and the authors discuss the benefits and 
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limitations of such an approach. For illustrative purposes, the authors applied these techniques to 

estimate individual-dyad-level predictors of viral hepatitis C infection among heterosexual 

couples in East Harlem, New York City (44). 

Least squares analyses (e.g., ANOVAs, linear regressions) of hierarchical data leads to Type-I 

error rates that depart severely from the nominal Type-I error rate assumed. Thus, when least 

squares methods are used to analyze hierarchical data coming from designs in which some 

groups are assigned to the treatment condition, and others to the control condition (i.e., the 

widely used groups nested under treatment experimental design), the Type-I error rate is 

seriously inflated, leading too often to the incorrect rejection of the null hypothesis (i.e., the 

incorrect conclusion of an effect of the treatment). To highlight the severity of the problem, a 

paper presented simulations showing how the Type-I error rate is affected under different 

conditions of intraclass correlation and sample size. For all simulations the Type-I error rate after 

application of the popular correction is also considered, and the limitations of this correction 

technique discussed. They concluded with suggestions on how one should collect and analyze 

data bearing a hierarchical structure (45). 

A study reported that PQL, restricted maximum likelihood methods as approximate to Maximum 

likelihood methods are a failure in mixed models especially for binary data (46). This article 

provided a conceptual introduction to the issues surrounding the analysis of clustered (nested) 

data. It defines the intraclass correlation coefficient (ICC) and the design effect, and explains 

their effect on the standard error. When the ICC is greater than 0, then the design effect is greater 

than 1. In such a scenario, the standard error produced under the assumption of independence is 

underestimated. This increases the Type I error rate. This is illustrated based on the effect of non-

independence on the standard error. The paper also shows that after accounting for the design 
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effect, the decision about the statistical significance of the test statistic changes. When there is a 

failure to account for the clustered nature of the data, it was concluded that the difference 

between the two groups is statistically significant. However, once they adjusted the standard 

error for the design effect, the difference is no longer statistically significant (47). 

 

Comparison of Fixed Effects, GEE and Random Effects model: 

A study reported the differences between fixed effects, random effects and GEE analysis. This  

article reported the underlying assumptions to assess the covariate effects on the mean of 

continuous, dichotomous or count outcomes. This paper reports the structural differences and 

similarities of the random effects, the linear mixed model, the fixed effects and generalized 

estimating equations in a longitudinal data. Let the random draw from a population of interest be 

(Yi, Xi), where I denotes the sampling unit�� = ����, ���, … ��
�� the time-ordered �� × 1 vector 

of responses and �� = ����, ���, … ��
�� an �� × � matrix of explanatory variables with Xij a 

� × 1 vector associated with the response Yij. The conditional mean vector and covariance 

matrix are respectively, �� = �(��|��) and �� = ��(�� − ��)(�� − ��)|���. In the above notation, 

each component of the conditional mean ��� = �(���|��) is a function of all the covariates. The 

total number of observations in the sample is � = 	∑ ��
�!� . Let g be a known link function such 

that "����� = 	��� # where # = (#�, … #$) is a pX1 vector of unknown parameters. Whereas the 

mean ��depends on β, the covariance matrix Vi may depend on β and perhaps additional 

parameters α so that the total number of parameters is p+p1. 
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Marginal Model: This specifies only the conditional mean �� = �(��|��) but treats the 

parameters in Vi as nuisance parameters. A distribution function in the exponential family 

usually suggests the form of mean and variance of Yij.  

Random Effects model: In this model, correlation is induced through an unobserved 

heterogeneity ζi in the conditional mean specification n��� = �(���|���, %�). The random 

coefficient model will also fall under this umbrella allowing one to acknowledge dependencies at 

different levels of a hierarchy (48).  

Recent advances in statistical software have led to the rapid diffusion of new methods for 

modeling longitudinal data. Multilevel (also known as hierarchical or random effects) models for 

binary outcomes have generally been based on a logistic–normal specification, by analogy with 

earlier work for normally distributed data. The appropriate application and interpretation of these 

models remains somewhat unclear, especially when compared with the computationally more 

straightforward semiparametric or ‘marginal’ modeling (GEE) approaches. In this paper we pose 

two interrelated questions. First, what limits should be placed on the interpretation of the 

coefficients and inferences derived from random‐effect models involving binary outcomes? 

Second, what diagnostic checks are appropriate for evaluating whether such random‐effect 

models provide adequate fits to the data? We address these questions by means of an extended 

case study using data on adolescent smoking from a large cohort study. Bayesian estimation 

methods are used to fit a discrete‐mixture alternative to the standard logistic–normal model, and 

posterior predictive checking is used to assess model fit. Surprising parallels in the parameter 

estimates from the logistic–normal and mixture models are described and used to question the 

interpretability of the so called ‘subject‐specific’ regression coefficients from the standard 

multilevel approach. Posterior predictive checks suggest a serious lack of fit of both multilevel 
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models. The results do not provide final answers to the two questions posed, but we expect that 

lessons learned from the case study will provide general guidance for further investigation of 

these important issues (40).  

Several approaches have been proposed to model binary outcomes that arise from longitudinal 

studies. Most of the approaches can be grouped into two classes: the population-averaged and 

subject-specific approaches. The generalized estimating equations (GEE) method is commonly 

used to estimate population-averaged effects, while random-effects logistic models can be used 

to estimate subject-specific effects. However, it is not clear to many epidemiologists how these 

two methods relate to one another or how these methods relate to more traditional stratified 

analysis and standard logistic models. The authors address these issues in the context of a 

longitudinal smoking prevention trial, the Midwestern Prevention Project. In particular, the 

authors compare results from stratified analysis, standard logistic models, conditional logistic 

models, the GEE models, and random-effects models by analyzing a binary outcome from two 

and seven repeated measurements, respectively. In the comparison, the authors focus on the 

interpretation of both time-varying and time-invariant covariates under different models. 

Implications of these methods for epidemiologic research have been discussed which found that 

both estimates for random effects and standard errors were larger than GEE model although the 

test statistic results were similar (49).  

A study compared GEE to random effects model in genetic association analysis. The authors 

proposed a retrospective multilevel model (rMLM) approach to analyze sibship data by using 

genotypic information as the dependent variable. Simulated data sets were generated using the 

simulation of linkage and association (SIMLA) program. Then they compared rMLM to sib 

transmission/disequilibrium test (S-TDT), sibling disequilibrium test (SDT), conditional logistic 
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regression (CLR) and generalized estimation equations (GEE) on the measures of power, type I 

error, estimation bias and standard error. The results indicated that rMLM was a valid test of 

association in the presence of linkage using sibship data. The advantages of rMLM became more 

evident when the data contained concordant sibships. Compared to GEE, rMLM had less 

underestimated odds ratio (50).  

 

Diagnostic issues in Random effect models: 

Commonly applied diagnostic procedures in random-coefficient (multilevel) analysis are based 

on an inspection of the residuals, motivated by established procedures for ordinary regression. 

The deficiencies of such procedures are discussed and an alternative based on simulation from 

the fitted model (parametric bootstrap) is proposed. Although computationally intensive, the 

method proposed requires little programming effort additional to implementing the model fitting 

procedure. It can be tailored for specific kinds of outliers. Some computationally less demanding 

alternatives are described (51). 

 

3.6 Markov Chain: 

Most of disease conditions exhibit a property that the present state of condition is due to the just 

previous condition. Hence a study in Taiwan used this property of Markov chain to assess the 

efficacy of screening non-insulin dependent diabetes mellitus. Non-insulin diabetes (NIDDM) 

was very common in Taiwan. It is important that this disease is detected in the asymptomatic 

phase. In order to project the above progression a five state illness-and-death Markov chain 

model was proposed to estimate these transition parameters. The annual incidence of 

asymptomatic NIDDM was 10.67 (8.26 – 13.79) per 1000. The progression rate from 
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asymptomatic to symptomatic NIDDM was 2.27% implying that there was a high risk of dying 

from NIDDM for subjects with symptomatic NIDDM (52). This paper, however, is based on 

absorbing state where there is  no possible transition from death state. Therefore there is a need 

for non-absorbing state model.  

For many recurrent events, a change in state during a sufficiently narrow time span usually 

involves a move to next state only. For example, the person with no headache during one interval 

is more likely during the next span of time to have a slight headache than a severe headache. A 

Markov chain is a stochastic model that describes the probabilities of transition among sites of a 

system. The assumption that characterizes a Markov chain is that the transitional probability is 

completely determined by the present state of the system. A headache diary was completed by 

177 female and 57 male headache patients. The patients were asked to record their level of 

headache during each 24-hr interval for 28 days. The main aim of the study was to see if the 

movement from time t to t+1 was different for males and females. This was tested using log 

linear model. The G2 = 25.17 for 9 degrees of freedom suggesting that there was a difference in 

the transition probability for males and females (53).  This study has not estimated the likely 

duration of stay in each state of headache transition which may be of clinical importance. 

Another study had a hypothesis which stated “Should anticoagulation be withheld in a patient 

with an artificial heart valve and recent hemorrhagic cerebral infarction?” This problem was 

answered using Markov model. There are three major states of health which were well, disabled 

and dead. In addition to the above states there was also another additional state which was a 

temporary state of health, minor event state. The data was from the Framingham cardiovascular 

disease study. A transition probability matrix of the Markov process was obtained. The Markov 

model was also used to generate quality-adjusted life expectancy values (10). 
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A study was conducted to describe the lifetime clinical course and costs of Crohn’s disease in a 

24-year population-based inception cohort of patients with Crohn’s disease in Olmsted county. 

The disease states were defined by medical and surgical treatment. A Markov model analysis 

calculated time in each disease state and presented value of excess lifetime costs in comparison 

with an age- and sex matched cohort (54).  

A Markov model of prognosis was evaluated by comparing the duration of disease activity states 

and life expectancy with Kaplan Meier curves for 98 patients with systemic lupus erythematous 

with 1080 patient years of observations. A four state homogenous Markov chain was constructed 

to determine the transition probabilities between the disease states. The proportion of the patient 

population in each disease state over time provided a convenient graphic summary of the natural 

history of SLE from which the Kaplan Meier survival curves were obtained. A Markov model 

yielded a clinically useful description of outcome for multistate disease (55).  

Physician’s estimate of prognosis under alternative treatment plans in a principal factor in 

therapeutic decision making. Methods of reporting prognosis such as five-year survivals, 

survival curves and quality adjusted life expectancy are crude estimates of natural history. The 

author describes a general purpose model of medical prognosis based on the Markov process and 

shows how this simple mathematical tool be used to generate detailed and accurate assessments 

of life expectancy and health status. Natural history of a chronic disease can be viewed for an 

individual patient as a sequence of particular states of health. An example described in the paper 

was if a patient was classified into one of three categories: WELL, ILL and DEAD. At any time 

i, the patient resides in one of the states. This is represented as shown in the figure: 
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The oval represents the patient being in one of the three ovals (upper row) and transitions that 

occur over a fixed time interval i are illustrated by the arrows from i to i+1. It is possible to leave 

WELL or ILL via a transition and hence are termed as Non-absorbing states where as once 

DEAD state is reached no possible transitions can be made and hence is an absorbing state.  This 

paper has described the constant transition probabilities that are possible only with Markov chain 

model. The matrix formulation has four important sections.  

 

The section labeled Q which reflects the probability of not being absorbed and the probability of 

being in the WELL state is sum of the four probabilities of the elements. Each element is 
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subtracted from a corresponding element in another 2X2 matrix of ones on the diagonal and 

zeros elsewhere. Matrix N is the fundamental matrix of absorbing Markov chain and has its 

elements by column the expected time in each of absorption state given the starting state 

corresponding to the row of N matrix which is displayed in the figure below which represents the 

single step transition between and within absorbing and transient states (10).  

Another study reported the mean sojourn time which is the time spent in the preclinical 

detectable phase for chronic disease like breast cancer that plays an important role in the design 

and assessment of screening programs. This paper developed two-parameter Markov chain 

model and the model was developed explicitly to estimate the preclinical incidence rate and the 

rate of transition from preclinical to clinical state without using control data. Using this method 

to the data from Swedish two county study of breast cancer screening in the age group 70-74, the 

mean sojourn time was found to be 2.3 with 95 percent confidence interval ranging from 2.1 – 

2.5 which was close to the result based on the traditional method however, the 95 percent 

confidence interval was narrower using Markov model. The reason for greater precision of the 

latter is the fuller use of all temporal data since the continuous exact times to events are used in 

our method instead of grouping them as in the traditional method (56). This paper presented the 

sojourn time but did not explain the transition time from one clinical state to another.  

Another study conducted in India used the systemic lupus erythematosus disease activity index 

(SLEDAI) score to find factors that predict the survival outcome for patients with systemic lupus 

erythematosus patients. The subsequent visits were abstracted from the case notes and the 

quantitative data from SLEDAI score was used to construct a Markov chain mathematical 

expression to predict life expectancy. The predicted life expectancy using Markov chain was 
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13.9 years and it was also found that proteinuria caused a 50% reduction in the life expectancy 

but increased disease activity at onset did not predispose to a poor outcome (57).  

A study considered the estimation of the intensity and survival functions for a continuous time 

progressive three-state semi-Markov model with intermittently observed data. The estimator of 

the intensity function is defined nonparametrically as the maximum of a penalized likelihood. 

Thus the authors obtained smooth estimates of the intensity and survival functions. This 

approach also accommodated complex observation schemes such as truncation and interval 

censoring. The method is illustrated with a study of hemophiliacs infected by HIV. The intensity 

functions and the cumulative distribution functions for the time to infection and for the time to 

AIDS are estimated. Covariates can easily be incorporated into the model (58). This study 

explains for continuous time Markov model.  

 

3.7 Markov Regression: 

A study proposed an online binary classification procedure for cases when there is uncertainty 

about the model to use and parameters within a model change over time. The authors accounted 

for model uncertainty through dynamic model averaging, a dynamic extension of Bayesian 

model averaging in which posterior model probabilities may also change with time. The authors 

applied a state-space model to the parameters of each model and allowed the data-generating 

model to change over time according to a Markov chain. The study also proposed an algorithm 

that adjusts the level of forgetting in an online fashion using the posterior predictive distribution, 

and so accommodates various levels of change at different times. This method was applied to the 

data from children with appendicitis who receive either a traditional (open) appendectomy or a 

laparoscopic procedure. Factors associated with which children receive a particular type of 



 

~ 38 ~ 

 

procedure changed substantially over the 7 years of data collection, a feature that is not captured 

using standard regression modeling (59). However, this approach may be intensive in computing 

and may have problem in generalizing.  

A study describes the application of a multi-state model to diabetic retinopathy under the 

assumption that a continuous time Markov process determines the transition times between 

disease stages. There are three transient states that represented the early stages of retinopathy and 

one final absorbing state that represented the irreversible stage of retinopathy. Using a model 

with covariables, the authors explored the effects of factors that influenced the onset, progression 

and regression of diabetic retinopathy among subjects with insulin-dependent diabetes mellitus. 

The study also had time – dependent covariables in the model assuming that the covariables 

remained constant between two observations. The authors also demonstrated survival curves 

from each stage of the disease and for any combination of the risk factors (60). This was applied 

for absorbing state Markov model.  

Stroke is a leading cause of death worldwide. Stroke related disability manifestation by 

neurological impairment has resulted in poor quality. The ability to predict changes in functional 

disability over time would be conducive to the clinical management and rehabilitation of stroke 

patients. Functionality disability changes with time and varies from individual to individual. The 

approach used to model the data was multi-state Markov model adequately after adjusting for the 

known covariates. The data was obtained form a multi-center study that involved 111 patients 

with a first stroke. These patients were assessed after at six time points. The univariate analysis 

showed the transition rate from state 1 which was poor function to state 2 (moderate function) as 

1.19 per month and from state 2 to state 3 (good function) was 0.43 per month.  Age, size of 

infarct, sex had no effect on transition rates. Baseline functional status showed an effect on 
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transition rates. The multivariable analysis showed that baseline functional status had an effect 

from state 2 to state 3 (HR: 0.14; 0.06 -0.25). Size of the infarct showed an effect on transition 

rate from state 1 to state 2 with hazard ratio (HR) 2.3 (1.6-3.0) (61). 

A study on liver fibrosis evolution in HIV-HBV-coinfected patients treated with tenofovir 

disoproxil fumarate (TDF) was conducted. The effect of TDF on liver fibrosis in 148 HIV-HBV-

coinfected patients was prospectively evaluated using Fibrometer scores and liver biopsies in a 

subset of patients. The mean change from baseline in Fibrometer score was modelled using a 

GEE and a homogeneous continuous-time Markov models were used to study risk factors for 

regression or progression of liver fibrosis. It was found that the median follow-up of patients 

treated with TDF was 29.5 months (25th-75th percentile 20.9-38.1). In patients with a baseline 

fibrosis score of F3-F4, Fibrometer score decreased with a triphasic shape (Fibrometer change at 

12, 24 and 36 months after TDF initiation was -0.079, -0.069 and -0.102, respectively). 

Progression in fibrosis score over time was influenced by age, alcohol consumption, low CD4(+) 

T-cell count and HCV coinfection, whereas HDV coinfection and longer duration of HBV 

infection prevented fibrosis regression. No influence of antiretrovirals other than TDF was found 

(62). Continuous time Markov models, and the advantages over survival models need to be 

explored further in medical field.  

An observational study on cancer patients, progression of performance status over time was 

described by a multistate model. There were four states with one absorbing state. The 

performance status at each clinic visit was based on PPS score. PPS score 70-100 (stable state), 

PPS score 40-60 (state 2), 10-30 PPS score (state 3) and deceased (state 4). The transition 

intensity rates were obtained for transition for all the states. These transition intensity rates were 

then used to estimate the transition probabilities by the end of 1 month and 6 months. It was 
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found that a patient who was in the transitional state had 11% chance of being in the stable state 

at the end of 1 month, 5% chance of being in the end-of-life state at the end of 1 month, 24% 

chance of being dead at the end of this time There was 0.8% chance of death for a patient in the 

stable state at the end of 1 month where as 15% chance of death if the patient was in the stable 

state at the end of 6 months (63). 

A longitudinal study that compared Markov model regression model, markov regression model 

with random effects and a mover-stayer model to find the risk factors for transition in Bacterial 

Vaginosis among women. The study showed that Markov regression model found a poor fit 

while Markov regression with random effects that accounted for additional unexplained 

heterogeneity had better fit to the data. The study found that transition models that accounted for 

additional heterogeneity provided an attractive approach for describing the effect of covariates 

on the natural history of BV (64). 

There was a study that was conducted to find the potential effects of interventions on cervical 

cancer. The authors constructed a Markov state-transition model of a cohort of HIV positive 

women in Cameroon. They examined the potential impact, on cumulative cervical cancer 

mortality of four possible scenarios: when no HAART and no screening was present (NHNS), 

HAART and no screening (HNS), HAART and screening once on HAART initiation (HSHI) and 

HAART screening once at age 35 (HS35). The model projected that compared to NHNS, 

lifetime cumulative cervical cancer mortality approximately doubled with HNS (65). 

A study was done to find an exploration of factors associated with suicidality so as to understand 

the mechanisms that lead to suicide. Two samples in Germany were examined via internet 

regarding suicidality, depression, alcohol abuse, adverse childhood experiences and parent-child 

relationships. A Graphical Markov Model was constructed from the first subsample, testing for 
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main, quadratic and interaction effects. All effects in the model were cross-validated using the 

second subsample. Depression was found to be a strong predictor of suicidality; alcohol abuse 

was not a predictor. Both maternal and paternal love also predicted suicidality; the former had an 

indirect effect via depression and the latter a direct effect. Early experiences with violence 

showed both a direct and indirect association with suicidality. In addition to depression being a 

predictor for suicidality, various pathways connect suicidality with early childhood experiences 

(66).  

Markov regression using multilevel modeling and continuous time Markov regression are other 

areas, which need to be explored in terms of challenges in using them in longitudinal studies, the 

advantages over GEE or Random effects have to be researched further.  
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4. SCOPE AND PLAN OF WORK 
 

Scope: Clinical data on the prognosis of diseases with a clinical history marked by exacerbations 

and remissions are best derived from longitudinal study for group patients from the onset of 

disease. In Systemic Lupus Erythematosus (SLE), the clinically pivotal issues are correlated with 

the transition between exacerbations and remissions. The usual survival analyses or incidence 

rates by subgroups will not address the impact of transition. A Markov model is a different 

method of analyzing and reporting the prognosis of multi state disease processes. Since clinical 

data are often available on the likelihood of patient’s disease becoming more active or going into 

remission, it is often possible to estimate the duration of stay in each disease state under the 

assumption of Markov model.  Discrete time Markov model is an approach when there is 

discrete transition of health status of patients over time. Discrete transition refers to the transition 

occurring in fixed points in time. A discrete time Markov model can approximate a continuous 

time Markov model by defining a cycle length of interest such as yearly or 6 monthly. Markov 

model uses the probability of transition from one clinical or disease state to another. The data 

will deal with Protein-energy Malnutrition (PEM) among children as this will help us to estimate 

the mean transition time which specifies, for example, what is the average time taken to transit 

from a severe state to normal state of malnutrition and also to estimate average time of stay in a 

particular state, so as to plan appropriate intervention. Also, using the transition probabilities one 

can model the risk factors using the regression models, conditioning the current state of the 

outcome with the immediate state of the outcome. Thus, the dependence of serial outcomes are 

expected to be within two time points as compared to Generalized Estimating Equation (GEE) 

which deals with all time points or, the Random effects models or Multi Level Modeling (MLM) 
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which deals with identifying and excluding the exact amount of correlation within individuals. 

Thus the usual GEE or MLM approach is expected to have wider standard errors (SE) as 

compared to Markov Regression (MR) models. Therefore there is a scope to find more number 

of risk factors as significant as compared to GEE or MLM models. However, the wider SE 

implying wider Confidence Intervals (CI) has to be shown as a consistent criteria and this can be 

shown through simulations. Hence, the coverage probabilities that the CIs could have, based on 

both methods, will provide us to suggest a best method. If expectation is that the MR shows to be 

a better method then this could change the practice. 

 

Plan of work: Protein Energy Malnutrition (PEM) study data will be used for the above 

mentioned scope. The malnutrition level will be categorized into 3 categories as Normal, 

Mild/Moderate and Severe at the each visit, which is every 6 months follow up data. Nutritional 

status will be calculated using EPIINFO software. The transition probability matrices will be 

established using this nutritional status. Using Chapman Kolmogrov equations, Stationary 

distribution of the transition probability matrix and solving system of equations we will find First 

Mean Passage Time. The 95% CI will be computed using 10,000 simulations from the above 

estimations. A priori specified risk factors will be associated with the ordinal outcome using 

GEE procedures. As this being a longitudinal study, Autoregressive (1) correlation structure will 

be used to adjust for the correlation structure. In MLM model, the exact amount of correlation 

will be found out for the levels and adjustment will be done accordingly. The diagnosis to check 

whether the current status of the outcome depends on the immediate or the previous states of the 

outcome will be done. That is, whether Yt where Y (the state of the malnutrition at current time 

“t”) depends on Yt-1 or Yt-2 or Yt-3 etc will be assessed. The ordinal Logistic regression 
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cumulative odds models using GEE and MLM will be used to analyze the data. The MR analysis 

will be done using Transition Probability matrix and Transition Intensity Matrix. The significant 

risk factors of MR analyses will be compared to the results from the GEE and MLM analyses. 

The comparison will also be based on the length and coverage probabilities of the 95% CI for the 

risk factors, which will be obtained from the simulation findings. 
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5. MATERIALS AND METHODS 
 

5.1. Data: 

During 1982, seven localities and 22 villages were selected for this study. These localities and 

villages were selected from Vellore town and KV Kuppam development block sampling frames 

respectively. All children aged 5-7 years were screened for signs of malnutrition by consultant 

pediatricians. The children from rural and urban areas of Vellore town were screened at baseline 

and followed up for every six months for 7 times. The anthropometric data were collected by two  

Anthropologists independently and care was taken to reduce intra and inter observer variability. 

Inter and intra observer variation was handled by standardizing the procedure.  

5.2. Malnutrition classification: 

Malnutrition was assessed based on the indicators which are BMI Z scores, Height-for-age. The 

BMI Z scores were classified as “normal” if the BMI Z scores were >-2 standard deviations, 

“moderate” when Z scores were between -2 and -3 standard deviations and, “severe” if the Z 

scores were <-3 standard deviations (67). EPIINFO software was used to compute Z scores for 

every follow-up and baseline anthropometric measurements. 

5.3. Risk Factors: 

The main hypothesized risk factors for the study were ‘defecation practices at household level’ 

(within the household; in the open fields), ‘type of fuel used for cooking in the house’ (firewood 

or cow dung or coal; gas or kerosene) and ‘presence of a separate kitchen within the household 

premises’ (yes; no). The other confounders that were seen important that have to be adjusted 

were sex of the child (male; female) and area of residence (rural; urban). Some other covariates 

that were also included for Generalized Estimating Equations and Markov Regression using 
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transition probabilities are education of mother and father (illiterate or literate; primary or middle 

school; high school or above), consanguineous marriage of the parents whose children were 

included in the study (yes; no), type of roof (thatched; tiled; RCC or pukka), type of house (brick 

and cement; brick and mud; others) and birth order (1; 2; >=3), number of members in a family 

(<=4; 5-6; >6), type of floor (kucha; pukka). 

5.4 Cumulative Incidence of Severe Malnutrition: 

 It is the percentage of children who have experienced new cases of severe malnutrition before 

the end of each year. In other words, it was calculated as the ratio of the number of children who 

were normal or moderate at baseline and became severely malnourished before the end of the 

first year to total number of children in the first year.  

5.5. Generalized Estimating Equations: 

5.5.1 Model of a Generalized Estimating Equation: 

For a given outcome yit, we have a (p × 1) vector of covariates Xit associated with our parameter 

vector β.  We also have a (q × 1) vector of covariates Zit associated with the random effect &�.  
consider the marginal expectation of the outcome (integrated over the distribution) 

��'() = ���(*�'|&�)� 
so that the responses are characterized by "	���'()� = 	��'#() 

�	(*�') = ����'()�+(,) 
Thus, the marginal expectation is the average response for observations sharing the same 

covariates. Generalized Estimating Equations (GEE) are also known as Population averaged 

(PA) models as they  indicate that the marginal outcome are averaged over the population of 

individuals and that the coefficients. #()	have an interpretation in terms of the response averaged 
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over the population. The limited information maximum quasi likelihood (LIMQL) estimating 

equation for generalized linear model (GLM) is  

-	(#) = ./00 *�' −	��'+(,)1	(��')

�
'!�



�!� 23�345�' 	���'6�!�,…,$7$	×� =	 �0�$	×� 

The above equation can be re-written in the matrix of panels are  

-	(#) = 9:0���;<

�!� 23�345 ��(��)�=� 2>� −	��+(,) 5?�!�,…,$@$	×� 

where, D() is the diagonal matrix. V(µ i) is also a diagonal matrix that can be decomposed into 

�(��) = 	 A<��(��')��/�C(
�	×	
�)	<	��(��')��/�D
�	×	
� 
The above equation denotes that the estimating equation treats each observation within a pane as 

independent.  When the marginal distribution of the outcome for which the expected value and 

variance functions are averaged over the panels, the above identity matrix is the within-panel 

correlation matrix. The GEE is a modification of LIMQL estimating equation where it is 

replacing the identity matrix with a more general correlation matrix since the variance of the 

correlated data does not have a diagonal form 

�(��) = �<��(��')���E(F)(
�G
�)<��(��')����
�G
� 
R(α) is the correlation matrix that is estimated through the parameter α. 

Generalized Estimating equation (GEE) is an iterative procedure, using quasi-likelihood to 

estimate the regression coefficients. The estimated regression coefficients reflects the 

relationship between the longitudinal development of the underweight as classified using BMI-Z 

scores and the corresponding predictor variables such as defecation practices, presence of a 
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separate kitchen in the household, mother’s education, father’s education, sex of the child, type 

of fuel used for cooking, etc.  

Let the random draw from a population of interest be (Yi, Xi), where I denotes the sampling 

unit�� = ����, ���, … ��
��′ the time-ordered �� × 1 vector of responses and �� = ����, ���, … ��
��′ 
an �� × � matrix of explanatory variables with Xij a � × 1 vector associated with the response 

Yij. The conditional mean vector and covariance matrix are respectively, �� = �(��|��) and 

�� = ��(�� − ��)(�� − ��)′|���. In the above notation, each component of the conditional mean 

��� = �(���|��) is a function of all the covariates. The total number of observations in the sample 

is � = 	∑ ��
�!� . Let g be a known link function such that "����� = 	���′ # where # = (#�, … #$)′ 
is a pX1 vector of unknown parameters. Whereas the mean ��depends on β, the covariance 

matrix Vi may depend on β and perhaps additional parameters α so that the total number of 

parameters is p+p1. 

Marginal Model: This specifies only the conditional mean �� = �(��|��) but treats the 

parameters in Vi as nuisance parameters. A distribution function in the exponential family 

usually suggests the form of mean and variance of Yij. The estimator of β has the same structural 

form as the generalized least square estimator. The methods of estimation of the variance Vi = 

Vi(αααα) are different. The true variance is not known but even though it may be misspecified, the 

asymptotic variance of GEE estimator of β can be made robust. However, some loss of infeasible 

efficiency could result if the data do not support the correlation structure (68, 69).  Only in this 

case does the GEE ensure consistent estimation of effects of covariates on the marginal 

expectation of the outcome. The quail-likelihood information criterion is a reasonable way of 

choosing working correlation matrix and for selecting variables (70).  
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5.5.2 Parameterizing the working correlation matrix: 

The efficiency of the regression parameters are gained by choosing a within-panel correlation. Its 

not very easy to choose a working correlation structure (71). Here are several ways which might 

hypothesize the structure. They are: 

1. Independent structure:  With this structure the correlations between subsequent 

measurements are assumed to be zero.  In other words, this correlation structure assumes 

independence of the observations: 

 t1 t2 t3 t4 t5 t6 t7  

t1            - 0 0 0 0 0 0  

t2            0 - 0 0 0 0 0  

t3            0 0 - 0 0 0 0  

t4          0 0 0 - 0 0 0  

t5            0 0 0 0 - 0 0  

t6          0 0 0 0 0 -  0          

t7         0 0 0 0 0 0 -  

1. Exchangeable correlation structure: In this structure the correlations between 

subsequent measurements are assumed to be the same, irrespective of the length of the time 

interval. 

 t1 t2 t3 t4 t5 t6 t7 t8 

t1            - ρ         ρ ρ ρ ρ ρ ρ 

t2            ρ -         ρ ρ ρ ρ ρ ρ 

t3          ρ ρ         - ρ ρ ρ ρ ρ 

………………………………………………………………. 
t8          ρ ρ         ρ ρ ρ ρ ρ - 
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2. m – dependent (stationary) structure: The correlations t measurements apart are equal, 

the correlations t + 1 measurements apart are assumed to be equal, and so on for t = 1 to t = m.  

Correlations more than ‘m’ measurements apart are assumed to be zero.  When, for instance, a 

‘2-dependent correlation structure’ is assumed, all correlations one measurement apart are 

assumed to be the same, all correlations two measurements apart are assumed to be the same, and 

the correlations more than two measurements apart are assumed to be zero. 

 t1 t2 t3 t4 t5 t6 

t1            - ρ1         ρ2 0 0 0 

t2            ρ1 -         ρ1 ρ2 0 0 

t3          ρ2 ρ1         - ρ1 ρ2 0 

t4            0 ρ2         ρ1 - ρ1 ρ2 

t5          0 0         ρ2 ρ1 - ρ1 

t6          0 0         0 ρ2 ρ1 - 

4. Autoregressive correlation structure: The correlations one measurement apart are 

assumed to ρ; correlations two measurements apart are assumed to be ρ2; correlations t 

measurements apart are assumed to be ρt
. 

 t1 t2 t3 t4 t5 t6 

t1            - ρ
1

         ρ
2 ρ

3 ρ
4 ρ

5 

t2            ρ
1 -         ρ

1 ρ
2 ρ

3 ρ
4
 

t3          ρ
2 ρ

1
         - ρ

1 ρ
2 ρ

3
 

t4            ρ
3 ρ

2
         ρ

1 - ρ
1 ρ

2
 

t5          ρ
4 ρ

3
         ρ

2 ρ
1 - ρ

1
 

t6          ρ
5 ρ

4
         ρ

3 ρ
2 ρ

1 - 
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5. Unstructured correlation structure:  With this structure, all correlations are assumed to 

be different (72). 

 t1 t2 t3 t4 t5 t6 

t1            - ρ1         ρ2 ρ3 ρ4 ρ5 

t2            ρ1 -         ρ6 ρ7 ρ8 ρ9 

t3          ρ2 ρ6        - ρ10 ρ11 ρ12 

t4            ρ3 ρ7         ρ10 - ρ13 ρ14 

t5          ρ4 ρ8         ρ11 ρ13 - ρ15 

t6          ρ5 ρ9         ρ12 ρ14 ρ15 - 

5.5.3 Generalized Estimating Equations for ordinal response: 

The ordinal response for Generalized Estimating Equations (GEE) is given as  

HI(yit > s |	��') =	 JKL(MNOM�P�Q)=	RS�OJKL(MNOM�P�Q)=	RS 
where, yit is the ordinal response for ith individual at the tth time point within each individual ‘i’.  

s = 1,2,3 ordinal responses which are 1 – normal, 2 – moderate and 3 – severe . The link function 

used for ordinal regression is cumulative-log-log; ks is the response category specific parameter. 

5.5.3 Estimation: 

The estimation procedure in GEE is an iterative process.  It involves the following steps: 

1. First a ‘naïve’ linear regression analysis is carried out, assuming the observations within 

subjects are independent.   

2. Based on the residuals of this analysis, the parameters of the working correlation matrix 

are calculated.   

3. The last step is to re-estimate the regression coefficients, correcting for the dependency of 

the observations.   
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The estimation process alternates between steps two and three, until the estimates of the 

regression coefficients and standard errors are stabilized. 

In GEE analysis, the within – subject correlation structure is treated as a ’nuisance’ variable (i.e. 

as a covariate).  So, in principle, the way in which GEE analysis corrects for the dependency of 

observations within one subject is the way that has been shown in equation (which can be seen as 

an extension of equation. 

��' =	#T +	∑ #����'�V�!� +	…+ CORRZ[ +	ℰ�'  
where ��' are observations for subject i at time t, #T is the intercept, ��'� is the independent 

variable j for subject i at time t and CORRZ[ is the working correlation structure, and ℰ�' as the 

‘error’ for subject i at time t (73).  

 

Alternating Logistic Regression:  

It has been argued that GEE with binary response logistic models may contain bias that cannot 

be eradicated from within standard GEE.  A reason for the bias rests in the fact that the Pearson 

residuals, which we have been using to determine the various GEE correlation matrices are not 

appropriate when dealing with binary data and hence proposed a model termed alternating 

logistic regression  which aims to ameliorate this bias, which clearly affects logistic GEE models 

(74). The alternating logistic regressions (ALR) algorithm models the association between pairs 

of responses with log odds ratios, instead of with correlations, as do standard GEE algorithms.  

The model is fit to determine the effect the predictors have on the pair-wise odds ratios.  A 

results is that ALR is less restrictive with respect to the bounds on alpha than is standard GEE 

methodology.  It is the ratio of the probability of success (y=1) to the probability of failure 

(y=0).  Of a pair of responses, the odds that yij = 1, given that yik=1, is expressed as: 
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]�>��; 	>�R = 1� = 	Pr�>�� = 1, >�R = 1�	Pr�>�� = 0, >�R = 1�  

The odds that >�� = 1, given that >�� = 0 can be given as: 

]�>��; 	>�R = 0� = 	Pr�>�� = 1, >�R = 0�	Pr�>�� = 0, >�R = 0�  

The odds ratio is the ratio of the two odds, which is then given as: 

]E�>�� , >�R� = 	-��R =  

aHI�>�� = 1, >�R = 1�/HI�>�� = 0, >�R = 1�b/aHI�>�� = 1, >�R = 0�/HI�>�� = 0, >�R = 0�b  
or, 						]E����, ��R� = (c�d�e!�,d�f!��/(c�d�e!T,d�f!T�(c�d�e!�,d�f!T�/(c�d�e!T,d�f!��  
where i in above equation indicate a cluster, j is the first item of the pairs, and k is the second 

item of a pair. Alternating logistic regression (ALR) seeks to determine the correlations of every 

pair-wise comparison of odds ratios in the model.  The logic of alternating logistic regressions is 

to simultaneously regress the response on the predictors, as well as modeling the association 

among the responses in terms of pair-wise odds ratios.  The ALR algorithm iterates between a 

standard GEE logistic model in order to obtain coefficients, and a logistic regression of each 

response on the others within the same panel or cluster using an offset to update the odds ratio 

parameters.  In other words, the algorithm alternates (hence the name) between a GEE-logistic 

model to obtain coefficients, and a standard logistic regression with an offset aimed at 

calculating pair-wise odds between members of the same panel, or ]E���� , ��R�.  The algorithm 

may be constructed to initially estimate the log-odds ratios, subsequently converting them to 

odds ratios, or it can directly estimate odds and odds ratios.  

The GEE logistic GEE model and alternating logistic regression fit well with respect to the 

differences in parameter estimates and robust standard errors. It is of interest to note that Twist 
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(2003, 2008) argues that logistic GEE models are prime examples (73) of the claim made by 

Liang and Zeger, developers of the GEE methods, that GEE analysis is robust against the wrong 

selection of correlation structure (75).  However, such an argument is contrary to Diggle et al.’s 

(76) caveat that binary response models are not appropriate for GEE unless amended via ALR 

methods. 

 

5.6. Random Effects Model or Multilevel Modeling (MLM): 

The random effects model or multilevel structure includes correlation among observations within 

cluster, which in the present study are the households within which more than one child was 

obtained. Also, each child was followed up for seven time points after baseline. Hence there is 

correlation between the responses when the same child is followed over a period of time and/or 

the influence of two or more children sharing the same household environment (77). In random 

effects model, the residual variance is split into components that pertain to the different levels in 

the study. The two-level model with the grouping of children within the same household would 

include the residuals at the household and child level where as the one-level model which 

includes children with different follow-up time measured with the same child would include the 

residuals at the child level only (48, 78).  

There are three levels in the present study which are follow-up times, children and household 

from where more than one child was obtained. The diagrammatic representation of the three 

levels is shown in figure 5.6 
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Figure 5.6: Schematic representation of cluster levels: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 presented above represents the level of hierarchy with the lowest level being the 

‘follow-up time’. Each child’s anthropometric measurements were recorded at baseline and 

every child’s anthropometric measurements were again recorded for seven time points after 

every six months. Hence the next higher level above follow-up time is ‘child level’. It was 

possible that if there were children who were in the age groups 5 – 7 years were included even if 

they belonged to the same household. Hence the next higher level is the ‘household level’. Hence 

adjustments for the correlation in the responses need to be adjusted at each level. Hence random 

coefficients model with random intercept and random slope was considered at each level.  

 

Level 3 Household from which one or more 

children were included for the study 

Children who were 

followed-up in the Level 2 

Level 1 
Follow – up time 
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5.6.1 Micro and Macro level units: 

The levels which are embedded within another level are also known as ‘micro’ levels where as 

the upper levels are referred to as ‘macro’ levels. In the present study, the macro level is the 

household and micro levels are children from the same household and follow-up of each child.  

 

5.6.2 Aggregation: 

A common procedure to address if certain risk factors are associated with macro level data is to 

aggregate the micro-level (lower level) data to macro-level data (higher level).  

There can be three errors that happen with aggregation of data. The first potential error is the 

‘shifting of meaning’. A variable aggregated to macro level refers to macro unit and not micro 

units.  

The second potential error with aggregation is the ecological fallacy.  A correlation between 

macro-level variables cannot be used to make assertions about micro-level relations.   

The third potential error is the neglect of the original data structure, especially when some kind 

of analysis of covariance is to be used. 

 

5.6.3 The intraclass correlation (ICC): 

The degree of resemblance between micro-units belonging to the same macro-unit can be 

expressed by the intraclass correlation coefficient.  The term ‘class’ is conventionally used here 

and refers to the macro-units in the classification system under consideration.  Let us assume a 

two-stage sampling design, and infinite populations at either level.  The macro-units will also be 

referred to as groups.   
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5.6.4 Design effect: 

It is the ratio of the variance obtained with the given sampling design to the variance obtained for 

a simple random sample from the same population, supposing that the total sample size is the 

same.  A large design effect implies a relatively large variance.  The design effect of a two-stage 

sample with equal group sizes is given by 

 Design effect = 1 + (n – 1) gh. 
A relevant model here is the random effect ANOVA model.  Indicating by Yij the outcome value 

observed for micro-unit i within macro-unit j, this model can be expressed as 

Yij = µ + Uj + Rij, 

Where µ is the population grand mean, Uj is the specific effect of macro unit j, and Rij is the 

residual effect from micro-unit i within this macro-unit.  In other words, macro-unit j has the 

‘true mean’ µ + Uj, and each measurement of a micro-unit within this macro-unit deviates from 

this true mean by some value, called Rij.  Units differ randomly from one another, which is 

reflected by the fact that Uj is a random variable and the name ‘random effects model.  It is 

assumed that all variables are independent, the group effects Uj having population mean 0 and 

population variance σ2 (the population within-group variance).   

The total variance of Yij is then equal to the sum of these two variances, 

Var(Yij) = τ2 = σ2 

The number of micro-units within the j the macro-unit is denoted by nj.  The number of macro-

units is N, and the total sample size is M =Σj nj. 

 The intraclass correlation coefficient ρ1 can be defined as  

g� = �i�jk+lmi�	n+Im+�op	qplrpp�	s+oIi − j�mltuil+k	n+Im+�op = 	 v�v� +	w�	 
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where, v�	is the between group or macro units’ variance and w�	is the within group variance. It is 

the proportion of variance that is accounted for by the group level.   

5.6.5 Within-group and between-group variance: 

To disentangle the information contained in the data about the population between-group 

variance and the population within-group variance, we consider the observed variance between 

group and the observed variance within groups.  These are defined in the following way.  The 

mean of macro-unit j is denoted �x.� =	 �
e 	∑ ���
e�!� , 
And the overall mean is �x.. =	 �z 	∑ ∑ ��� =		 �z 		∑ �� 	�x.�{�!� .
e�!�{�!�  

The observed variance within group j is given by |�� =	 �
e=	� 	∑ ���� −		�x.���
e�!� . 
This number will vary from group to group.  To have one parameter that expresses the within-

group variability for all groups jointly, one uses the observed within-group variance, or pooled 

within-group variance.  This is a weighted average of the variances within the various macro-

units, defined as |}�'~�
�
� =	 �z={ 	∑ ∑ ���� −		�x.���
e�!�{�!�  =	 �z={ 	∑ ��� − 	1�{�!� |��.	 
The expected value of the observed within-group variance is exactly equal to the population 

within-group variance. For equal group sizes nj, the observed between-group variance is defined 

as the variance between the group means,|��'}��
� =	 �({=�) 	∑ ��x.� −	�x..��{�!�  

For unequal group sizes, the contributions of the various groups need to be weighted   

|��'}��
� =	 1��(� − 1)	0����x.� −	�x..��{
�!�  

In this formula, �� is defined by �� = 	 �({=�) 	�� −	∑ 
e�ez � = �x − ���
e�{	
x , 
where,  �x = �/� is the mean sample size and 
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|����� = 	 �{=� 	∑ ��� −	�x��{�!�  is the variance of the sample sizes.   

The total observed variance is a combination of the within-group and the between-group 

variances, expressed as follows: 

observed	lil+k	variance = 	 ��=� 	∑ ∑ ���� −		�x..��
e�!�{�!�  =	z={z=� 	|}�'~�
� +	
x	({=�)z=� 	|��'}��
� . 
The standard error of this estimator in the case where all group sizes are constant, nj = n, is given 

by |. �. (g�h) = (1 −	gh 	)(1 + (� − 1)gh)	� �
	(
=�)({=�)	  
5.6.6 Random Effects model for ordinal response: 

The random effects model for ordinal response is the usual ordinal model which is cumulative 

odds or proportional odds model 

The ordinal logistic regression model for random effects is given as: 

HI(yijt > s |	���') =	 JKL�MNOM�P�eQO��eQ���=	RS�OJKL�MNOM�P�eQO��eQ���=	RS 
where,  yit is the ordinal response for ith individual at the tth time point within each individual ‘i’ 

and within the jth household. Zit is the covariates corresponding to random effects, εi 

ξi ~ N(0, Σ) 

‘s’ = 1,2 and 3 represents the number of categories for ordinal response 

where, 1 = normal, 2 – moderate and 3 – severe 

ks is the category specific parameter (43, 79, 80). 

5.6.7. Intraclass correlation coefficient (ICC) for ordinal response: 

Random intercept model means that each level is assumed to have different intercepts (risk) at 

baseline which needs to be taken into account. The intraclass correlation indicates the proportion 

of unexplained variance at the subject level; In other words, it reflects the magnitude of the 
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between – subject variance.  Reference is made to the threshold concept and the underlying latent 

response tendency that determines the observed ordinal response. For a logistic regression 

model, the latent response tendency, which is unobserved, is assumed to follow a standard 

logistic distribution, which has variance equal to	��/3.  Thus, for the logistic model assuming 

normally distributed random effects, the ICC equals  C�� = 	 ��'}��
	����'�c	��c��
��2��� O��'}��
	����'�c	��c��
��5 
5.6.8 Estimation:  

Numerical integration was used to perform the integration over the random – effects distribution.  

Specifically, if the assumed distribution is normal, Gauss – Hermite quadrature can approximate 

the above integral to any practical degree of accuracy.  Additionally, like the Laplace 

approximation, the numerical quadrature approach yields a deviance that can be readily used for 

likelihood-ratio tests.  The integration is approximated by a summation on a specified number of 

quadrature points for each dimension of the integration.  An issue with the quadrature approach 

is that it can involve summation over a large number of points, especially as the number of 

random – effects is increased (81).  To address this, methods of adaptive quadrature have been 

developed that use a few number of points per dimension that are adapted to the location and 

dispersion of the distribution to be integrated (82). 

5.6.9 Evaluation of Random intercept and/or random slope at each level: 

The evaluation of random intercept and/or random slope is evaluated by taking the differences in 

the -2 log likelihood when that particular intercept or slope was included and excluded in the 

model. The -2 log likelihood was checked for sex of the child and area of residence in which the 

child lives. 
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5.7. Markov Chain: 

A stochastic process is a collection of random variables indexed to time, t and the state, X. For 

example, we can write {Xt, t ∈ T}.  

When T is finite, we refer it to as a countable stochastic process. 

 

5.7.1 Definition of Markov Chain: 

The stochastic process {Xt, t = 0, 1, 2, …} is called a Markov chain, if, for j, k, j1, … jn-1 ℰ N (or 

any subset of i), Pr {Xt = k | Xt-1 = j, Xt-2 = j1,…,X0 = jt-1}  = Pr {Xt = k | Xt-1 = j} =pjk  

In other words, conditioning on the history of the process up to stage n is equivalent to  

conditioning only on the most recent value Xt. When the present is given, the future is 

independent of the past. 

The outcomes Ej (or the values j) are called the states of the Markov chain; if Xt has the outcome 

Ej (i.e. Xt = j), the process is said to be at state Ej (or simply at state j) at tth trial.  To state j (or 

outcome Ej) there is no longer a fixed probability Pr {Xt = j} but to a pair of states (j, k) at the 

two successive trials (say, tth and (t + 1)st trials) there is a conditional probability pjk.  It is the 

probability of transition from the state j at nth trial to the state k at (t + 1)st trial.  The transition 

probabilities pjk are basic to the study of the structure of the Markov chain.  

The transition probability may or may not be independent of t.  If the transition probability pjk is 

independent then Markov chain is said to be homogeneous (or to have  stationary transition 

probabilities).  If it is dependent on n (in which case it is denoted by (t)
pij), the chain is said to be 

non-homogeneous.  In this thesis we confine to homogeneous chains. 

The transition probability pjk refers to the states (j, k) at two successive trials which may be tth 

and (t + 1)st trial then this transition is one-step and pjk is called one-step (or unit step) transition 
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probability.  In the more general case, we are concerned with the pair of states (j, k) at two non-

successive trials, say, state j at the tth trial and state k at the (t + m) the trial.  The corresponding 

transition probability is then called m-step transition probability and is denoted by ���( ), i.e. 

���( ) = Pr {Xt+m = k | Xt = j} 

The transition probabilities pjk satisfy 

Pjk > 0, +�¡	 ∑ �¢£¤  = 1 for all j 

These probabilities may be written in the matrix form H = 	¥���				���			��¦		 	…���			���			��¦		 	……				…				…					……					…				…				…			§ 

This is called the transition probability matrix or matrix of transition probabilities (t. p. m.) of 

the Markov chain.  P is a stochastic or Markov matrix, i.e. a square matrix with non-negative 

elements and unit row sums (83). 

 

5.7.2 Chapman-Kolmogorov equations in Markov chains: 

All finite state space homogeneous Markov chains satisfy  

H OR = H HR = H OR which implies that H  = H  where P is the 1-step transition probability 

matrix. The matrix of m-step transition probabilities is the mth power of P, the matrix of one-setp 

transition probabilities.  

If the number of steps is large, the transition probabilities are then called ergodic transition 

probabilities and are given be equilibrium probabilities ¨ = lim
→¬ H' 
Chapman Kolmogorov equations imply that ¨ = H¨ which provides a system of linear equations 

that are used to calculate the ergodic probabilities using the fact: ∑ ¨� = 1	�∈G ; ¨� > 0. A Markov 

chain with transition probability matrix P is said to have a stationary distribution ¨	if ¨ = H¨ and 
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1¨̄ = 1. In the present study, the Markov chain is positive recurrent as starting at state i, the 

process will move to state j and return to state i. Also, the expected time for the process to re-

enter state i is finite. 

 

5.7.3 First Passage Times: 

The first passage time from state i to state j is the number of transitions made by the chain in 

going from state i to state j for the first time. 

Let °��(l) be the probability that the first passage time from state i to state j is equal to t(=1,2….) 

First passage time probabilities satisfy recursive relationship 

°��(1) = 	��� 
°��(2) = ���� − °��(1)��� 

                                                                         : 

                                               °��(l) = ���' − ∑ ���(l − £)
=�R!�  

 

5.7.4 Mean First Passage time (MPT): 

The expected first passage time from state i to state j is given as  ��� 	= ∑ l°��(l)¬'!�  

The chain will move from state i to state j in one transition with probability pij. 

For k≠j, the chain moves to state k with probability pik 

On an average the number of transitions to visit j for the first time from i is 1 + �R� transitions to 

move from state i to state j. Therefore, ��� = 1 + ∑ �R��R�R²�  

The mean first passage times were calculated solving the above equations 

Also, ��� = �³� which is the recurrent time for state i 
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5.7.5 Variance of the Mean First Passage Time:  

The state i of a Markov chain is an absorbing state if pii = 1. A Markov chain is an absorbing 

Markov chain if and only if the following two conditions are satisfied: 

1. The chain has at least one absorbing state 

2. It is possible to go from any non absorbing state to an absorbing state. 

The fundamental matrix for an absorbing Markov chain is defined as matrix Z , where 

Z	 = 	 (In	 − 	Q)=�   where Q is such that P = ·¸ E0 C ¹  where I is the identity matrix. 

The fundamental matrix gives the expected number of visits to each state before absorption 

occurs. The mean first passage time Matrix M was obtained using M = (I − Z + EZ)D    

where, Z is the fundamental matrix for P, D is the diagonal matrix with diagonal 

elements dii = 1/δI (83). The variance of first passage time was obtained using the equation (84) 

 Vi(fj) = Mi[ f2
j] −Mi[fj ]2 where M = [µij ] and W = (Mi[fj 2]) = P[W −Wdg] − 2P[Z − EZ]D + E   

 

5.7.6 95% Confidence Interval for the first mean passage time: 

The 95% confidence interval was obtained using Monte Carlo simulation of the first passage 

times. The first passage time was calculated for 1000 transitions using the transition probability. 

For any large stationary Markov chain, the cumulative probability is close to one. Hence the 

number of transitions in first passage time was decided based on the cumulative probability. 

These 1000 transitions’ first passage time was then simulated for 10,000 times using Monte 

Carlo simulation. The 5th percentile and the 95th percentile were obtained as the 95% confidence 

interval for the mean passage time. This procedure was repeated for each cell in the transition 

probability matrix and the 95% confidence interval was obtained for cell in the transition 

probability matrix. The R program to calculate MPT is given below. 
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5.7.6 R Program to calculate the mean passage time: 
 
###Overall Mean Passage Time### 
 
rm(list=ls()) 
 
nstate = 3 
 
N = matrix(c(8486,1213,85,1077,1954,482,207,556,1210), nstate, nstate, byrow=T) 
 
P = N/rowSums(N) #transition probability matrix 
 
# To find the limiting distribution 
 
B = diag(nstate) - P + 1 
 
delta = solve(t(B),rep(1,nstate)) #solving for solutions in a matrix 
 
# Equation (2.3) of the reference  
 
# Variances of first passage times in a Markov chain with applications to mixing times  
 
#J. J. HUNTER. This is equivalent to a simplified formula obtained using fundamental matrix 
 
# Reference: Finite Markov chains / by John G. Kemeny and J. Laurie Snell. 
 
# Formula for mean of the first passage time: Theorem 4.4.7, eq(2), page 79 
 
# Formula for variance of the first passage time: Theorem 4.5.3, page 83 (see W) 
 
# Fundamental matrix = Z = (I-P-PI), (PI is the same as A in the book) 
 
library(MASS) 
 
I = diag(1,nstate) 
 
e = matrix(1,nstate,1) 
 
D = diag(1/delta,nstate) 
 
PI = e%*%delta 
 
Z = solve(diag(1,nstate)-P+PI) 
 
E =  e%*%t(e) 
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M = (I - Z + E%*%diag(diag(Z),nstate))%*%D 
 
M # Mean first passage time 
 
# To obtain the second moment 
 
M2=2*(Z%*%M - E%*%diag(diag(Z%*%M),nstate))+M%*%(2*diag(diag(Z),nstate)%*%D- I) 
 
M2 # second moment of the first passage time 
 
var.MFT = M2 - M*M # variance 
 
sd.MFT = sqrt(var.MFT) 
 
sd.MFT 
 
# Function to compute mean passage time and its CI by Monte Carlo simulation 

mpt = function(f){ 

# Computes the exact distribution of FPT 

 for(i in 2:k){ 

  Q = Q%*%P 

  term2 = 0 

  Q1 = diag(nstate) 

  for(j in (i-1):1) 

                        { 

   Q1 = Q1%*%P 

   term2 = term2 + f[j]*Q1[s,s] 

  } 

  f[i] = Q[r,s] - term2 

 } 
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# This is needed for small probabilities (mostly in stationary distribution) 

# The transtions more 100 had very high probabilities 

# Setting the maximum value for the FPT because beyond that the probabilities are close to zero 

 k0 = sum(cumsum(f) <= 0.99999) 

 f0 = c(f[1:k0], 1-sum(f[1:k0])) 

# Monte Carlo simulation -  

# Simulating 1000 FPT from the exact distribution over (1, 2, ..., k0, k0+1) and finding its mean 

# Repeating this m times 

 m = 10000 

 frs = rep(0,m) 

 for(i in 1:m) 

           { 

  frs[i] = mean(sample(1:(k0+1),100,prob=f0,replace=TRUE)) 

 } 

frs[i] 

 mean(frs) # compare this with M[r,s] 

 var(frs) 

 frs.LCL = quantile(frs,0.025) 

            frs.UCL = quantile(frs,0.975) 

 ppt = list(frs.LCL, mean(frs), frs.UCL) 

} 
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# Call of function mpt to compute mean and CI for 9 combinations 

# assuming that the probability of transitions more than 1000 would be extremely small 

k = 1000  

mpt.mean = matrix(0,nstate, nstate) 

mpt.LCL = matrix(0,nstate, nstate) 

mpt.UCL = matrix(0,nstate, nstate) 

# Loop to go through all possible combinations of states 

for(r in 1:nstate)  

       { 

 for(s in 1:nstate) { 

  f = rep(0,k+1) 

  f[1] = P[r,s] 

  Q = P 

  temp = mpt(f) 

  mpt.LCL[r,s] = temp[[1]] 

  mpt.mean[r,s] = temp[[2]] 

  mpt.UCL[r,s] = temp[[3]]  }  

} 

} 

mpt.LCL 

mpt.UCL 
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5.7.7 Testing Hypothesis for Mean Passage Time: 

In order to test the hypothesis that the MPT at various levels of malnutrition for risk factors such 

as rural and urban children are different, the Log linear model was used. The cell counts are 

modeled to see if there is any association between the variables. In other words, a log linear 

models that were fitted enabled us to find if the transition probabilities were different across the 

categories of the risk factor. 

The saturated log linear model with only time t, time t+1 and was  

log(mij)		= � +		º�d +	º�» +	º��d»  

       log(mij)		= � +		º�d +	º�» +	º��d» +	º¼P +	º¼�Pd +	º¼�P»   

where, x is the risk factor being tested (x= 1,2,…c1) 

and state of malnutrition y = 1,2,3 at time t and z = 1,2,3 at time t+1   

A particular risk is considered significant if the calculated deviance G2 (which is the difference 

in likelihood value) was significant when that particular risk factor was included and excluded 

from the model. 

The log linear model was assessed for sex of the child, area of residence from where the child 

was taken for the study and three hypothesized risk factors which are presence of a separate 

kitchen in the house, defecation and type of fuel used for cooking (53).  
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5.8. Markov Regression: 

The main property of Markov chain is that the outcome in the future state is mainly affected by 

the present state and not past states. Markov regression is a regression technique which accounts 

for the present state to model the future state. Markov regression can be analyzed using modeling 

transition probabilities and modeling intensity rate between the states. Markov regression 

analysis was done only with those observations that had at least one transition. The remaining 

observations that had only one observation over time were excluded. 

 

5.8.1 Markov Regression analysis using transition probabilities: 

Markov regression using transition probabilities is a technique where the present state response 

is treated as additional covariates to the usual risk factors ‘xit’. Hence the transition model 

expresses the conditional probability as a function of both the risk factors and the present state 

response. These models are fit when observed times are equally spaced.  

The ordinal logistic regression model is given as: 

logit {Pr (yi(t+1) > s | xit, Hi(t+1)) = �½('O�)́ #¼ + ¿>�'    
where, history of a child ‘i’ Hi(t+1) = {yik, k = 1,2….t} 

The first order Markov chain is given as 

À��� ��� ��¦��� ��� ��¦�¦� �¦� �¦¦Á 

where, ��� = Pr�>�('O�) > qÂ>�' = +�; a,b= 1,2,3 

Each transition matrix sums upto 1. The transition models are modeled as functions of covariates  

��('O�) = (1, ��'�, ��'�, ��'$) 

A very general model uses separate logistic model for  
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Logit Pr(>�('O�) = 1|>�' = 1) = 	�½('O�)́ #� 

Logit Pr(>�('O�) = 1|>�' = 2) = 	�½('O�)́ #� 

Logit Pr(>�('O�) = 1|>�' = 3) = 	�½('O�)́ #¦ 

which means that the effects of models differ depending on the present state of response. A more 

concise form of the model is  

logit Pr(��('O�) = 1|��' = >�') = 	�½('O�)́ #T +	>�'�½('O�)¿́   so that #� =	#T + 	¿ 

The above equation expresses the logistic model which includes as predictors the present state yit 

as well as the interaction of yit and risk factors. This enables us to test whether the particular risk 

factor have the same effect on the response probability whatever may be the state of yit (may be 

yit = 1, 2 or 3). 

A first-order Markov model the contribution to the likelihood for the ith subject can be written as 

Ã��*��, .		.		.		.		 , *�
� , � = °(*��)Ä°(*�'	|	ℋ�')

�

�!�
 

In a Markov model of order q, the conditional distribution of Yit is 

°(*�'	|	ℋ�') = 	°(*�'	|*�'=�, .		.		.		.		 , *�'=¼), 
so that the likelihood contribution for the ith subject becomes 

°�*��, .		.		.		.		 , *�¼�	 Ä ° ·(*�'	|	*�'=�, … , *�'=¼¹

Æ

�!¼O�
 

In the logistic case, °�*��, .		.		.		.		 , *�¼� is not determined from the GLM assumption about the 

conditional model, and the full likelihood is unavailable.  An alternative is to estimate β and α by 

maximizing the conditional likelihood 
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Ä°�*�¼O�, … . , *�
�|*��, … , *�¼� = 
�!� Ä Ä °(*�'|l).
�

'!¼O�
 
�!�  

when maximizing the above equation.  There are two distinct cases to consider.  In the first, 

°c(	ℋ�'; F, #) = 	Fc°c(	ℋ�') so that ℎ���'È � = ��' # + ∑ Fc°c(	ℋ�')�c!� .  Here,  ℎ���'È � is a linear 

function of both # and F = (F�, … , F�) so that estimation proceeds as in generalized linear 

models (GLMs) for independent data.  We simply regress Yit on the (p + s) – dimensional vector 

of extended explanatory variables ���', °�(	ℋ�'), … . , °�(	ℋ�')�. The second case occurs when the 

functions of past responses include both α and β.  To derive an estimation algorithm for this case, 

the derivative of the log conditional likelihood has the form 

|È(¨) =0 0 3���È3¨

�

'!¼O�
 
�!� n�'�ÉÆ�*�' −	��'È � = 0, 

where ¨ = (β, α).  This equation is the conditional analogue of the GLM likelihood equation.  

The derivative 3��' /3¨ is analogous to ��' but it can depend on α and β.  Formulation of the 

estimation procedure as an iterative weighted least squares as follows.  Let Yi be the (ni – q)-

vector of responses for j = q +1, …, ni and ��'È   its expectation given 	ℋ�'.  Let ��∗ be an (ni – q) 

×(p + s) matrix with uth row 3��¼/3¨ and ËÌ = ÍÌÎÏ	�Ð/n�RO¼� , j = 1,… , �� − Ñ�	ÎÒ	(�� −
Ñ) × (�� − Ñ) diagonal weighting matrix.  Finally, let Ó� = ��∗ Ô̈ + 	��� − �̂�È�.  Then, an updated 

Ô̈ can be obtained by iteratively regressing Z on X* using weights W. 

When the correct model is assumed for the conditional mean and variance, the solution Ô̈ of  

|È(¨)	asymptotically, as m goes to infinity, follows a Gaussian distribution with mean equal to 

the true value, ¨, and (p + s) × (p + s) variance matrix 
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�³ = À0��∗′×���∗ 
�!� Á=� 

The variance �³Ø  depends on β and α.  A consistent estimate, �Ù³Ø , is obtained by replacing β and α 

by their estimates #Ô  and F�.  Hence a 95% confidence interval for 

#�	mt	#Ô� 	± 2	��Ù³Ø��, 		rℎpIp	�Ù³Ø�� is the element in the first row and column of �Ù³Ø . 

If the conditional mean is correctly specified and the conditional variance is not, we can still 

obtain consistent inferences about ¨ by using the robust variance, which here takes the form 

�Û =	À0��∗×�
 

�!�
��∗Á

=�
À0��∗′×���×���∗
 

�!�
Á	À0��∗′×���∗

 

�!�
Á
=�
. 

A consistent estimate �ÙÛ is obtained by replacing �� = �+I(��|	ℋ�) in the equation above by its 

estimate, ��� −	 �̂�È���� −	�̂�È� (76). 

 

5.8.2. Markov Regression using intensity rate: 

Consider a process X = (x(t), t ≥ 0). A multistate process is a process that can take a finite 

number of states that is for any t, x(t) has values in {0,1,….k}. The law of multistate process can 

be specified by the transition probabilities Pr{xt = j| xt-1 = k}.  

Multistate models are governed by transition intensity functions. The transition intensity function 

represents the instantaneous incidence rate of moving from one state j to another state k at time t: 

º�R = lim∆'→TH{�(l + ∆l) = £|�(l) = ¢∆l , ¢ ≠ £ 

where Y(t) is the state occupied at time t. This transition intensity is the (j,k) entry of the 

transition intensity matrix denoted by  Λ, the rows of which sum to zero. The model is time 
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homogeneous, which means that º�R(l) = º�R for all t. The diagonal entries of Λ are defined by 

the convention as: º��(l) = −∑ º�R(l)R²�  

These above transition intensities can be used to calculate transition probabilities, probability of 

being in state j at time s and then in state k at time t:  

��R(t, l) = H{�(l) = £|�(t) = ¢ß, 0 ≤ t < l 
��R(t, l) is not the actual time of transition from state j to stake k as the process has certainly 

entered other states between times s and t (Sutradhar et al., 2011). This probability is the (j,k) 

entry of the transition probability matrix denoted by P(s,t), the rows of which sum to 1. Based on 

the 3 state model in the study, the transition intensity matrix is:  

Λ = 9−(º�� + º�¦) º�� º�¦º�� −(º�� + º�¦) º�¦º¦� º¦� −(º¦� + º¦�)@ 
The underlying 3-state model for examining progression among malnourished children (1-

normal, 2 – moderate and 3 – severe) 

 

 

 

 

 

 

 

 

 

º�� 

2 1 º�� 

º¦� º�¦ º�¦ 
º¦� 

3 
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The model includes other risk factors and hence the model is log�º�R� = #T�R +∑ #��Rä�!�  

where, l is the number of risk factors (l = 1,2,….L) 

 

Suppose there are a random sample of n individuals at times t0,t1,…..tm.  

Let njkq be the number of individuals in state j at t-1 and k at t and if we condition on the 

distribution of individuals among states at t0, then the likelihood function for θθθθ is  

Ã(å) = 	Ä/Ä ��R(l¼=�, l¼)
efæc
�,R!� 6 

¼!�  

when the time is homogeneous, wq = tq-tq-1, q = 1,2,3,…m gives the log likelihood  

Ã(å) = 	0 0 ��R¼ki"��Rr¼c
�,R!�

 
¼!�  

The maximum likelihood estimate (MLE åØ)	is obtained by maximizing the above equation  

Quasi-Newton procedure that use the first derivatives of log L(θθθθ) which leads to faster 

convergence and an estimate of the asymptotic covariance matrix of  åØ. This approach is made 

feasible by the provision of an efficient algorithm for the computation of P(t;θθθθ) and its derivative 

with respect to θθθθ.  

p(t; θ)= exp {Q(θ)t} for a given θ is computed using a canonical decomposition. If, for the given 

θ, Q(θ) has distinct eigenvalues d1 , .  .  .  , dk  and A is the k × k matrix whose jth column is a 

right eigenvector corresponding to dj, then Q = ADA
-1, where D = diag(d1,  .  .  .  , dk).  Then 

P(t) = A diag (e
d1t

,   .   .   .   , e
dkt

)A
-1

, 

where the dependence of Q, P(t), A and the dj’s on θ is suppressed for notational convenience.  

Q(θ) has distinct eigenvalues for almost all θ (Kalbfleisch at el., 1985). 
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5.8.3 Further Aspect of Estimation: 

Implementing the algorithm for maximum likelihood estimation is as given below:  

An initial estimate θ0 of θ is usually obtained in an ad hoc way by examining the transition 

counts njkq.  An alternative approach would involve a preliminary tabulation of the likelihood 

surface. There is an advantage to parameterizing the model by waiting qjk  = exp (αjk), j ≠ k.  This 

is because the parameters αjk can take any real value whereas qjk ≥ 0.  This reparameterization 

avoids problems that can arise when an iteration results in parameter vectors outside the 

parameter space.  It is possible to have qjk = 0.  When this happens, successive iterates of αjk will 

typically become large and negative.  In this situation it is useful to set the corresponding qjk = 0 

and fit the model, against using the αjk ‘s, with one less parameter.  The resulting estimate is then 

compared with one in which qjk is taken as a small positive value. When the time wt between 

successive observations are large, it is clear on intuitive grounds that not all parameters will be 

well estimated.  The result is a likelihood surface for the qjk’s or αjk’s that has ridges defined by 

certain parameters that are imprecisely estimated.  For example, if the wl’s are very large and the 

process is ergodic, then pjk(wt) = πj, where π’ = (π1,  .  .  .  , πr) is the vector of equilibrium 

probabilities.  In this case, a large number of individuals under study will allow precise 

estimation of π, but individual qjk’s will be estimated imprecisely. If wl = w for all l, it may be 

possible to determine çÙ in a relatively simple way.  The empirical transition matrix ���R . (r) =
	��R	/	�� . ., where ��R . = 	∑ ��R� 	+�¡	�� . . = 	∑ ��R ,��!� �!�  provides an estimate of P(w).  If the 

equation ��(r) = exp(¸r) admits a solution Ù̧ = ¸�çÙ�, then çÙ is a MLE of θ.   
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5.8.4 Incorporating the covariates:  

In most situations, there are measured covariates on each individual under study, and interest is 

on the relationship between these covariates and the intensities qjk in the Markov model.  One 

advantage of the methods described above is the generalization in a straightforward way to allow 

for the regression modeling of Q, though with many distinct covariate values in the sample, 

computations is too expensive to be easily implemented directly.  Implementation may require 

that the covariates be grouped. Suppose that each individual has an associated vector of s 

covariates, z’ = (z1, z2,   .   .   .   , zs), where z1 = 1.  For given z, we suppose that the process is 

homogeneous Markov with transition intensity matrix ¸(ë) = ·Ñ�R	(ë)¹, Where Ñ�R(ë) =
exp�ëMef� ,																		¢	 ≠ £, 
And Ñ�R	(ë) = 	−	∑ Ñ�R(ë).				#��R	,					.				.				.				,�²� 	#��R′ is a vector of s regression parameters 

relating the instantaneous rate of transitions from state j to state k to the covariates z.  The 

algorithm requires a separate canonical decomposition of Q(z) for each of the r distinct covariate 

vectors z in the sample.  

Let these be denoted by zh = (z1h,   .   .   .   , zsh) with z1h = 1, and let Qh = Q(zh) = (qjk (zh)), h = 1 

,    .    .    .    ,  r,Let ��R�(~) be the number of individuals with covariate values zh that are in  state j 

at tl-1 and k at t1.  The likelihood is then a product of terms where the hth term arises from data 

collected on a homogeneous model with intensity matrix Qh.  Thus the log-likelihood is 

log Ã(ç) = 	∑ ∑ ∑ ��R�(~) log ��R	(r�; 	ë~),��R!� �!�c~=�  where,H~(l) = (¸~l) = ·��R(l; 	ë~)¹.  
The parameter ç is being used to indicate the vector of parameters in #�R		(¢	 ≠ £) that are to be 

estimated (85). 
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5.9 Comparison of Markov regression models: 

The comparison of Markov regression models was done considering binary outcome variable 

which was BMI and/or Height-for-age classified as “normal” and “moderate/severe” as the 

number of transitions from normal to severe was very small. The comparison for Markov 

regression with transition probabilities and intensity rates with GEE was done using only the five 

hypothesized variables.  The comparison was done using simulations for 10,000 times. The log 

odds of the outcome (current state of malnutrition) was obtained using the mathematical model 

that involved the previous state of malnutrition and the five hypothesized variables. The 

regression coefficients were fixed to some value. Using these log odds values, the outcome was 

obtained using a binomial distribution. This was repeated for 10,000 times. The Markov 

regression with transition probabilities and GEE was performed for these obtained outcome at 

the current state. The coverage probability was calculated if the beta regression coefficients were 

included in the confidence limits. The average length of the confidence interval was also 

obtained for 10,000 simulations. The R program using height-for-age classification comparing 

GEE and Markov regression is provided below. 

 

 

Program to compare GEE and Markov Regression using Simulations 

 

rm(list=ls(all = TRUE)) 

library(foreign) 

library(geepack) 

 

datahtage <- 

read.dta("C:\\Users\\keerthankavish\\Desktop\\PEM_NEW\\Chapters\\Merged_long_wide\\Mark

ov reg\\Diggle\\2012, Feb 10, htage_t1t2.dta"); # location and path where the file is stored 
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lengthmrar <- lengthdefmr <- lengthgeedef <- lengthargee <- 0 

countmrdef <- countmrar <- countgeedef <- countgeear <- 0  

p <- ob <- numeric(17556) 

alpha <- 0.06 # estimates from the data for each risk factor 

beta1 <- 0.64 # estimates from the data for each risk factor 
beta2 <- 1.13 # estimates from the data for each risk factor 
beta3 <- 274.01 # estimates from the data for each risk factor 
sigma <- 200  

y <- numeric(17556) 

lengthdefmr <- lengthargee <- lengthgeedef <- lengthmrar <- numeric(10) 

for (i in 1:10) 

{ 

    for (j in 1:17556) 

    { 

   mu <- alpha+beta1*datahtage$defr[j]+beta3*datahtage$htagepbin[j] + 

beta2*datahtage$arear[j]  # logistic model 

 #Generating y’s from the above model and also using binomial distribution 

   ob[j] <- rnorm(1,mu,sigma) 

   p[j] <- exp(ob[j]/1+exp(ob[j])) 

   y[j] <- rbinom(1,1,p[j])  

   } 

length(datahtage$defr) 

length(datahtage$htagepbin) 

#performing logistic regression analysis with generated y’s 

estmr <- summary(glm(y~defr+htagepbin+arear,data=datahtage,family = binomial(link = 

"logit"))) 

coefmatmr <- estmr$coefficients 

#print(coefmatmr) 

#performing gee with the generated y’s 

estgee <- summary(geeglm(y~defr+arear,id=idno,data=datahtage,family = binomial,corstr = 

"ar1", std.err = "san.se")) 
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coefmatgee <- estgee$coefficients 

#print(coefmatgee) 

###Coverage probabilities and length of the confidence interval 

 

###Markov regression coverage probabilities 

lldefmr <- coefmatmr[2,1]-1.96*coefmatmr[2,2] 

uldefmr <- coefmatmr[2,1]+1.96*coefmatmr[2,2] 

 

###Markov regression length of the CI 

lengthdefmr[i] <- (uldefmr - lldefmr)/2 

if(lldefmr < beta1 & uldefmr > beta1)countmrdef = countmrdef+1 

 

###Markov regression coverage probabilities 

llarmr <- coefmatmr[3,1]-1.96*coefmatmr[3,2] 

ularmr <- coefmatmr[3,1]+1.96*coefmatmr[3,2] 

 

###Markov regression length of the CI 

lengthmrar[i] <- (ularmr - llarmr)/2 

if(llarmr < beta2 & ularmr > beta2)countmrar = countmrar+1 

 

###Gee coverage probabilities 

lldefgee <- coefmatgee[2,1]-1.96*coefmatgee[2,2] 

uldefgee <- coefmatgee[2,1]+1.96*coefmatgee[2,2] 

 

###Length of the CI  

lengthgeedef[i] <- (uldefgee - lldefgee)/2 

if(lldefgee < beta1 & uldefgee > beta1)countgeedef = countgeedef+1 

 

###Gee coverage probabilities 

llargee <- coefmatgee[3,1]-1.96*coefmatgee[3,2] 
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ulargee <- coefmatgee[3,1]+1.96*coefmatgee[3,2]###Length of the CI  

lengthargee[i] <- (ulargee - llargee)/2 

if(llargee < beta2 & ulargee > beta2)countgeear = countgeear+1 

} 

 

Countmrdef/10000 

Countmrar/10000 

Countgeedef/10000 

Countgeear/10000 

 

sum(lengthmrar)/10000 

sum(lengthdefmr)/10000 

sum(lengthgeedef)/10000 

sum(lengthargee)/10000 
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6. RESULTS 
 

6.1 Prevalence, Incidence and Cumulative Incidence of Malnutrition: 

6.1.1 Prevalence, Incidence and Cumulative Incidence of Malnutrition using BMI 

classification: 

The prevalence of malnutrition based on BMI classification at baseline is presented in table 

6.1.1a. The prevalence of severe malnutrition at baseline was 22.5%, moderate malnutrition was 

21.7%. Male children had higher prevalence of severe malnutrition (25%) than female children 

(19.9%). The prevalence of severe malnutrition in rural area was 16.5% while the prevalence in 

the urban area was higher (28%) (Table 6.1.1a).  

Cumulative incidence of malnutrition based on BMI classification by area and sex of the child is 

presented in Table 6.1.1b. The table included malnutrition classification from follow-up 1 (every 

6 months) to follow-up 7 (3.5 years).  The cumulative incidence of severe malnutrition during 

the follow-ups was 11.6%. The cumulative incidence of severe malnutrition among male 

children was 14.7% which was higher than those of female children (8.4%) throughout the 

follow-up. The cumulative incidence of severe malnutrition was similar across rural (11.9%) and 

urban areas (11.3%) (Table 6.1.1b). 

Table 6.1.1c presents the incidence density of severe malnutrition in each year of follow-up. The 

incidence density of severe malnutrition was calculated as children who transited from normal or 

moderate state at time t to time t+1.  The incidence in the first year from baseline was found to 

be around 4%. It was also about 4.3% even in the second year from first year and increased to 

6% from second to third year. The graphical representation is presented in figure 6.1.1 (Table 

6.1.1c). The incidence and incidence density of malnutrition using BMI classification by age of 

the child, sex of the child and area of residence has been provided in the appendix (tables 1 - 3). 



 

 

 

Table 6.1.1a: Prevalence of malnutrition using BMI classification at baseline by area and 

sex of the child 

 

  

 

Total 

 

Prevalence of Malnutrition at Baseline 

 

Normal 

n             % 

 

Moderate 

n            % 

 

Severe 

n             % 

 

Overall 

 
2494 

 
1391 

     
   55.8 

 
542 

              
   21.7 

 
561 

              
   22.5 

Male 1271  670          52.7 283    22.3 318    25.0 
Female 1223 721    59.0 259    21.2 243    19.9 

 Rural 1195 757     63.3 241    20.2 197  16.5 
        Male 594 359          60.4 125           21.0 110         18.5 
        Female 601 398           66.2 116           19.3   87          14.5 

   Urban 1299 634          48.8 301             23.2 364         28.0 

        Male 677 311           45.9 158            23.3 208         30.7 
        Female 622 323           51.9 143            23.0 156         25.1 

 

Table 6.1.1b: Cumulative Incidence of Malnutrition by Area and Sex of the child using 

BMI classification for 3.5 years  

 

 

 

 

Total 

Cumulative Incidence of Malnutrition during 

follow-up 

 

Normal 

 

 

Moderate 

 

 

Severe 

 

n % n % n % 

 

Overall 

 
15629 

 
10011 

 
64.1 

 
3801 

 
24.3 

 
1817 

 
11.6 

Male 8016 4798 59.9 2039 25.4 1179 14.7 
Female 7613 5213 68.5 1762 23.1 638 8.4 

 Rural 7642 4812 63.0 1917 25.1 913 11.9 
        Male 3836 2266 59.1 995 25.9 575 15.0 
        Female 3806 2546 66.9 922 24.2 338 8.9 

   Urban 7987 5199 65.1 1884 23.6 904 11.3 
        Male 4180 2532 60.6 1044 25.0 604 14.4 
        Female 3807 2667 70.1 840 22.1 300 7.9 
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6.1.2 Prevalence, Incidence and Cumulative Incidence of Acute Malnutrition using Weight-

for-age (underweight) classification: 

The prevalence of acute malnutrition (underweight) by sex of the child and area of residence 

using weight-for-age is presented in Table 6.1.2a. The overall prevalence of severe underweight 

was 23% and the prevalence of severe underweight was higher in male children (26.8%) as 

compared to female children (19.1%). The rural and urban prevalence were similar (23.2% and 

22.9% respectively) (Table 6.1.2a).  

The cumulative incidence of overall acute malnutrition (underweight) as classified using weight-

for-age is presented in Table 6.1.2b. The overall cumulative incidence of severe underweight was 

10.8%. The cumulative incidence of severe underweight was higher among male children 

(15.5%) than female children (5.9%). The cumulative incidence of severe underweight among 

children was also higher in the rural area (13.3%) as compared to children from urban areas 

(8.4%) (Table 6.1.2b). 

6.1.3 Prevalence, Incidence and Cumulative Incidence of Chronic Malnutrition (stunting) 

using Height-for-age classification: 

The prevalence of chronic malnutrition (stunted) as classified using Height-for-Age is presented 

in Table 6.1.3a. The prevalence of severe chronic malnutrition was around 26%. The overall 

prevalence of severe chronic malnutrition was higher among boys (27.9%) than girls (23.5%). 

The prevalence of chronic malnutrition was higher in the rural than urban areas (33.2% vs 

18.9%) (Table 6.1.3a).  

The cumulative incidence of chronic malnutrition (stunted) was nearly 21%. The cumulative 

incidence for boys and girls was 24.1% and 16.9% respectively. The cumulative incidence of 

chronic malnutrition among children in rural areas was nearly 25% and for children from urban 
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areas, the cumulative incidence was 16.1% (Table 6.1.3b). The incidence of malnutrition using 

height-for-age classification by age of the child, sex of the child and area of residence has been 

provided in the appendix (tables 4). 

6.1.4. Prevalence, Incidence and Cumulative Incidence of Malnutrition (wasted) using 

Weight-for-height classification: 

Table 6.1.4a presents the prevalence of malnutrition (wasting) as classified by weight-for-height 

by sex of child and area. The prevalence of wasting was 4.3% and it was 5.1% in boys as 

compared to 3.4% among girls. The prevalence of wasting among children was lower in rural 

areas (1.9%) as compared to children living in urban areas (6.4%) (Table 6.1.4a). 

 

The cumulative incidence of malnutrition (wasting) as represented by weight for height 

classifications is presented in Table 6.1.4b. The wasting cumulative incidence was 0.7% and 

cumulative incidence was 1% in boys as compared to 0.4% in girls. There was also a slight 

difference in the cumulative incidence of wasting in rural and urban areas (0.5% vs 0.9%). This 

implies that the urban children are better in their height growth than rural children. Therefore, 

wasting appears to be lower in rural areas than in the urban areas. The cumulative incidence was 

also higher for boys within the rural and urban areas (Table 6.1.4b). 

 

 

 

 

 

 



 

 

Table 6.1.1c: Incidence of Severe Malnutrition using BMI Categories for all children:

 

From 

(Time t ) 

Incidence of Malnutrition according to BMI classification 

Baseline to ist 

Year (0- 12 

months): 

Normal 

n         %

Normal 1110     88.9

Moderate    289    58.0

Severe    144    28.3

1
st
 Year to 2

nd
 

Year (12.1 – 24 

months): 

 

Normal 1279      86.5

Moderate   134      30.5

Severe     17       6.8

2
nd

 Year to 3
rd

 

Year (24.1 to 

36 months): 

 

Normal 1202      82.6

Moderate     98      19.3

Severe       8        3.5

Incidence Density of Severe Malnutrition per year

*ISM – Incidence of severe malnutrition

Figure 6.1.1: Incidence of Severe Malnutrition of all Children using BMI classification

Overall: 

Note: MAL – Malnutrition
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able 6.1.1c: Incidence of Severe Malnutrition using BMI Categories for all children:

Incidence of Malnutrition according to BMI classification 

 

% 

Moderate 

n           % 

Severe 

n          % 

Total ISM 

1110     88.9 113        9.0   26       2.1 1249  
3.78 289    58.0 169      33.9   40       8.0   498 

144    28.3 176      34.6 188     37.0   508 

   

1279      86.5 171      11.6   28      1.9 1478  
4.28 134      30.5 251      57.2   54     12.3   439 

17       6.8   82      32.8 151     60.4   250 

   

1202      82.6 239       16.4   15      1.0 1456  
6.01 98      19.3 307       60.4 103     20.3   508 

3.5  60        26.2 161     70.3   229 

Severe Malnutrition per year 4.69 

Incidence of severe malnutrition 

Figure 6.1.1: Incidence of Severe Malnutrition of all Children using BMI classification
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able 6.1.1c: Incidence of Severe Malnutrition using BMI Categories for all children: 

Incidence of Malnutrition according to BMI classification ( t+1) 

 95% CI 

 
 
2.97 – 4.78 

 

 
 
3.45 – 5.28 

 

 
 
5.04 – 7.15 

 3.82 – 5.74 

Figure 6.1.1: Incidence of Severe Malnutrition of all Children using BMI classification 

 

14.41
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Table 6.1.2a: Prevalence of Acute Malnutrition (Underweight) at Baseline using Weight-

for-Age by area and sex of the child 

  

Total 

Prevalence of Underweight Malnutrition at 

Baseline 

 

Normal 

 

 

Moderate 

 

 

Severe 

 

n % n % n % 

 

Overall 

 
2494 

 
829 

 
33.2 

 
1090 

 
43.7 

 
575 

 
23.0 

Male 1271 360 28.3 570 44.8 341 26.8 
Female 1223 469 38.3 520 42.5 234 19.1 

 Rural 1195 387 32.4 531 44.4 277 23.2 
        Male  594 165 27.8 271 45.6 158 26.6 
        Female 601 222 36.9 260 43.3 119 19.8 

   Urban 1299 442 34.1 559 43.0 298 22.9 
        Male 677 195 28.9 299 44.1 183 27.0 
        Female 622 247 39.7 260 41.8 115 18.5 

 

Table 6.1.2b: Cumulative Incidence of Acute Malnutrition (Underweight) during Follow-

ups using Weight-for-Age for 3.5 years 

 

 

Total 

Cumulative Incidence of (underweight) 

Malnutrition during follow-up 

 

Normal 

 

 

Moderate 

 

 

Severe 

 

n % n % n % 

 

Overall 

 
15629 

 
6496 

 
41.6 

 
7447 

 
47.6 

 
1686 

 
10.8 

Male 8016 2873 35.8 3903 48.7 1240 15.5 
Female 7613 3623 47.6 3544 46.6 446 5.9 

      

   Rural 

 
7642 

 
2690 

 
35.2 

 
3936 

 
51.5 

 
1016 

 
13.3 

        Male 3836 1147 29.9 1985 51.7 704 18.4 
        Female 3806 1543 40.5 1951 51.3 312 8.2 

         
   Urban 7987 3806 47.7 3511 44.0 670 8.4 
        Male 4180 1726 41.3 1918 45.9 536 12.8 
        Female 3807 2080 54.6 1593 41.8 134 3.5 

 



 

 

Table 6.1.2c: Incidence of Severe 

categories for all children 

From 

(Time t ) 

Incidence of acute 

Baseline to 1
st
  

year (0 – 12 

months): 

Normal 

n         % 

Normal 651       86.8

Moderate 247       25.1

Severe   25         4.8

1
st
 Year to 2

nd
 

Year (12.1 to 24 

months): 

 

Normal 791       88.7

Moderate 100       10.4

Severe     2         0.6

2
nd

 Year to 3
rd

 

Year (24.1 to 36 

months): 

 

Normal 830        92.0

Moderate 119        11.5

Severe     1          0.4

Incidence Density of Severe Malnutrition per year

*ISM – Incidence of severe malnutrition

 

Figure 6.1.2: Incidence of Severe 
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Table 6.1.2c: Incidence of Severe Acute Malnutrition (underweight) using Weight

Incidence of acute malnutrition (underweight) (

 

 

Moderate 

   n         % 

Severe 

n         % 

Total ISM

651       86.8   93        12.4     6        0.8 750  
2.7725.1 696        70.7   42        4.3 985 

25         4.8 223        42.8 273      52.4 521 

   

791       88.7   98        11.0     3        0.3 892  
1.78100       10.4 828         86.4   30        3.1 958 

2         0.6   87        27.4 228      71.9 317 

   

830        92.0   72          8.0     0        0.0 902  
0.3111.5 907        87.9     6        0.6 1032 

1          0.4 117        45.2 141      54.4 259 

of Severe Malnutrition per year 1.62

Incidence of severe malnutrition 

Figure 6.1.2: Incidence of Severe Acute Malnutrition (underweight) of all Children using 

 

                    

0.31

2.8

4.6

0

2

4

6

8

10

1 2

Follow up in Years 

Severe

using Weight-for-age 

malnutrition (underweight) ( t+1) 

ISM 95% CI 

2.77 
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1.78 
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0.31 
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1.62 1.16 – 2.28 

of all Children using 

 

4.91
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Table 6.1.3a: Prevalence of Chronic Malnutrition (stunted) at Baseline using Height-for-

Age by area and sex of the child 

 

 

Total 

Prevalence of Chronic Malnutrition at 

Baseline 

 

Normal 

 

 

Moderate 

 

 

Severe 

 

n % n % n % 

 

Overall 

 
2494 

 
1078 

 
43.2 

 
773 

 
31.0 

 
643 

 
25.8 

Male 1271 534 42.0 382 30.1 355 27.9 
Female 1223 544 44.5 391 32.0 288 23.5 

      

   Rural 

 
1195 

 
421 

 
35.2 

 
377 

 
31.5 

 
397 

 
33.2 

        Male 594 208 35.0 180 30.3 206 34.7 
        Female 601 213 35.4 197 32.8 191 31.8 

         
   Urban 1299 657 50.6 396 30.5 246 18.9 
        Male 677 326 48.2 202 29.8 149 22.0 
        Female 622 331 53.2 194 31.2  97 15.6 

 

Table 6.1.3b: Cumulative Incidence of chronic Malnutrition (stunted) by Area and Sex of 

the child using Height-for-age classification for 3.5 years 

 

 

Total 

Cumulative Incidence of Chronic 

Malnutrition during follow-up 

 

Normal 

 

 

Moderate 

 

 

Severe 

 

n % n % n % 

 

Overall 

 
15628 

 
7160  

 
45.8 

 
5252 

 
33.6 

 
3216 

 
20.6 

Male 8015 3507 43.8 2577 32.2 1931 24.1 
Female 7613 3653 48.0 2756 35.1 1285 16.9 

      

   Rural 

 
7642 

 
2973 

 
38.9 

 
2736 

 
35.8 

 
1933 

 
25.3 

        Male 3836 1429 37.3 1306 34.0 1101 28.7 
        Female 3806 1544 40.6 1430 37.6 832 21.9 

         
   Urban 7986 4187 52.4 2516 31.5 1283 16.1 
        Male 4179 2078 49.7 1271 32.7 830 19.9 
        Female 3807 2109 55.4 1245 32.7 453 11.9 

 



 

 

Table 6.1.3c: Incidence of chronic 

using Height-for-Age classification

  From  

(Time t ) 

Baseline to 

1
st
 Year (0-12 

months): 

    Normal 

n            % 

Normal 893      90.7 

Moderate   68        9.8 

Severe     1        0.2 

1
st
 Year to 

2
nd

 Year 

(12.1 – 24 

months): 

 

Normal 876       94.2 

Moderate   87       12.4 

Severe     0         0.0 

2
nd

 Year to 

3
rd

 Year 

(24.1 to 36 

months): 

 

Normal 943       97.8 

Moderate 150       19.9 

Severe     0         0.0 

Incidence Density of severe malnutrition per year                                   2.22

*ISM – Incidence of severe malnutrition

Figure 6.1.3: Incidence of Severe Malnutrition 
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chronic Severe Malnutrition (stunted) over three Years follow up 

Age classification 

Incidence of Stunting ( t+1) 

   Moderate 

  n           % 

Severe 

    n        % 

Total ISM 

   87       8.8     5         0.5 985  
4.35  556      80.3   68         9.8 692 

   95     16.4 482       83.4 578 

    

   53        5.7     1         0.1 930  
1.96  582      83.1   31         4.4 700 

 102      19.0 435       81.0 537 

    

    21       2.2     0         0.0  964  
0.35  596      79.3     6         0.8  752 

 146      30.6 331       69.4  477 

of severe malnutrition per year                                   2.22 

malnutrition 

Figure 6.1.3: Incidence of Severe Malnutrition (stunted) of all Children using Height
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4.45

6.43

6.78
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Follow up in Years 

Severe

over three Years follow up 

 95% CI 

 
 
3.47 – 5.44 

 

 
 
1.38 – 2.77 

 

 
 
0.14 – 0.78 

1.66 – 3.00 

of all Children using Height-for-

 

6.78



 

 

 

Table 6.1.4a: Prevalence of Malnutrition (wasted) at Baseline using Weight-for-Height 

(wasted) classification: 

 

 

Total 

Prevalence of Malnutrition (wasted) at 

Baseline 

 

Normal 

 

 

Moderate 

 

 

Severe 

 

n % n % n % 

 

Overall 

 
2494 

 
1868 

 
74.9 

 
520 

 
20.9 

 
106 

 
4.3 

Male 1271 937 73.7 269 21.2 65 5.1 
Female 1223 931 76.1 251 20.5 41 3.4 

      

   Rural 

 
1195 

 
965 

 
80.8 

 
207 

 
17.3 

 
23 

 
1.9 

        Male 594 478 80.5 102 17.2 14 2.4 
        Female 601 487 81.0 105 17.5 9 1.5 

         
   Urban 1299 903 69.5 313 24.1 83 6.4 
        Male 677 459 71.4 146 23.5 51 7.5 
        Female 622 444 71.4 146 23.5 32 5.1 

 

Table 6.1.4b: Cumulative Incidence of Malnutrition (wasted) during follow-ups using 

Weight-for-Height (wasted) classification for 3.5 years: 

  

Total 

Cumulative Incidence of Malnutrition 

(wasted) during follow-up 

 

Normal 

       

 

Moderate 

 

 

Severe 

 

n % n % n % 

 

Overall 

 
15370 

 
13165 

 
85.7 

 
2092 

 
13.6 

 
113 

 
0.7 

Male 8008 6633 82.8 1292 16.1 83 1.0 
Female 7362 6532 88.7 800 10.9 30 0.4 

      

   Rural 

 
7533 

 
6433 

 
85.4 

 
1059 

 
14.1 

 
41 

 
0.5 

        Male 3836 3192 83.2 618 16.1 26 0.7 
        Female 3697 3241 87.7 441 11.9 15 0.4 

         
   Urban 7837 6732 85.9 1033 13.2 72 0.9 
        Male 4172 3441 82.5 674 16.2 57 1.4 
        Female 3665 3291 89.8 359 9.8 15 0.4 

 



 

 

Table 6.1.4c: Incidence of Sever

classification for all children 

From 

(Time t ) 

Baseline to 1
st
 

Year (0 - 12 

months): 

Normal 

n             %

Normal 1611       95.5

Moderate   280       59.2

Severe     51       53.7

1
st
 Year to 2

nd
 

Year (12.1 – 

24 months): 

 

Normal 1774       95.2

Moderate   108       37.5

Severe       7       43.8

2
nd

 Year to 3
rd

 

Year (24.1 – 

36 months): 

 

Normal 1758       92.2

Moderate     70       28.0

Severe       4       23.5

Average Incidence of Severe Malnutrition per year

*ISM – Incidence of severe malnutrition

Figure 6.1.4: Incidence of Severe Malnutrition 
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Table 6.1.4c: Incidence of Severe Malnutrition (wasted) using Weight

Incidence of Malnutrition (Wasted) (t+1) 

 

n             % 

Moderate 

n         % 

Severe 

n              % 

Total ISM

1611       95.5   72        4.3  4          0.2 1687  
 
0.37

280       59.2 189      40.0  4          0.8   473 

51       53.7   37      38.9  7          7.4     95 

   

1774       95.2   85        4.6  4           0.2 1863  
 
0.56

108       37.5 172      59.7  8           2.8   288 

7       43.8     4      25.0  5         31.2     16 

   

1758       92.2 149        7.8 0            0.0 1907  
 
0.28

70       28.0 174      69.6 6            2.4   250 

4       23.5    5       29.4 8          47.1     17 

Average Incidence of Severe Malnutrition per year 0.40

Incidence of severe malnutrition 

Figure 6.1.4: Incidence of Severe Malnutrition (Wasted) of all Children using Weight
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6.2 Risk Factor Analysis: 

6.2.1. Repeated Measure Analysis using Generalized Estimating Equations (GEE) using 

BMI classification: 

The association of risk factors with malnutrition using BMI classification is shown in Table 

6.2.1a and Table 6.2.1b. Table 6.2.1a is the unadjusted analysis showing the association of each 

of risk factor with malnutrition where as Table 6.2.1b is the adjusted analysis. The Table 6.2.1b 

was performed using the risk factors that were significant at 25% level in the unadjusted 

analysis. From the Table 6.2.1a, we observed that male children had higher moderate and severe 

malnutrition than female children. The odds of having moderate and severe malnutrition was 

found to be 1.4 (95% CI: 1.2-1.6) times significantly higher for male children as compared to 

female children. The malnutrition was significantly higher if children were living in a house 

which had no separate kitchen. The odds of having malnutrition was nearly 1.2 (1.0 – 1.4) times 

significantly more if there was no separate kitchen as compared to having separate kitchen. 

There were six risk factors that had p value less than 0.25. These risk factors are sex of the child, 

defecation, type of floor, presence of a separate kitchen in the house, consanguineous marriage, 

type of house were significant at 25% level. The risk factor ‘type of roof’ had one of its category 

– ‘RCC/Pukka’ significant at 25% level and hence ‘type of roof’ was included for multivariable 

analysis (Table 6.2.1a).  

From the multivariable analysis, we observed that children who had defecated in toilets were 6% 

(3% - 8%) less likely to have severe malnutrition over time as compared to those who had 

defecated out in the open fields. Male children were also significantly associated with severe 

malnutrition over time as compared to female children over time (OR: 1.03; 95% CI:1.01-1.05) 

(Table 6.2.1b).  



 

 

 

Table 6.2.1a: Bivariate analysis Generalized Estimating Equations (GEE) for Malnutrition 

using BMI classification by socio-demographic and household variables: 

Variables 

BMI classification 
Odds 

Ratio 

 

95% CI 
P 

value 
Normal Mild/Moderate Severe 

N % N % n % 

Sex of the child 
    Male 
    Female 

 
5468 
5934 

 
58.9 
67.2 

 
2322 
2021 

 
25.0 
22.9 

 
1497 
881 

 
16.1 
10.0 

1.41 1.24 1.60 <0.001 

Area of Residence 
    Rural 
    Urban 

 
5569 
5833 

 
63.0 
62.8 

 
2158 
2185 

 
24.4 
23.5 

 
1110 
1268 

 
12.6 
13.7 

1.03 0.91 1.17 0.638 

Birth Order 
     1 
     2 
     ≥3 

 
2073 
2405 
6897 

 
61.2 
63.4 
63.4 

 
874 
833 
2614 

 
25.8 
22.0 
24.0 

 
438 
553 
1373 

 
12.9 
14.6 
12.6 

 
1.00 
0.94 
0.92 

 
 
0.76 
0.78 

 
 
1.15 
1.09 

 
 
0.523 
0.327 

Mother’s Education 
     Illiterate/ Literate 
     Primary/Middle 
School 
     High school/College 

 
6568 
3400 
 
1187 

 
62.4 
63.2 
 
64.2 

 
2558 
1223 
 
475 

 
24.3 
22.7 
 
25.7 

 
1393 
753 
 
187 

 
13.2 
14.0 
 
10.1 

 
1.08 
1.05 
 
1.00 

 
0.87 
0.84 

 
1.33 
1.32 

 
0.478 
0.648 

Father’s Education 
      Illiterate/ Literate 
     Primary/Middle  
     High school/ College 

 
3378 
4688 
2849 

 
62.3 
62.9 
63.1 

 
1313 
1786 
1073 

 
24.2 
24.0 
23.8 

 
731 
983 
590 

 
13.5 
13.2 
13.1 

 
1.03 
1.03 
1.00 

0.87 
0.87 

1.23 
1.21 

0.734 
0.727 

Number of Family 

Members 
     <=4 
     5 – 6 
     >6 

 

 
1549 
5204 
4610 

 
 
62.2 
62.4 
64.0 

 
 
621 
2022 
1666 

 
 
24.9 
24.2 
23.1 

 
 
321 
1114 
928 

 
 
12.9 
13.4 
12.9 

 
 
1.04 
1.07 
1.00 

 
0.85 
0.93 

 
1.28 
1.23 

 
0.674 
0.367 

Fuel for cooking 
     Drug/Firewood 
     Gas/Kerosene 

 
9884 
1479 

 
63.0 
63.2 

 
3749 
560 

 
23.9 
23.9 

 
2063 
300 

 
13.1 
12.8 

1.04 0.86 1.25 0.693 

Defecation 
     Within 
premises/latrine 
     Open field 

 
 
4904 
6459 

 
 
61.8 
63.9 

 
 
1870 
2439 

 
 
23.6 
24.1 

 
 
1159 
1204 

 
 
14.6 
11.9 

 
 
1.12 

 
0.99  

 
1.28 

 
0.077 

Type of Floor 
     Kucha 
     Pukka 

 
4389 
6974 

 
61.7 
63.9 

 
1771 
2538 

 
24.9 
23.2 

 
957 
1406 

 
13.4 
12.9 

1.09 0.96 1.25 0.185 

Presence of a Separate   

Kitchen 
     Yes 
     No 

 
 
8629 
2734 

 
 
64.0 
60.1 

 
 
3201 
1108 

 
 
23.7 
24.4 

 
 
1655 
708 

 
 
12.3 
15.6 

 
 
 
1.19 

 
 
 
1.02 

 
 
 
1.38 

 
 
 
0.027 



 

 

 

Contd… 

 

 

 

 

 

 

 

 

 

 

Variables 

Categorized BMI 
Odds 

Ratio 

 

95% CI 
P 

value 
Normal Moderate Severe 

n % n % n % 

Consanguineous 

Marriage 
     Yes 
     No    

 
4147 
7214 

 
61.7 
63.7 

 
1651 
2670 

 
24.6 
23.6 

 
926 
1439 

 
13.8 
12.7 

1.09 0.50 1.24 0.311 

Type of House 
      Brick and cement 
     Brick and/or mud 
     Others 

 
5805 
3091 
2467 

 
62.8 
65.9 
60.1 

 
2214 
1059 
1036 

 
24.0 
22.6 
25.2 

 
1220 
538 
605 

 
13.2 
11.5 
14.7 

 
 
0.91 
0.80 

 
 
0.77 
0.67 

 
 
1.07 
0.97 

 
 
0.248 
0.023 

Type of roof 
     Thatched 
     Tiled 
     RCC/Pukka             

 
4282 
4490 
2317 

 
62.2 
62.4 
66.2 

 
1726 
1671 
803 

 
25.1 
23.2 
22.9 

 
875 
1033 
382 

 
12.7 
14.4 
10.9 

 
1.21 
0.97 
1.00 

1.01 
0.84 

 
1.45 
1.13 
 

0.043 
0.720 

Follow-up 
     0 
     1 
     2 
     3 
     4 
     5 
     6 
     7 

 
1391 
1577 
1549 
1527 
1502 
1374 
1317 
1165 

 
55.8 
69.6 
68.3 
68.1 
66.3 
61.7 
59.6 
54.1 

 
542 
437 
464 
487 
523 
597 
608 
685 

 
21.7 
19.3 
20.4 
21.7 
23.1 
26.8 
27.5 
31.8 

 
561 
252 
256 
229 
239 
255 
284 
302 

 
22.5 
11.1 
11.3 
10.2 
10.6 
11.5 
12.9 
14.0 

 
1.06 
0.53 
0.59 
0.57 
0.64 
0.78 
0.85 
1.00 

0.98 
0.48 
0.55 
0.53 
0.60 
0.71 
0.81 

1.15 
0.57 
0.65 
0.62 
0.69 
0.80 
0.90 

 
0.156 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
 



 

 

 

Table 6.2.1b: Adjusted GEE analysis for Malnutrition by socio-demographic and 

household variables  

Variables 
Odds 

Ratio 

 

95% CI 
P 

value 

Sex of the child 
    Male 
    Female 

1.27 1.05 1.40 0.009 

Defecation 
     Within premises/latrine 
     Open field 

 
 
1.77 

 
 
1.30 

 
 
1.91 

 
 
<0.001 

Presence of a Separate    

Kitchen 
    Yes 
     No 

 
0.78 

 
0.62 

 
0.99 

 
0.042 

Type of Floor 
     Kucha 
     Pukka 

 
1.03 
 

0.79 1.35 0.825 

Type of House 
     Brick and/or cement 
     Brick and/or mud 
     Others 

 
1.00 
1.43 
1.20 

 
 
1.03 
0.92 

 
 
2.00 
1.56 

 
 
0.034 
0.181 

Type of Roof 
      Thatched 
      Tiled 
      RCC /Pukka       

 
1.01 
1.23 
1.00 

 
0.74 
0.99 
 

1.37 
1.53 

 
0.962 
0.062 
 

Follow 1.02 0.96 1.08 0.510 
Interaction of sex of child with 

follow-up 

 
1.03 

 
1.01 

 
1.05 

 
0.013 

Interaction of defecation with 

follow-up 

 
0.94 

 
0.92 

 
0.97 

 
<0.001 

Interaction of kucha type of 

floor with follow-up 

 
0.99 

 
0.96 

 
1.03 

 
0.812 

Interaction of no separate 

kitchen with follow-up 

 
1.01 

 
0.97 

 
1.04 

 
0.702 

Interaction of brick and 

cement type of house with 

follow-up 

 
 
1.02 

 
 
0.97 

 
 
1.07 

 
 
0.446 

Interaction of brick and mud 

type of house with follow-up 

 
1.01 

 
0.97 

 
1.05 

 
0.606 

Interaction of thatched roof 

with follow-up 

 
1.01 

 
0.96  

 
1.05 

 
0.738 

Interaction of tiled roof house 

with follow-up 

 
0.99 

 
0.96 

 
1.02 

 
0.637 
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6.3 Markov Chain 

 

6.3 First Mean Passage Time and Monte Carlo Simulation using BMI classification: 

 

6.3.1 Overall Transition Probability and Mean Passage time for malnutrition according to 

BMI classification: 

 

The transition probability matrix is presented in Table 6.3.1a. The transition probability matrix 

presents the probability of transition from the previous state of malnutrition at previous time to 

the next state of malnutrition at the current time for all children. The transition probability from 

severe state in the previous time (t) to normal state (t+1) was 0.10.  If a child was in the severe 

state at time t, then the transition to moderate state at t+1 was 0.28. If a child was in moderate 

state at t, then the probability of transition to normal state at t+1 was 0.31 (Table 6.3.1a).   

 

The mean number of years with 95% CI for different states of malnutrition using BMI 

classification is presented in the table 6.3.1b. The mean number of years taken for a child who is 

in the severe state in the previous time to transit to normal state at time t+1 was 2.7 (2.3 – 3.1) 

years and to transit to moderate state at time t+1 was 2.3 (1.8 – 2.9) years. The average number 

of years taken to transit from moderate state to normal was 2.0 (1.6 – 2.3) years (Table 6.3.1b).  

 

 

 

 

 

 



 

 

 

Table 6.3.1a: Overall Transition Probability Matrices of Malnutrition according to BMI 

classification 

 

 

 

 

 

 

6.3.1b: Overall Mean Passage Time (years) and 95% Confidence Interval using BMI 

classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Grading (t) Grading (t+1) 

Normal Moderate Severe Total no. 

Overall 
Normal 0.87 0.12 0.009 9784 

Moderate 0.31 0.56 0.14 3513 

Severe 0.10 0.28 0.61 1973 

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Overall:       

   Normal         

 

 
0.76 (0.57, 0.96) 

 
3.92 (3.21, 4.62) 

 
13.60 (11.15, 16.06) 

   Moderate          

 

1.97 (1.59, 2.35) 2.43 (1.46, 2.58) 10.52 (8.10, 12.94) 

   Severe 2.73 (2.31, 3.14) 2.35 (1.81, 2.90) 4.89 (3.02, 6.73) 
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6.3.2 Transition Probability and Mean Passage time for malnutrition by sex according to 

BMI classification: 

 

The probability of transition from severe state in the previous time (t) to normal state at time t+1 

was 0.10 among male children and 0.12 among female children. The transition probability from 

severe to moderate state of malnutrition from time t to t+1 was 0.25 among male and 0.33 among 

female implying that female children transited more from severe to normal or moderate than 

male children. Similarly, the transition probability from moderate to normal state from t to t+1 

was similar across male and female children (0.30 vs 0.31 respectively).  (Table 6.3.2a).  

The mean passage time for transiting from one state of malnutrition to another by sex of the child 

showed that, on an average, the number of years taken by male children to transit from severe 

state from the previous time to normal state at current time was slightly more as compared to 

female children (Male children: 2.9 (2.5 – 3.4) years; Female children: 2.4 (2.1 – 2.8) years). 

Also, the average number of years from moderate state at time t to normal state at time t+1 was 

2.1 (1.7 – 2.5) years among male children and 1.8 (1.5 – 2.2) years among female children. 

Hence there is a difference in the mean time of transition for a male and female child with female 

children taking shorter times to become normal from malnourished (severe or moderate) state as 

compared to male children (Table 6.3.2b). 

The test of hypothesis to test if sex of the child had different transition is presented in table 

6.3.2c using the log linear model. The difference in the likelihood (deviance) when sex of the 

child was included in the model was 14.4 at 4 degrees of freedom suggesting that there was a 

significant difference in the transition from one state to another state between male children and 

female children (Table 6.3.2c).  



 

 

 

Table 6.3.2a: Transition Probability Matrices of Malnutrition according to BMI 

classification by sex of the child: 

 
Grading (t) 

Grading (t+1) 

Normal Moderate Severe Total no. 

Males 

Normal 0.85 0.14 0.01 4705 

Moderate 0.30 0.55 0.15 1879 

Severe 0.10 0.25 0.65 812 

Females 

Normal 0.88 0.11 0.006 5079 

Moderate 0.31 0.57 0.12 1634 

Severe 0.12 0.33 0.54 730 

 

Table 6.3.2b: Mean Passage Time (years) and 95% Confidence Interval by Sex of the child 

using BMI classification 

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Males: 

   Normal            

 

 
0.82 (0.60, 1.05) 

 
3.49 (2.86, 4.11) 

 
11.17 (9.19, 13.17) 

   Moderate        

 

2.09 (1.67, 2.50) 1.91 (1.41, 2.41) 8.54 (6.58, 10.50) 

   Severe           

 

2.95 (2.50, 3.40) 2.41 (1.90, 2.92) 3.71 (2.26, 5.14) 

Females: 

  Normal            

 

 
0.71 (0.55, 0.88) 

 
4.45 (3.63, 5.27) 

 
17.26 (14.07, 20.42) 

  Moderate        

 

1.84 (1.50, 2.18) 2.16 (1.53, 2.80) 13.59 (10.53, 16.64) 

  Severe            

 

2.45 (2.09, 2.82) 2.27 (1.67, 2.85) 7.12 (4.56, 9.60) 

 

Table 6.3.2c:  Results of Log linear Model by sex of the child: 

Model Model LR df Deviance (G
2
) 

Difference 

in df 

P 

value 

Model 

1 

Saturated 

Model 

0.000 - - - - 

Model 

2 

Sex of the  

child 

14.368 4 Model 2 – Model 
1 = 14.368 

4 0.006 

         Note: LR – Likelihood ratio 
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6.3.3 Transition Probability and Mean Passage Time for malnutrition by area of residence 

according to BMI classification: 

 

The transition matrix showing the probability of transition from one state of malnutrition from 

time t to another state at time t+1 by area of the residence is shown in Table 6.3.3a. The 

probability of transition of malnutrition from moderate to normal in rural area was found to be 

0.26 where as in the urban it was 0.35. The transition probabilities from severe state to normal 

state were 0.06 among children from rural and 0.14 for children living in urban areas. The 

transition probability from severe state to moderate state was 0.28 for children living in rural 

areas and urban areas (Table 6.3.3a).  

 

The first mean passage time of transition in rural and urban areas is presented in Table 6.3.3b. 

The average number of years taken to transit from moderate state at the previous time t to normal 

state at time t+1 was 2.4 (1.9 – 2.9) years in the rural areas and 1.7 (1.4 – 2.0) years in the urban 

areas. The average number of years to transit from severe to normal in rural and urban areas was 

3.4 (2.9 – 3.9) years and 2.3 (2.0 – 2.6) years respectively. The average number of years to 

transit from severe to moderate state was 2.2 (1.7 – 2.7) years among children in rural areas and 

2.4 (1.9 – 3.0) years among children living in urban areas.  

 

The result of log linear analysis showing if area of residence was significant factor associated 

with the transition of malnutrition from one state to another state is presented in Table 6.3.3c. 

The deviance value comparing full model with model including area of residence with 4 degrees 

of freedom showed that there was a significant association (Table 6.3.3c).  



 

 

 

Table 6.3.3a: Transition Probability Matrices for malnutrition according to BMI 

classification by area of residence of the child 
 

 Grading (t) Grading (t+1) 

Normal Moderate Severe Total no. 

Rural 

Normal 0.87 0.12 0.009 4774 

Moderate 0.26 0.59 0.14 1729 

Severe 0.06 0.28 0.65 920 

Urban 

Normal 0.86 0.13 0.008 5010 

Moderate 0.35 0.52 0.13 1784 

Severe 0.14 0.28 0.58 1053 

 

Table 6.3.3b: Mean Passage Time (years) and 95% Confidence Interval by Area of 

Residence using BMI classification 

 

Table 6.3.3c:  Results of Log linear Model by the area of residence: 

Model Model LR Df Deviance (G
2
) Difference 

in df 

P 

value 

Model 

1 

Saturated 

Model 

0.000 - - - - 

Model 

2 

Area of 

Residence 

39.151 4 Model 2 – 
Model 1 = 
39.151 

4 <0.001 

           LR – likelihood ratio

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Rural: 

    Normal            

 

 
0.82 (0.58, 1.06) 

 
3.98 (3.27, 4.69) 

 
12.74 (10.43, 15.05) 

    Moderate     

 

2.12 (1.93, 2.89) 1.86 (1.32, 2.39) 9.55 (7.32, 11.77) 

    Severe            

 

3.41 (2.89, 3.93) 2.20 (1.71, 2.69) 4.00 (2.35, 5.66) 

Urban: 

   Normal             

 

 
0.73 (0.57, 0.89) 

 
3.86 (3.17, 4.57) 

 
14.44 (11.77, 17.12) 

   Moderate         

 

1.68 (1.36, 2.00) 2.17 (1.59, 2.76) 11.46 (8.88, 14.05) 

   Severe            

 

2.30 (1.96, 2.65) 2.45 (1.88, 3.01) 5.77 (3.66, 7.88) 
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6.3.4 Transition Probability and Mean Passage Time for malnutrition by presence of a 

separate kitchen according to BMI classification: 

 

The transition probability matrix by presence of a separate kitchen is shown in Table 6.3.4a. The 

transition probability from severe state to normal state for children in those houses where there 

was a separate kitchen was found to be 0.12. However, it was only 0.06 if the children lived in 

houses having no separate kitchen. The transition probability for children from severe at time t to 

moderate state of malnutrition at time t+1 if the house did had a separate kitchen was 29% and it 

was 25% if the house did not have a separate kitchen in the house (Table 6.3.4a). The probability 

of transition from moderate state to normal state from time t to t+1 was found to be 0.32 for the 

children living in house where there was a separate kitchen and 0.25 for children living in houses 

where there was no separate kitchen. The transition probability matrix showed that the 

probability of transition from severe state to normal or moderate states of malnutrition was 

higher among children living in house with separate kitchen as compare to the children living in 

house without separate kitchen.  

 

The mean passage time for transiting from one state of malnutrition to another state from time t 

to t+1 is presented in Table 6.3.4b. The average number of years taken to transit from moderate 

state to normal state from time t to t+1 was 1.8 (1.5 – 2.1) years for those children living in 

houses where there was a separate kitchen and it was 2.7 (2.1 – 3.2) years for children living in 

houses with no separate kitchen. The transition time to transit from severe state to normal state 

for children living in houses with separate and no separate kitchen was 2.4 (2.1 – 2.8) years and 

3.7 (3.2 – 4.3) years respectively. The transition time taken to move from severe state to
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moderate state for children living in house with and without separate kitchen was 2.4 (1.8 – 2.9) 

years and 2.4 (1.9 – 2.9) years respectively. This implied that the time taken to move from severe 

state of malnutrition to normal state was slower for children living in house without separate 

kitchen as compared to children living in houses with separate kitchen. The possible reason for 

the slower transition times from severe state to normal state for children who lived in houses 

where there was no separate kitchen might be no proper ventilation and as a result were suffering 

from respiratory infections which led to malnutrition.  

 

The result of the log linear analysis is shown in Table 6.3.4c showing the association of presence 

of a separate kitchen and transition. This shows that there was a significant association of 

presence of a separate kitchen and transitions (Table 6.3.4c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.3.4a: Transition Probability Matrices for malnutrition according to BMI 

classification by ‘Presence of separate kitchen’ 

 

 
 

Grading (t) Grading (t+1) 

Normal Moderate Severe Total no. 

Yes 

Normal 0.87 0.12 0.009 7387 

Moderate 0.32 0.55 0.13 2597 

Severe 0.12 0.29 0.58 1374 

No 

Normal 0.86 0.13 0.008 2363 

Moderate 0.25 0.58 0.17 889 

Severe 0.06 0.25 0.69 586 

 

 

Table 6.3.4b: Mean Passage Time (years) and 95% Confidence Interval by ‘Presence of a 

separate kitchen within household’ using BMI classification 

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Yes: 

    Normal            

 

 
0.74 (0.56, 0.91) 

 
3.96 (3.24, 4.68) 

 
14.70 (12.03, 17.38) 

    Moderate     

 

1.79 (1.46, 2.13) 2.09 (1.51, 2.66) 11.67 (9.01, 14.32) 

    Severe            

 

2.45 (2.09, 2.81) 2.36 (1.80, 2.93) 5.78 (3.66, 7.86) 

No: 

   Normal            

 

 
0.87 (0.59, 1.14) 

 
3.83 (3.13, 4.52) 

 
11.03 (9.06, 12.99) 

   Moderate        

 

2.67 (2.11, 3.22) 1.87 (1.35, 2.39) 7.84 (6.01, 9.67) 

   Severe            

 

3.75 (3.16, 4.34) 2.36 (1.86, 2.86) 3.13 (1.82, 4.41) 

Table 6.3.4c:  Results of Log linear Model: 

Model Model LR Df Deviance 

(G
2
) 

Difference 

in df 

P 

value 

Model 1 Saturated 

Model 

0.000 - - - - 

Model 2 Presence of a 

separate 

Kitchen 

13.683 4 Model 2 – 
Model 1 = 
13.683 

4 0.008 

           LR – likelihood ratio                  
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6.3.5 Transition Probability and Mean Passage Time for malnutrition by defecation 

according to BMI classification: 

 

The transition probability matrix showing the probabilities of transition by defecation is shown 

in Table 6.3.5a. The probability of transition from severe state of malnutrition at a previous time 

(t) to normal state of malnutrition at the current time (t+1) was found to be 0.13 for those 

children living in houses where defecation was within the premises of the house or latrine. 

Children living in houses where defecation was in the open fields had transition probability from 

severe to normal as 0.08. The transition probability from severe to moderate state of malnutrition 

for children living in houses where defecation was within the premises of house or latrine and in 

the open fields was 0.27 and 0.29 respectively. The probability of transition from moderate state 

of malnutrition to normal for children living in houses where defecation was within the premises 

of the house or latrine and open fields was 0.33 and 0.29 respectively. (Table 6.3.5a).  

 
The mean passage time for transition from normal to moderate or severe malnutrition or vice 

versa is presented in Table 6.3.5b. If the defecation was in the within the premises of the hosue 

or latrine then the number of years taken to transit from moderate to normal was 1.8 years (1.4 – 

2.1). The average number of years taken to transit from moderate to normal state was 2.2 years 

(1.7 – 2.6) if the defecation was in the open fields The average number of years taken to transit 

from severe state of malnutrition to normal state from time t to t+1 for the children living in 

houses where defecation was within the premises of the house or latrine and open fields was 2.4 

(2.1 – 2.8) years and 3.0 (2.6 – 3.5) years respectively. If the children lived in houses where 

defecation was within the premises of the house or latrine then the time taken to transit from
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severe to moderate state of malnutrition was 2.5 (1.8 – 3.1) years and if the children lived in 

houses where defecation was in the open fields, then the time taken to transit from severe state to 

moderate state of malnutrition was found to be 2.2 (1.7 – 2.7) years. This implied that children 

living in houses where defecation was within the premises or latrine and open fields to transit 

from severe state to moderate state of malnutrition was almost similar (Table 6.3.5b). 

 

The result of log linear analysis is shown in Table 6.3.5c. The result shows that there is a 

significant change in the transition probabilities from one state of malnutrition to another state of 

malnutrition across defecation (Table 6.3.5c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.3.5a: Transition Probability Matrices for malnutrition according to BMI by 

‘Defecation’: 

 Grading 

(t) 
Grading (t+1) 

Normal Moderate Severe Total 

no. 

Within the premises or Latrine 

Normal 0.87 0.12 0.008 4189 

Moderate 0.33 0.53 0.14 1525 

Severe 0.13 0.27 0.59 962 

Open Fields 

Normal 0.87 0.12 0.009 5561 

Moderate 0.29 0.58 0.14 1961 

Severe 0.08 0.29 0.63 998 

 

 

Table 6.3.5b: Mean Passage Time (years) and 95% Confidence Interval by ‘defecation’ 

using BMI classification 
 

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Within premises of 

household: 

    Normal             

 

 
 
0.74 (0.56, 0.91) 

 
 
3.95 (3.24, 4.66) 

 
 
14.29 (11.65, 
16.92) 

    Moderate     

 

1.77 (1.44, 2.10) 2.16 (1.57, 2.75) 11.15 (8.59, 13.72) 

    Severe            

 

2.42 (2.06, 2.79) 2.51 (1.77, 3.08) 5.45 (3.40, 7.52) 

Open Fields 

   Normal             

 

 
0.79 (0.56, 1.01) 

 
3.91 (3.20, 4.62) 

 
13.11 (10.72, 
15.50) 

   Moderate         

 

2.16 (1.73, 2.59) 1.92 (1.38, 2.47) 10.06 (7.77, 12.36) 

   Severe            

 

3.05 (2.58, 3.51) 2.20 (1.70, 2.70) 4.45 (2.70, 6.22) 

 

Table 6.3.5c:  Results of Log linear Model: 

Model Model LR Df Deviance (G
2
) Difference 

in df 

P 

value 

Model 1 Saturated 

Model 

0.000 - - - - 

Model 2 Defecation 15.689 4 Model 2 – Model 1 = 15.689 4 0.003 

   LR – Likelihood ratio                                                                                           
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6.3.6 Transition Probability and Mean Passage Time for malnutrition by type of fuel used 

for cooking according to BMI classification: 

 

The transition probability matrix of transition from one state of malnutrition to another state by 

type of fuel used for cooking is shown in Table 6.3.6a. The transition probability from transition 

from severe to normal state if the type of fuel used for cooking was firewood or coal or cow 

dung was found to be 0.10 where as the transition to normal state from severe state of 

malnutrition if the type of fuel used for cooking was gas or kerosene was found to be slightly 

higher as 0.14. The transition probability from moderate state to normal state when type of fuel 

used for cooking was firewood and gas or kerosene was 0.30 and 0.33 respectively. The 

transition probability from severe state to moderate state of malnutrition from time t to t+1 for 

children living in houses where type of fuel used for cooking was firewood, coal or cow dung as 

compared to children living in houses where type of fuel used for cooking was gas or kerosene 

was found as 0.28 and 0.29 respectively (Table 6.3.6a).  

 
The mean passage time for moving from one state of malnutrition to another state by type of fuel 

used for cooking is presented in Table 6.3.6b. The mean number of years taken to move from 

severe state of malnutrition at time t to normal state at time t+1 was 2.8 (2.4 – 3.2) years for 

children living in houses where type of fuel used for cooking was firewood or coal or cow dung 

and 2.3 (2.0 - 2.7) years for children living in houses where type of fuel used for cooking was gas 

or kerosene. The average number of years to move from severe state to moderate state of 

malnutrition among children living in houses where type of fuel used for cooking was firewood 

or coal or cow dung and gas or kerosene was very similar  which was 2.3 (1.9 – 3.2) years and
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2.6 (1.9 – 3.2) years respectively. The average number of years to move from moderate state to 

normal state of malnutrition among children living in houses where type of fuel used for cooking 

was firewood or coal or cow dung and gas or kerosene was 2.0 (1.6 – 2.4) years and 1.7 (1.4 – 

2.1) years respectively (Table 6.3.6b).  

 

 
The result of log linear is shown in Table 6.3.6c. The result showed that transition probabilities 

across the different state of malnutrition from time t to t+1 by type of fuel used for cooking was 

not significantly changing (Table 6.3.6c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.3.6a: Transition Probability Matrices for Malnutrition according to BMI by ‘Type 

of Fuel Used for Cooking’: 

 Grading (t) Grading (t+1) 

Normal Moderate Severe Total no. 

Firewood/Cow 

dung/coal 

Normal 0.87 0.12 0.009 8488 

Moderate 0.30 0.56 0.14 3021 

Severe 0.10 0.28 0.62 1706 

Gas/Kerosene 

Normal 0.88 0.12 0.005 1262 

Moderate 0.33 0.53 0.13 465 

Severe 0.14 0.29 0.57 254 

 

Table 6.3.6b: Mean Passage Time (years) and 95% Confidence Interval by ‘type of fuel 

used for cooking’ using BMI classification: 

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Firewood/Cow Dung 

   Normal             

 

 
0.77 (0.57, 0.97) 

 
3.89 (3.19, 4.59) 

 
13.30 (10.90, 15.71) 

   Moderate     

 

2.00 (1.61, 2.39) 2.00 (1.45, 2.55) 10.28 (7.91, 12.64) 

   Severe            

 

2.79 (2.37, 3.21) 2.33 (1.80, 2.87) 4.71 (2.90, 6.49) 

Gas/Kerosene 

   Normal             

 

 
0.71 (0.55, 0.87) 

 
4.19 (3.42, 4.97) 

 
16.12 (13.15, 19.09) 

   Moderate         

 

1.74 (1.42, 2.06) 2.23 (1.62, 2.86) 12.51 (9.67, 15.34) 

   Severe            

 

2.31 (1.96, 2.66) 2.56 (1.95, 3.17) 6.44 (4.10, 8.73) 

Table 6.3.6c:  Results of Log linear Model: 

Model Model LR Df Deviance 

(G
2
) 

Difference 

in df 

P value 

Model 1 Saturated Model 

 

0.000 - - - - 

Model 2 Type of fuel used 

for cooking 

3.835 4 Model 2 – 
Model 1 = 
3.835 

4 0.429 

      LR – Likelihood ratio
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6.4 Markov Regression: 

The risk factor analysis for the Markov model is presented in this section. The Markov 

regression analysis was performed using the transition probabilities and transition intensity rates. 

The Markov regression analysis involves Markov property which is nothing but the present state 

being influenced by only the previous state.  

 

6.4.1 Markov Regression using Transition Probabilities for malnutrition using BMI 

classification: 

Unadjusted Markov regression analysis using the transition probabilities or BMI classification is 

presented in Table 6.4.1a and the risk factors that were significant at 25% level of significance 

were included for multivariable analysis.  

 

The adjusted analysis using transition probabilities is presented in Table 6.4.1b.  

 

 

 



 

 

 

Table 6.4.1a: Unadjusted Markov regression analysis considering the transition 

probabilities using BMI classification: 

 

Risk Factors OR Robust SE P value 

Sex of the child 
Male 
Female 

1.20 0.06 0.002 

Previous state (Mit) 12.55 0.05 <0.001 

Interaction of sex of the child and 

previous state 

 
0.96 

 
0.06 

 
0.500 

Area of Residence 
Rural 
Urban 

0.75 0.06 <0.001 

Previous state 11.36 0.04 <0.001 

Interaction of area  and previous 

state  

 
1.21 

 
0.06 

 
0.002 

Father’s Education 
Illiterate/Literate 
Primary/Middle 
High school/ above 

 
0.91 
0.87 
1.00 

 
0.06 
0.08 

 
0.140 
0.091 

Previous state 11.94 0.06 <0.001 

Interaction father’s education and 

previous state 

 
 
1.03 

 
 
0.04 

 
 
0.394 

Mother’s Education 
     Illiterate/Literate 
     Primary/Middle 
     High school/above 

 
1.05 
1.04 
1.00 

 
0.08 
0.09 

 
0.588 
0.687 

Previous state 13.20 0.08 <0.001 

Interaction of mother’s education 

and previous state 

 
0.96 

 
0.05 

 
0.447 

 

 

 

 

 

 

 



 

 

 

Contd.. 

 

Variables OR Robust SE P value 

Consanguineous Marriage 
     Yes 
     No 

1.01 0.06 0.889 

Previous state 2.19 0.04 <0.001 

Interaction of consanguineous marriage 

and previous state 

 
1.05 

 
0.06 

 
0.455 

Birth Order 
     1 
     2 
     ≥3 

 
1.00 
0.89 
0.87 

 
 
0.07 
0.08 

 
 
0.084 
0.104 

Previous state 11.47 0.06 <0.001 

Interaction of birth order and previous 

state 

 
1.06 

 
0.04 

 
0.153 

Number of Family Members 
    ≤4 
    5 – 6 
    ≥7 

 
1.00 
0.90 
0.77 

 
 
0.07 
0.09 

 
 
0.151 
0.005 

Previous state 10.17 0.06 <0.001 

Interaction of family members and 

previous state 1.17 0.04 <0.001 

Type of House 
     Brick and/or cement 
     Brick and/or mud 
     Others 

 
1.00 
0.94 
0.95 

 
 
0.06 
0.08 

 
 
0.310 
0.500 

Previous state 11.94 0.04 <0.001 

Interaction of type of house and previous 

state 

 
1.05 

 
0.04 

 
0.159 

 
 
 

 

 

 

 

 



 

 

 

Contd.. 

 

Variables OR Robust SE P value 

Defecation Practice 
     Within the premises         
     Open fields 

1.26 0.06 <0.001 

Previous state 12.81 0.04 <0.001 

Interaction of defecation and previous 

state 

 
0.93 

 
0.06 

 
0.257 

Type of Fuel 
    Firewood/ Coal/Cow dung 
    Gas/Kerosene 

0.84 0.09 0.046 

Previous state 11.70 0.08 <0.001 

Interaction of type of fuel and  

previous state of malnutrition 

 
1.06 

 
0.09 

 
0.484 

Type of Roof 
    Thatched 
    Tiled     
    RCC/Pukka 
    Others     

 
1.04 
1.09 
1.03 
1.00 

0.16 
0.17 
0.18 

 
0.803 
0.589 
0.857 
 

Previous state 12.06 0.08 <0.001 

Interaction of risk factor and previous 

state of malnutrition 

 
1.01 

 
0.04 

 
0.718 

Presence of a separate Kitchen 
    No 
    Yes 

 
0.82 

 
0.07 

 
0.010 

Previous state 11.70 0.04 <0.001 

Interaction of presence of a kitchen and 

previous state of malnutrition 

 
1.24 

 
0.07 

 
0.002 

Type of Floor 
    Kucha 
    Pukka 

 
0.95 

 
0.06 

 
0.438 

Previous state 12.30 0.04 <0.001 

Interaction of type of floor and type of 

floor and previous state of malnutrition 

 
1.01 

 
0.06 

 
0.850 
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The unadjusted analysis using Markov regression for malnutrition using BMI classification is 

shown in Table 6.4.1a. This model was constructed using the previous state of malnutrition at 

time t-1 as a covariate and current state of malnutrition as the outcome.  

  

A male child on an average has 1.2 times the odds of having severe malnutrition as compared to 

female child (p value = 0.002) When the interaction of sex of the child and previous state of 

malnutrition was included there was no effect of interaction (p = 0.5) suggesting that association 

of sex of the child was similar irrespective of the previous state of malnutrition. The previous 

state of malnutrition had nearly 12 (p<0.001) times the odds of having severe malnutrition. The 

interaction of area of residence and previous state of malnutrition was significantly associated 

with current state of malnutrition suggesting that area of residence was significantly associated 

with current state of malnutrition irrespective of the previous state of malnutrition (OR=1.21, p 

value = 0.002). If there was no separate kitchen then there were nearly 1.2 times the odds of 

having severe malnutrition as compared to having separate kitchen in the household whatever 

may be the previous state of malnutrition (interaction of previous state of malnutrition and 

presence of separate kitchen, p value = 0.002). If the child lived in a house where defecation was 

within the household or latrine then there was on an average, 1.3 times the odds of having severe 

malnutrition (p<0.001).  Number of family members was also a significant factor that was 

associated with malnutrition at present irrespective of the previous state of malnutrition 

suggesting that increase in number of members more than the 4 per family then there was an 

increased risk of severe malnutrition. (OR: 1.17; p <0.001) (Table 6.4.1a).
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The adjusted regression analysis using transition probabilities for BMI classification has been 

presented in Table 6.4.1b.  

 

The previous state of malnutrition was very highly associated to present state of malnutrition 

satisfying Markovian Property after adjusting for other variables included for multivariable 

analysis (OR = 9.3; 95% CI: 7.8 – 11.0). Presence of no separate kitchen and its interaction with 

the previous state of malnutrition was associated with severe malnutrition at the current after 

adjusting for other risk factors and confounders (OR = 1.3 (95%CI: 1.1 – 1.5), p =0.004). 

Similarly, number of family members with previous state of malnutrition was significant after 

adjusting for other risk factors OR = 1.17(95% CI: 1.1 – 1.3, p = 0.002). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.4.1b: Adjusted Markov Regression analysis with Transition Probabilities using 

BMI classification: 

Variables OR    95% CI 
Robust 

SE 

P value 

Presence of a separate Kitchen 
    No 
    Yes 

 
 
0.91 

 
 
0.77 

 
 
1.08 

 
 
0.08 

 
 
0.302 

Defecation 
     Within the premises         
     Open fields 

 
1.26 

 
1.06 

 
1.48 

 
0.08 

 
0.007 

Birth Order 
     1 
     2 
     ≥3 

 
1.00 
0.91 
0.94 

 
 
0.79 
0.78 

 
 
1.05 
1.13 

 
 
0.07 
0.09 

 
 
0.194 
0.504 

Area of Residence 
     Rural 
     Urban 

 
0.96 

 
0.79 

 
1.16 

 
1.00 

 
0.660 

Sex of the child 
     Male 
     Female 

 
1.21 

 
1.07 

 
1.25 

 
0.06 

 
0.003 

 Father’s Education  
    Illiterate/Literate 
     Primary/Middle 
     High school/ above 

 
0.99 
1.03 
1.00 

 
0.88 
0.90 

 
1.11 
1.17 
 

 
0.06 
0.07 

 
0.868 
0.641 

Number of Family Members 
    ≤4 
    5 – 6 
    ≥7 

 
1.00 
0.93 
0.81 

 
 
0.80 
0.66 

 
 
1.08 
0.99 

 
 
0.06 
0.08 

 
 
0.354 
0.046 

Previous State 9.30 7.85 11.01 0.09 <0.001 
Interaction of no presence of 

kitchen and previous state 

 
1.28 

 
1.08 

 
1.51 

 
0.08 

 
0.004 

Birth order and previous state of 

malnutrition interaction 

 
1.01 

 
0.92 

 
1.10 

 
0.05 

 
0.890 

Interaction of area and previous 

state of malnutrition 

 
1.08 

 
0.93 

 
1.25 

 
0.07 

 
0.290 

Interaction of number of family 

members and previous state of 

malnutrition 

 
 
1.17 

 
 
1.06 

 
 
1.29 

 
 
0.05 

 
 
0.002 
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6.4.2 Transition Intensity Matrix for malnutrition using BMI classification:  

 

The risk factor analysis using transition intensity rate is shown in the Table 6.4.2a. This Table 

6.4.2a is an unadjusted analysis. The outcome is analyzed as a binary variable with categories 

‘Normal’ and ‘Malnutrition’. The hazard ratios for each risk factor from time t to t+1 were 

obtained. The adjusted analysis is shown in Table 6.4.2b. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.4.2a: Unadjusted Markov Regression Analysis using transition intensity matrix 

using BMI classification: 

 

 

Variables 

 t+1 

 Normal Moderate/Severe 

Malnutrition 

t Hazard Ratio      95% CI Hazard 

Ratio 

95% CI 

Sex of the child: 

Male Normal   1.00  

Malnutrition 1.00    

Female Normal   0.76 (0.67, 0.86) 

Malnutrition 1.11 (0.98, 1.26)   

Area of residence: 
Rural Normal   1.00  

Malnutrition 1.00    

Urban Normal   1.11 (0.98, 1.26) 

Malnutrition 1.43 (1.26, 1.62)   

Presence of a separate kitchen: 

Yes Normal   1.00  
 Malnutrition 1.00    

No Normal   0.97 (0.85, 1.11) 
 Malnutrition 0.64 (0.55, 0.75)   

Defecation 
Within the premises / 
toilet 

Normal 
1.00    

 Malnutrition   1.00  

Open fields Normals   0.97 (0.85, 1.09) 
 Malnutrition 0.84 (0.74, 0.95)   

Type of fuel used for cooking: 

Cowdung / Coal Normal 1.00    
 Malnutrition   1.00  

Gas / Kerosene Normal   0.96 (0.79, 1.16) 
 Malnutrition 1.12 (0.94, 1.34)   
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The hazard ratio of transition from normal to malnutrition for female children was 0.76 which 

means that females were 24% (14% - 33%) significantly less likely to be transiting from normal 

to malnutrition state as compared to male children. Children from urban area of residence 

transited significantly faster from malnutrition to normal state (HR = 1.43; 95% CI: 1.26- 1.62) 

as compared to children from rural areas of residence. If there was a separate kitchen in the 

household, those children had a hazard ratio of 1.6 (1.3 – 1.8) times of transiting from 

malnutrition state to normal state as compare to children who lived in houses where there was no 

separate kitchen (Table 6.4.2a). 

 

The adjusted analysis as shown in Table 6.4.2b also showed that children living in urban areas 

had transited faster from malnutrition state to normal state as well as from normal to malnutrition 

state (HR = 1.8; 95% CI: 1.4-2.2, HR = 1.3; 95% CI: 1.0-1.6) respectively. Female children 

transiting slower from normal to malnutrition state as compared to male children (HR = 0.76; 

95% CI: 0.67 – 0.86). If the defecation was in the open fields, then the rate of transition was 1.6 

(95% CI: 1.2 – 1.9) times more likely from malnutrition to normal as compared to defecation 

within the premises of the household (Table 6.4.2b). 

 

The observed and expected plots are slightly different for states 1 (normal state) and states 2 

(malnourished state classified being moderate or severe state). The expected plot has slightly 

underestimated the prevalence of “normal” children in state 1 where as in state 2, the prevalence 

of malnutrition children it has been overestimated (Figure 6.4.2).  

 



 

 

 

Table 6.4.2b: Adjusted Markov Regression Analysis using transition intensity matrix using 

BMI classification: 

 
 
 

 

 

 

 

Variables t 

t+1 

Normal Moderate/Severe 

malnutrition 

Hazard 

Ratio 

95% CI Hazard  

Ratio 

95% CI 

Sex of the child 

Male Normal   1.00  

Malnutrition 1.00    

Female Normal   0.76  (0.67, 0.86) 

Malnutrition 1.11 (0.98, 1.25)   

Area of residence: 
Rural Normal   1.00  

Malnutrition 1.00    

Urban Normal   1.28 (1.04, 1.58) 

Malnutrition 1.78 (1.44, 2.19)   

Presence of a separate kitchen: 

Yes Normal   1.00  
 Malnutrition 1.00    

No Normal   0.97  (0.83, 1.15) 
 Malnutrition 0.69 (0.58, 0.82)   

Defecation: 
Within the premises / toilet Normal   1.00  
 Malnutrition 1.00    

Open fields Normal   1.18 (0.96, 1.47) 

 Malnutrition 1.55 (1.25, 1.92)   

Type of fuel used for cooking: 
Cowdung / Coal Normal   1.00  
 Malnutrition 1.00    

Gas / Kerosene Normal   0.92 (0.75, 1.13) 
 Malnutrition 0.99 (0.81, 1.20)   



 

 

 

Figure 6.4.2 Observed and expected plot:  
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6.5 Generalized Estimating Equations for Height-for-Age classification: 

 

The risk factor analysis was also done using Height-for-Age classification which is displayed in 

tables 6.5.1 and 6.5.2 respectively. 

 

The unadjusted GEE analysis using height-for-age classification is presented in table 6.5.1. This 

table shows that on an average male children are at higher risk of being severely malnourished 

(OR = 1.1; 95% CI: 1.0 – 1.2) as compared to female children. Children living in the urban areas 

were 29% (23% - 33%) less likely to be severely malnourished as compared to children living in 

rural areas. If the mothers’ of children were illiterate or literate, then there was a high risk (OR =  

2.0; 95% CI: 1.7 – 2.4) of their children being severely malnourished as compared to children 

whose mothers had at least high school education. If also the father’s of children were illiterate 

or literate, then there was a high risk (OR =  1.7; 95% CI: 1.5 – 1.9) of their children being 

severely malnourished as compared to children whose mothers had at least high school 

education. Children who lived in houses where type of fuel used for cooking was firewood or 

coal or cow dung then they had a high risk of having severe malnutrition (OR = 1.7; 95% CI: 1.5 

– 2.0) as compared to children who lived in houses where type of fuel used for cooking was gas 

or kerosene. Children living in houses that had no separate kitchen also suffered high risk of 

severe malnutrition (OR = 1.2; 95% CI: 1.1 – 1.3) as compared to children living in houses that 

had a separate kitchen. 
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The table 6.5.2 shows the adjusted GEE model using Height-for-Age classification. On an 

average male children have significantly higher odds of being malnourished as compared to 

female children (OR:1.1; 95% CI: 1.0-1.2). Children from the rural area had lower severe 

malnutrition as compared to urban area (OR = 0.8; 95% CI: 0.7 - 0.9). On an average, children 

whose mothers were illiterate or literate had 1.4 (1.2 – 1.7) times the odds of having severe 

malnutrition as compared to mothers who had high school or above education. On an average, 

children whose mothers had primary or middle education also had higher odds of severe 

malnutrition as compared to mothers who had high school or above education (OR = 1.4; 

95%CI: 1.1 – 1.8). On an average, father’s whose children had primary or middle school 

education was 1.2 (1.0-1.3) times more likely to be malnourished as compared to children whose 

fathers had high school or above education. Children who lived in family that had more than 6 

members was significantly associated with severe malnutrition over time (OR = 1.02; 95% CI: 

1.002 – 1.04).  (Table 6.5.2).  

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.5.1: Bivariate analysis Generalized Estimating Equations (GEE) for Malnutrition 

as classified using Height-for-Age classification by socio-demographic and household 

variables: 

 

 

 

Risk Factors 

Classified using Height-for-Age 

Odds 

Ratio 

 

95% CI P 

value 
Normal 

       Mild/ 

   Moderate 
Severe 

n    %     n     % n  % 

Sex of the child 
    Male 
    Female 

 
4041 
4197         

  
43.5 
47.5 

 
2959 
3066 

 
31.9 
34.7 

 
2286 
1573     

 
24.6 
17.8 

1.11 1.03 1.20 0.006 

Area of Residence 
    Rural 
    Urban 

 
3394 
4844 

 
38.4 
52.2 

 
3113 
2912 

 
35.2 
31.4 

 
2330 
1529 

 
26.4 
16.5 

 
 
0.71 

 
 
0.66 

 
 
0.77 

 
 
<0.001 

Birth Order 
     1 
     2 
     ≥3 

 
1688 
1642 
4883 

 
49.9 
43.3 
44.9 

 
1112 
1320 
3561 

 
32.9 
34.8 
32.7 

 
  585 
  828 
2440 

 
17.3 
21.8 
22.4 

 
1.00 
1.15 
1.14 

 
 
1.01 
1.03 

 
 
1.29 
1.27 

 
 
0.012 
0.033 

Mother’s Education 
     Illiterate/ Literate 
     Primary/Middle                       
                School 
   High school/College 

 
4307 
2555 
 
1211 

 
40.9 
47.5 
 
65.5 

 
3536 
1878 
 
471 

 
33.6 
34.9 
 
25.5 

 
2676 
  942 
 
  167 

 
25.4 
17.5 
 
9.0 

 
1.98 
1.65 
 
1.00 

 
1.66 
1.37 

 
2.38 
2.00 

 
<0.001 
<0.001 

Father’s Education 
      Illiterate/ Literate 
     Primary/Middle  
     High school/        
         College 

 
1977 
3313 
 
2625 

 
36.5 
44.4 
 
58.2 

 
1862 
2605 
 
1301 

 
34.3 
34.9 
 
28.8 

 
1583 
1538 
 
  586 

 
29.2 
20.6 
 
13.0 

1.69 
1.40 
 

1.51 
1.25 
 

1.89 
1.56 
 

<0.001 
<0.001 
 

Number of Family 

Members 
     <=4 
     5 – 6 
     >6 

 
 
1223 
3873 
3142 

 
 
49.1 
46.4 
43.6 

 
 
  859 
2763 
2386 

 
 
34.5 
33.1 
33.1 

 
 
  408 
1704 
1676 

 
 
16.4 
20.4 
23.3 

 
 
1.00 
1.08 
1.15 

 
 
 
0.96 
1.02 

 
 
 
1.22 
1.30 

 
 
 
0.185 
0.023 

Fuel for cooking 
     Drug/Firewood 
     Gas/Kerosene 

 
6754 
1484 

 
43.0 
63.5 

 
5431 
  577 

 
34.6 
24.7 

 
3511 
  277 

 
22.4 
11.8 

1.74 1.49 2.02 <0.001 

Defecation 
     Within premises 
              /latrine 
     Open fields 

 
 
4312 
3926 

 
 
54.4 
38.9 

 
 
2359 
3649 

 
 
29.7 
36.1 

 
 
1261 
2527 

 
 
15.9 
25.0 

 
 
0.71 
 

 
0.65 

 
0.76 

 
<0.001 



 

 

 

Contd.. 

 

 

 

 

 

 

Risk Factors 

Classified using Height-for-Age Odds 

Rati

o 

 

95% CI 
P 

value 
Normal Moderate Severe 

n % n % n % 

Type of roof 
     Thatched 
     Tiled 
     RCC/Pukka/others        

 
2756 
3411
2071  

 
40.0 
47.4 
52.3 

 
2401 
2445 
1162   

 
34.9 
34.0 
29.3 

 
1726 
1337 
  725   

 
25.1 
18.6 
18.3 

 
1.40 
1.17 
1.00 

1.25 
1.04 

1.58 
1.32 

<0.001 
  0.010 

Type of Floor 
     Kucha 
     Pukka 

 
2756 
5482 

 
38.7 
50.2 

 
2523 
3485 

 
35.5 
31.9 

 
1838 
1950 

 
25.8 
17.9 

1.29 1.20 1.39 <0.001 

Presence of a Separate    

            Kitchen 
     Yes 
     No 

 
 
6547 
1691 

 
 
48.6 
37.2 

 
 
4307 
1701 

 
 
31.9 
37.4 

 
 
2630 
1158 

 
 
19.5 
25.5 

 
 
 
1.23 

 
 
 
1.14 

 
 
 
1.33 

 
 
 
<0.001 

Consanguineous 

Marriage 
     Yes 
     No    

 
 
2939 
5268 

 
 
43.7 
46.5 

 
 
2246 
3744 

 
 
33.4 
33.1 

 
 
1539 
2310 

 
 
22.9 
20.4 

 
1.07 

 
0.99 

 
1.16 

 
0.078 

Type of House 
      Brick and cement 
     Brick and/or mud 
     Others 

 
2480 
4175 
1583 

 
52.9 
45.2 
38.5 

 
1439 
3090 
1479 

 
30.7 
33.4 
36.0 

 
  768 
1974 
1046 

 
16.4 
21.4 
25.5 

1.00 
1.20 
1.38 

1.08 
1.24 

1.32 
1.54 

<0.001 
<0.001 

Follow-up 
     0 
     1 
     2 
     3 
     4 
     5 
     6 
     7 

 
1078 
995 
963 
958 
997 
1066 
1095 
1086 

 
43.2 
43.9 
42.4 
42.7 
44.0 
47.9 
49.6 
50.5 

 
773 
711 
740 
752 
777 
751 
773 
748 

 
31.0 
31.4 
32.6 
33.5 
34.4 
33.7 
35.0 
34.8 

 
643 
560 
566 
533 
490 
409 
341 
317 

 
25.8 
24.7 
24.9 
23.8 
21.6 
18.4 
15.4 
14.7 

0.96 0.96 0.97 <0.001 



 

 

 

Table 6.5.2: Adjusted GEE analysis for Malnutrition by socio-demographic and household 

variables using Height-for-Age classification: 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk Factors 
Odds 

Ratio 

 

95% CI 
P 

value 

Sex of the child 
    Male 
    Female 

1.10 1.01 1.19 0.020 

Defecation 
     Within premises/latrine 
     Open field 

0.95 0.81 1.11 0.517 

Area of Residence 
     Rural 
     Urban 

0.80 0.68 0.92 0.003 

Presence of a Separate    

Kitchen 
     No 
     Yes 

0.98 0.88 1.10 0.781 

Type of Floor 
     Kucha 
     Pukka 

1.06 0.93 1.21 0.405 

Type of House 
     Brick and/or cement 
     Brick and/or mud 
     Others 

1.00 
0.95 
0.85 

 
0.85 
0.71  

 
1.07 
1.01 

 
0.423 
0.051 

Type of Roof 
    Thatched 
    Tiled 
    RCC/Pukka  

1.11 
1.08 
1.00 

0.93 
0.95 
 

1.33 
1.23 
 

0.239 
0.240 
 

Type of Fuel used for cooking 
     Firewood/Cow Dung 
     Gas / Kerosene 

1.19 1.00 1.42 0.055 

Mother’s Education 
     Illiterate/Literate 
     Primary/Middle school 
     High school/ College 

1.45 
1.37 
1.00 

1.19 
1.11 
 

1.69 
1.77 
 

<0.001 
<0.001 
 

Father’s Education 
     Illiterate/Literate 
     Primary/Middle school 
     High school/ College 

1.17 
1.30 
1.00 

1.03 
1.14 
 

1.32 
1.49 
 

0.012 
<0.001 
 

Birth Order 
     1 
     2 
     >=3 

1.00 
1.15 
1.03 

 
1.02 
0.91 

 
1.31 
1.16 

 
0.026 
0.618 



 

 

 

Contd… 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk Factors 
Odds 

Ratio 

 

95% CI 
P 

value 

Number of Family Member 
    <=4 
    5-6 
    >=6 

1.00 
1.07 
1.02 

 
0.93 
0.90 

 
1.23 
1.17 

 
0.373 
0.745 

Interaction of male children 

with follow-up 
1.00 0.99 1.01 0.425 

Interaction of defecation 

within premises with follow-

up 

 
0.99 

 
0.97 

 
1.01 

 
0.267 

Interaction of kucha type of 

floor with follow-up 
0.99 0.97 1.00 0.097 

Interaction of kitchen present 

with follow-up 
1.00 0.99 1.01 0.842 

Interaction of brick and mud 

type of house with follow-up 

 
1.02 

 
1.00 

 
1.04 

 
0.060 

Interaction of brick and other 

type of house with follow-up 

 
1.01 

 
0.99 

 
1.02 

 
0.165 

Interaction of thatched roof 

with follow-up 
1.01 0.99 1.03 0.430 

Interaction of tiled roof with 

follow-up 
1.00 0.99 1.02 0.553 

Interaction of illiterate or 

literate education of mother 

with follow-up 

1.01 0.98 1.03 0.513 

Interaction of primary or 

middle school educated 

mother with follow-up 

1.00 0.98 1.02 0.921 

Interaction of illiterate or 

literate father with follow-up 

 
1.01 

 
0.99 

 
1.02 

 
0.258 

Interaction of primary or 

middle educated father with 

follow-up 

 
1.01 

 
0.99 

 
1.03 

 
0.373 

Interaction of first child with 

follow-up 

 
0.99 

 
0.98 

 
1.01 

 
0.287 

Interaction of 5-6 members in 

a family with follow-up 

 
1.02 

 
1.00 

 
1.03 

 
0.050 

Interaction of >6 members in 

a family with follow-up 

 
1.02 

 
1.002 

 
1.04 

 
0.029 
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6.6 Markov Chain using Height-for-Age classification (stunted): 

6.6.1 Transition Probability and Mean Passage Time – overall  

 

The transition probabilities from one state of malnutrition to another state are presented in table 

6.6.1a for the overall using Height-for-age classification. The transition probability from severe 

state at time t to moderate state at time t+1 is 0.14 and from severe to normal is 0.001. The 

transition probability from moderate to normal is 0.10. (Table 6.6.1a).  

 

The overall first mean passage times are presented in table 6.6.1b which were obtained using 

height-for-age classification. The transition from severe state of malnutrition to normal state and 

moderate state takes about 10 (8.4 – 11.3) years and 4 (2.9 – 4.3) years respectively (Table 

6.6.1b). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.6.1a: Overall Transition Probability Matrices of Malnutrition according to Height-

for-Age classification 

 

 

Table 6.6.1b: Overall Mean Passage Time (years) and 95% Confidence Interval using 

Height-for-Age classification 

 

 

 

 

 

 

 

 

 

 Grading (t) Grading (t+1) 

Normal Moderate Severe Total no. 

Overall 
Normal 0.95 0.05 0.001 6849 

Moderate 0.10 0.85 0.04 5059 

Severe 0.001 0.14 0.86 3361 

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Overall:       

   Normal         

 

 
0.83 (0.43, 1.24) 

 
9.85 (7.98, 11.70) 

 
41.32 (33.82, 48.87) 

   Moderate          

 

6.39 (5.02, 7.76) 1.66 (0.81, 2.50) 32.39 (24.99, 48.87) 

   Severe 9.86 (8.38, 11.34) 3.64 (2.93, 4.35) 5.09 (1.53, 8.56) 
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6.6.2 Transition Probability and Mean Passage Time using Height-for-Age classification 

(stunted) by sex of the child: 

 

The transition probabilities for male children and female children using Height-for-age 

classification are presented in Table 6.6.2a. The probability of transition for male and female 

children is similar when moving from severe to normal state of malnutrition from time t to t+1 

(0.002 and 0.001 respectively). The probability of transition from severe state to moderate for 

male child was 0.13 and for female child was 0.15 (Table 6.6.2a). 

 

The first mean passage times for male and female children are presented in Table 6.6.2b. The 

mean passage time when moving from severe state of malnutrition to normal state among male 

children was 10 (8.5 – 11.5) years and among female children was 9.7 (8.2 – 11.1) years. The 

average number of years taken to move from severe state of malnutrition to moderate state of 

malnutrition among male and female children was 3.9 (3.2 – 4.7) and 3.3 (2.6 – 3.9) years 

respectively.  The average number of transitions from severe to normal and severe to moderate 

state of malnutrition was almost similar among male and female children (Table 6.6.2b). 

 

The hypothesis testing to see if the transitions differed for male and female children was tested 

using log linear model whose results are presented in Table 6.6.2c. Log linear models suggest 

there was no difference in the transitions between male and female children (Table 6.6.2c). 
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6.6.3 Transition Probability and Mean Passage Time using Height-for-Age classification 

(stunted) by area of residence: 

 

The Table 6.6.3a presents the transition probabilities by area of residence. The probability of 

transition from severe state to normal state for children living in rural was 0.004 and 0.003 for 

children in the urban areas. The transition from severe state to moderate state was slightly higher 

for children living in urban as compared to children in rural areas (0.17 vs 0.12). The transition 

probability from moderate state of malnutrition to normal state for children in the rural and urban 

areas was 0.08 and 0.12 respectively (Table 6.6.3a).  

 

The transition time from severe to moderate state of malnutrition for children in rural areas takes 

about 4.2 (3.4 – 5.0) years where as for those children in the urban areas it takes about 3.0 (2.4 – 

3.6) years. However, the transition from severe state to normal state is faster for children living 

in urban areas than for those children in rural area which is about 8.1 (6.9 – 9.3) years as 

compared to about 11.9 (10.1 – 13.7) years. The time taken to transit from moderate state to 

normal state of malnutrition for children living in rural area is 7.7 (6.1 – 9.4) years and it was 5.3 

(4.2 – 6.4) years for children living in urban area. This transition time matrix shows that children 

in the urban areas return to normal from severe state of malnutrition faster than children living in 

rural areas (Table 6.6.3b). 

 

The result of the log linear model for area of residence is presented in Table 6.6.3c. The log 

linear model showed that the transition probabilities are different for children across rural and 

urban area (p = 0.028) (Table 6.6.3c). 



 

 

 

Table 6.6.2a: Transition Probability Matrices of Malnutrition according to Height-for-age 

classification by sex of the child: 

 

 
Grading (t) 

Grading (t+1) 

Normal Moderate Severe Total no. 

Males 

Normal 0.94 0.05 0.002 3353 

Moderate 0.11 0.84 0.05 2476 

Severe 0.002 0.13 0.87 1997 

Females 

Normal 0.95 0.05 0.001 3496 

Moderate 0.09 0.87 0.04 2583 

Severe 0.001 0.15 0.84 1364 

 

Table 6.6.2b: Mean Passage Time (years) and 95% Confidence Interval by Sex of the child 

using Height-for-age classification 

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Males: 

   Normal             

 

 
0.86 (0.42, 1.29) 

 
9.11 (7.38, 10.84) 

 
35.22 (28.78, 41.74) 

   Moderate         

 

6.28 (4.89, 7.68) 1.69 (0.87, 2.52) 27.28 (21.15, 33.52) 

   Severe            

 

9.99 (8.46, 11.52) 3.93 (3.18, 4.69) 4.11 (1.19, 6.98) 

Females: 

  Normal             

 

 
0.81 (0.40, 1.21) 

 
10.70 (8.68, 12.72) 

 
49.60 (40.41, 58.77) 

  Moderate         

 

6.52 (5.16, 7.86) 1.64 (0.75, 2.52) 39.43 (30.58, 48.33) 

  Severe            

 

9.71 (8.24, 11.15) 3.27 (2.65, 3.88) 6.63 (2.15, 11.11) 

 

Table 6.6.2c:  Results of Log linear Model: 

Model Model LR Df Deviance 

(G
2
) 

Difference 

in df 

P value 

 

Model 1 

 

Saturated Model 

 

0.000 - - - - 

Model 2 Sex of the child 1.656 4 1.656 - 0 4 0.799 

       LR – Likelihood ratio 



 

 

 

Table 6.6.3a: Transition Probability Matrices of Malnutrition according to Height-for-age 

classification by area of residence: 

 
Grading (t) 

Grading (t+1) 

Normal Moderate Severe Total no. 

Rural 

Normal 0.96 0.04 0.0003 2803 

Moderate 0.08 0.88 0.03 2598 

Severe 0.004 0.12 0.88 2022 

Urban 

Normal 0.94 0.05 0.002 4046 

Moderate 0.12 0.82 0.05 2461 

Severe 0.003 0.17 0.83 133 

 

Table 6.6.3b: Mean Passage Time (years) and 95% Confidence Interval by Area of 

residence using Height-for-age classification 

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Rural: 

   Normal            

 

 
0.83 (0.37, 1.30) 

 
11.52 (9.32, 13.75) 

 
53.47 (43.74, 63.30) 

   Moderate         

 

7.75 (6.09, 9.40) 1.59 (0.69, 2.48) 42.33 (32.69, 51.95) 

   Severe            

 

11.88 (10.08, 13.66) 4.21 (3.41, 5.00) 5.59 (1.36, 9.80) 

Urban: 

  Normal             

 

 
0.81 (0.44, 1.17) 

 
8.94 (7.24, 10.62) 

 
34.99 (28.63, 41.27) 

  Moderate         

 

5.32 (4.20, 6.44) 1.76 (0.90, 2.59) 27.10 (20.76, 33.45) 

  Severe            

 

8.12 (6.88, 9.34) 3.04 (2.43, 3.64) 5.22 (1.91, 8.56) 

 

Table 6.6.3c:  Results of Log linear Model: 

Model Model LR Df Deviance 

(G
2
) 

Difference 

in df 

P value 

 

Model 1 

 

Saturated Model 

 

0.000 - - - - 

Model 2 Area of residence 10.863 4 10.863 - 0 4 0.028 

      LR – Likelihood ratio 
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6.6.4 Transition Probability and Mean Passage Time using Height-for-Age classification 

(stunted) by presence of a separate kitchen: 

 

The transition probability matrix from one state of malnutrition at time t to another state of 

malnutrition at time t+1 by the presence of a separate kitchen is presented in Table 6.6.4a. The 

probability of transition from severe state to normal for children living in house where a separate 

kitchen was present was 0.002 and 0 if there was no separate kitchen. The probability of 

transition from moderate to normal state of malnutrition was 0.11 for those children living in 

house where there was a separate kitchen as compared to 0.083 for those children living in 

houses when there was no separate kitchen. The probability of transition from severe to moderate 

for children living in house where a separate kitchen as present and for children living in house 

where separate kitchen was not present was 0.14 and 0.13 respectively (Table 6.6.4a). 

 

The mean passage time for transition from one state to another by presence of a separate kitchen 

is presented in Table 6.6.4b. The number of years taken to transit from severe to moderate was 

about 3.5 (2.8 – 4.2) years for children living in house where there was a separate kitchen and 

about 3.7 (3.0 – 4.4) years for children living in house where there was no separate kitchen. The 

number of years to transit from severe to normal when for children living in house that had a 

separate kitchen was about 9.2 (7.8 – 10.6) years whereas the number of years to transit from 

severe to normal state of malnutrition for children living in houses that had no separate kitchen 

was about 11.6 (9.8 – 13.4) years (Table 6.6.4b).  



 

~ 106 ~ 

 

The result of log linear model comparing the presence and absence of a separate kitchen is 

presented in Table 6.6.4c. The deviance measure for the log linear model was 2.47 at 4 degrees 

of freedom which suggested that there was no difference in the transition from one state to 

another in the presence and absence of a separate kitchen (Table 6.6.4c). 

 

6.6.5 Transition Probability and Mean Passage Time using Height-for-Age classification 

(stunted) by defecation: 

 

The transition probability matrix by defecation is presented in Table 6.6.5a. The transition from 

severe state to normal state of malnutrition was 0.002 for children living in houses when the 

defecation was within the premises of the house and 0.001 for children in houses when the 

defecation was in the open fields. The transition probability from severe to moderate state was 

0.17 for children in house where defecation was within the premises as compared to 0.11 for 

those children where defecation was in the open fields. The transition probability from moderate 

to normal was 0.13 for children where defecation was within the premises and 0.08 for children 

living in houses where the defecation was in the open fields (Table 6.6.5a). 

 

The mean number of years for transiting from one state to another is presented in Table 6.6.5b. 

The mean number of years for moving from severe state to normal state of malnutrition was 7.8 

(6.6 – 9.0) years for those children in houses where defecation was within the premises of the 

house and for children where the defecation was in the open fields it took about 12.6 (10.7 – 

14.6) years. The number of years to move from moderate to normal state was about 4.9 (3.9 – 
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6.0) years for children in houses where defecation was within the premises as compared to 

children in houses where defecation was in the open fields which was 8.2 (6.4 – 9.9) years.   

(Table 6.6.5b). 

 

The result of the log linear analysis with defecation in the model is presented in Table 6.6.5c. 

The deviance value was 35.6 at 4 degrees of freedom which was statistically significant 

(p<0.001) suggesting that the transition probabilities differed across the children who had 

different defecation habits (Table 6.6.5c).  

 

6.6.6 Transition Probability and Mean Passage Time using Height-for-Age classification 

(stunted) by type of fuel used for cooking: 

 

The transition probability matrix by type of fuel used for cooking is presented in Table 6.6.6a. 

The transition from severe to normal state of malnutrition was 0.002 and 0 for those children 

who lived in houses where the type of fuel used for cooking was firewood or cow dung and gas 

or kerosene respectively. The transition percentage from moderate state to normal state of 

malnutrition for those children who lived in houses where the type of fuel used for cooking was 

firewood or cow dung and gas or kerosene was 0.09 and 0.18 respectively (Table 6.6.6a). 

 

The mean passage time of transition from one state of malnutrition to another state by type of 

fuel used for cooking is presented in Table 6.6.6b. The number of years taken to transit from 

severe state to normal state malnutrition for those children who lived in houses where the type of 

fuel used for cooking was firewood or cow dung and gas or kerosene was 10.4 (8.8 – 12.1) years 
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and 7.2 (6.2 – 8.2) years respectively. The transition in terms of years from moderate state to 

normal for those children who lived in houses where the type of fuel used was firewood or cow 

dung and gas or kerosene was about 7 (5.5 – 8.5) years and about 3.5 (2.7 – 4.3) years 

respectively The mean number of years taken to transit from severe state of malnutrition to 

moderate state of malnutrition among those children who lived in houses where the type of fuel 

used for cooking was firewood or coal or cow dung and for those who lived in houses where the 

type of fuel used for cooking was gas or kerosene was 7.0 (5.5 – 8.5) years and 3.5 (2.7 – 4.3) 

years respectively. This transition time matrix suggested that children living in houses where the 

type of fuel used for cooking was gas or kerosene transited took lesser time to transit to normal 

state from severe state of malnutrition as compared to children living in houses that used 

firewood or coal or cow dung for cooking food  (Table 6.6.6b).  

 

The result of the log linear model by type of fuel used for cooking is presented in Table 6.6.6c. 

The deviance value comparing the saturated and reduced model with type of fuel was 15.3 at 4 

degrees of freedom which was statistically significant (p = 0.004) (Table 6.6.6c). 

 

 

 

 

 

 

 



 

 

 

Table 6.6.4a: Transition Probability Matrices of Malnutrition according to Height-for-age 

classification by presence of a separate kitchen: 

 
Grading (t) 

Grading (t+1) 

Normal Moderate Severe Total no. 

Yes 

Normal 0.95 0.05 0.001 5454 

Moderate 0.11 0.85 0.04 3617 

Severe 0.002 0.14 0.85 2286 

No 

Normal 0.94 0.06 0.0007 1395 

Moderate 0.083 0.87 0.04 1428 

Severe 0.00 0.13 0.87 1015 

 

Table 6.6.4b: Mean Passage Time (years) and 95% Confidence Interval by Presence of a 

separate kitchen using Height-for-age classification: 

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Yes: 

   Normal             

 

 
0.80 (0.41, 1.18) 

 
10.13 (8.02, 12.04) 

 
42.70 (34.83, 50.52) 

   Moderate         

 

5.90 (4.65, 7.14) 1.76 (0.86, 2.67) 33.67 (26.02, 41.25) 

   Severe            

 

9.21 (7.80, 10.59) 3.54 (2.84, 4.25) 5.48 (1.71, 9.18) 

No: 

  Normal             

 

 
0.95 (0.41, 1.48) 

 
8.88 (7.18, 10.57) 

 
37.62 (30.80, 44.39) 

  Moderate         

 

7.85 (6.19, 9.50) 1.39 (0.72, 2.10) 29.16 (22.45, 35.85) 

  Severe            

 

11.58 (9.80, 13.38) 3.73 (3.05, 4.41) 4.41 (1.29, 7.54) 

 

Table 6.6.4c:  Results of Log linear Model: 

Model Model LR Df Deviance (G
2
) Difference 

in df 

P 

value 

Model 1 Saturated Model 0.000 - - - - 

Model 2 Presence of a 

separate kitchen 

2.468 4 2.468 - 0 4 0.650 

      LR – Likelihood ratio 



 

 

 

Table 6.6.5a: Transition Probability Matrices of Malnutrition according to Height-for-age 

classification by Defecation: 

 
Grading (t) 

Grading (t+1) 

Normal Moderate Severe Total no. 

Within the premises 

of the house 

Normal 0.95 0.05 0.002 3583 

Moderate 0.13 0.82 0.05 1995 

Severe 0.002 0.17 0.83 1097 

Open fields 

Normal 0.95 0.05 0.0006 3266 

Moderate 0.08 0.88 0.04 3050 

Severe 0.001 0.11 0.89 2153 

 

Table 6.6.5b: Mean Passage Time (years) and 95% Confidence Interval by defecation using 

Height-for-age classification: 

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Within the 

premises of the 

house 

   Normal             

 

 
0.76 (0.44, 1.09) 

 
9.54 (7.73, 11.33) 

 
39.49 (32.22, 
46.72) 

   Moderate         

 

4.89 (3.86, 5.92) 1.92 (0.99, 2.84) 31.21 (24.06, 
38.24) 

   Severe            

 

7.77 (6.60, 8.93) 3.03 (2.44, 3.63) 5.83 (2.09, 9.50) 

Open fields 

  Normal             

 

 
0.90 (0.38, 1.43) 

 
10.20 (8.25, 12.14) 

 
43.61 (35.64, 
51.53) 

  Moderate         

 

8.16 (6.39, 9.93) 1.52 (0.69, 2.33) 33.89 (26.07, 
41.62) 

  Severe            

 

12.64 (10.68, 14.60) 4.71 (3.80, 5.61) 4.21 (0.91, 7.53) 

 

Table 6.6.5c:  Results of Log linear Model: 

Model Model LR Df Deviance 

(G
2
) 

Difference 

in df 

P value 

Model 1 Saturated Model 0.000 - - - - 

Model 2 Defecation 35.580 4 35.580 - 0 4 <0.001 

       LR – Likelihood ratio 



 

 

 

Table 6.6.6a: Transition Probability Matrices of Malnutrition according to Height-for-age 

classification by type of fuel used for cooking: 

 
Grading (t) 

Grading (t+1) 

Normal Moderate Severe Total no. 

Firewood or Cow dung 

Normal 0.95 0.05 0.002 5615 

Moderate 0.09 0.86 0.04 4553 

Severe 0.002 0.14 0.86 3047 

Gas or Kerosene 

Normal 0.95 0.05 0 1234 

Moderate 0.18 0.78 0.04 492 

Severe 0 0.13 0.86 320 

 

Table 6.6.6b: Mean Passage Time (years) and 95% Confidence Interval by type of fuel used 

for cooking using Height-for-age classification 

Time t 

Time (t+1) 

Mean Passage Time (95% CI) (in years) 

Normal Moderate Severe 

Firewood or Cow 

dung: 

   Normal             

 

 
0.87 (0.41, 1.33) 

 
9.76 (7.91, 11.59) 

 
38.50 (31.62, 
45.41) 

   Moderate         

 

6.99 (5.52, 8.46) 1.57 (0.76, 2.38) 29.78 (22.91, 
36.62) 

   Severe            

 

10.45 (8.84, 12.07) 3.66 (2.95, 4.36) 4.72 (1.45, 7.92) 

Gas or Kerosene: 

  Normal             

 

 
0.67 (0.44, 0.89) 

 
10.28 (8.31, 12,24) 

 
75.37 (61.10, 
89.18) 

  Moderate         

 

3.48 (2.69, 4.26) 2.52 (1.34,3.66) 65.08 (50.69, 
79.25) 

  Severe            

 

7.20 (6.18, 8.23) 3.72 (3.04, 4.39) 9.24 (2.43, 15.99) 

Table 6.6.6c: Result of Log linear Model: 

Model Model LR Df Deviance 

(G
2
) 

Difference 

in df 

P value 

Model 1 Saturated Model 

 

0.000 - - - - 

Model 2 Type of fuel used 

for cooking 

15.299 4 15.299 - 0 4 0.004 

     LR – Likelihood ratio 
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6.7. Markov Regression Analysis using transition probabilities for Height-for-Age 

classification: 

 

Markov regression analysis using transition probabilities and transition intensities are presented 

in section 6.7. The Markov regression analysis for Height-for-Age classification using transition 

probabilities is presented in Table 6.7.1a and 6.7.1b. The Table 6.7.1a shows the unadjusted 

analysis and Table 6.7.1b shows the adjusted analysis. The unadjusted analysis presented in 

Table 6.7.1a has been done for three models. The adjusted analysis was performed with the 

significant at p = 0.15 obtained from the third model. 

 

 

 

 

 



 

 

 

Table 6.7.1a: Unadjusted Markov regression analysis considering the transition 

probabilities using Height-for-Age classification: 

Risk Factors OR 95% CI Robust 

SE 

P value 

Sex of the child 
     Male 
     Female 

1.08 
 

0.90 
 

1.30 1.00 0.387 

Previous state (Mit) 145.34 127.67 165.46 9.63 <0.001 

Interaction of sex of 

the child and 

previous state 

 
 

1.01 

 
 

0.87 

 
 

1.16 
0.07 

 
 

0.934 

Area of Residence 
     Rural 
     Urban 

 
 

1.23 

 
 

1.02 

 
 

1.47 

 
 

0.11 

 
 

0.031 

Previous state 172.89 151.23 197.65 11.78 <0.001 

Interaction of area 

and urban area of 

residence 

 
 

0.72 

 
 

0.62 

 
 

0.83 

 
 

0.05 

 
 

<0.001 

Father’s Education 
     Illiterate/Literate 
     Primary/Middle 
     High school/ above 

 
1.45 
1.26 
1.00 

 
1.14 
1.08 

 
1.85 
1.48 

 
0.17 
0.10 

 

 
0.002 
0.004 

Previous state 144.20 124.90 166.49 10.63 <0.001 

Interaction of 

father’[s education 

and previous state 

 
 

0.99 

 
 

0.91 

 
 

1.10 

 
 

0.05 

 
 

0.992 

Mother’s Education          
    Illiterate/Literate 
     Primary/Middle 
     High school /above 

 
1.40 
1.22 
1.00 

 
1.08 
0.99 

 
1.83 
1.50 

 
0.18 
0.12 

 
0.012 
0.058 

Previous state 139.05 114.92 168.24 13.27 <0.001 

Interaction of 

mother’s education 

and previous state 

 
 

1.02 

 
 

0.92 

 
 

1.14 

 
 

0.05 

 
 

0.639 

 

 

 

 

 



 

 

 

Contd.. 

 

Variables 
OR 95% CI 

Robust 

SE 

P value 

Consanguineous 

Marriage 
     Yes 
     No 

 
1.03 

 
0.85 

 
1.24 

 
0.09 

 
0.773 

Previous state 142.46 126.67 160.21 10.03 <0.001 

Interaction of 

consanguineous and 

previous state  

 
 

1.07 

 
 

0.92 

 
 

1.24 

 
 

0.90 

 
 

0.370 

Birth Order 
     1 
     2 
     ≥3 

 
1.00 
1.06 
1.05 

 
 

0.88 
0.83 

 
 

1.28 
1.32 

 
 

0.10 
0.12 

 
 

0.533 
0.686 

Previous state 145.36 122.78 172.08 12.70 <0.001 

Interaction of birth 

order and previous 

state 

 
 

1.00 

 
 

0.91 

 
 

1.10 

 
 

0.05 

 
 

0.950 

Number of Family 

Members 
    ≤4 
    5 – 6 
    ≥7 

 
 

1.00 
1.07 
1.07 

 
 
 

0.88 
0.82 

 
 
 

1.29 
1.41 

 
 
 

0.10 
0.14 

 
 
 

0.496 
0.611 

Previous state 145.30 122.68 172.08 12.68 <0.001 

Interaction of family 

members and 

previous state 

 
 

1.00 

 
 

0.90 

 
 

1.11 

 
 

0.05 

 
 

0.936 

Type of House 
     Brick and/or 
cement 
     Brick and/or mud 
     Others 

 
1.00 
1.13 
1.20 

 
 

0.96 
0.92 

 
 

1.34 
1.57 

 
 

0.09 
0.16 

 
 

0.130 
0.166 

Previous state 140.36 121.56 162.07 10.43 <0.001 

Interaction of type of 

house and previous 

state 

 
 

1.04 

 
 

0.94 

 
 

1.15 

 
 

0.05 

 
 

0.477 

 
 

 



 

 

 

Contd.. 

 

Variables 
OR 95% CI 

 Robust 

SE  

P Value 

Defecation Practice 
     Within the premises        
     Open fields 

0.97 0.81 1.17 0.90 0.787 

Previous state 157.11 138.73 177.93 10.03 <0.001 

Interaction of 

defecation and 

previous state 

 
 

0.83 

 
 

0.71 

 
 

0.95 

 
 

0.06 

 
 

0.010 

Type of Fuel 
    Firewood/ Coal/Cow     
         dung 
    Gas/Kerosene 

 
1.38 

 
1.06 

 
1.81 

 
0.20 

 
0.018 

Previous state 146.70 118.26 181.97 16.34 <0.001 

Interaction of risk 

factor and previous 

state 

 
 

0.99 

 
 

0.79 

 
 

1.23 

 
 

0.11 

 
 

0.912 

Type of Roof 
    Thatched 
    Tiled     
    RCC/Pukka/ Others 

1.33 
1.25 

 
1.12 
0.99 

 
1.58 
1.60 

0.15 
0.12 

0.001 
0.059 

Previous state 157.58 135.12 183.77 12.59 <0.001 

Interaction of risk 

factor and previous 

state 

 
 

0.93 

 
 

0.85 

 
 

1.03 

 
 

0.04 

 
 

0.163 

Presence of a separate 

Kitchen 
    No 
    Yes 

 
1.20 

 
 

0.97 

 
 

1.48 

 
0.12 

 
0.099 

Previous state 146.71 131.17 164.10 8.59 <0.001 

Interaction of risk 

factor and previous 

state of malnutrition 

 
 

0.97 

 
 

0.82 

 
 

1.14 

 
 

0.81 

 
 

0.686 

 

 

 

 



 

 

 

 

Contd… 

 

Risk Factors 
OR 95% CI 

Robust 

SE 
P value 

Type of Floor 
    Kucha 
    Pukka 

1.09 0.90 1.32 0.11 0.360 

Previous state 142.49 126.55 160.43 8.79 <0.001 

Interaction of risk 

factor and previous 

state of malnutrition 

 
 

1.05 

 
 

0.90 

 
 

1.22 

 
 

0.08 

 
 

0.518 
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The unadjusted analysis using height-for-age using the transition probabilities is presented in 

Table 6.7.1a.  

 

The unadjusted analysis showed that previous severe state of malnutrition had high odds of 

having severe malnutrition at the current state. In other words, malnutrition at the previous time 

was the main risk factor that affected the malnutrition at the current time. Apart from the 

previous time malnutrition there were some other risk factors associated with present state of 

malnutrition such as area of residence, education of mother and father of the children, defecation, 

presence of a separate kitchen and type of fuel used for cooking. Children from urban areas were 

20% less likely to be severely malnourished irrespective of previous state of malnutrition. 

Children whose father were illiterate or literate were 1.4 (1.1 – 1.8) times the odds of being 

severely malnourished as compared to children whose fathers had high school or college 

education. Children whose father had primary or middle school education also had higher odds 

of malnutrition as compared to children whose father had education of high school or above (OR 

= 1.3; 95% CI: 1.1-1.5). Children whose mothers were illiterate of literate had higher odds of 

severe malnutrition (OR = 1.4; 95% CI: 1.1 – 1.8) as compared to children whose mothers had 

atleast high school education. Children who lived in houses where defecation was within the 

household premises or latrines were 17% less likely to be severely malnourished irrespective of 

previous state of malnutrition as compared to children who defecated in open fields (5% - 20%) 

(Table 6.7.1a). 
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The adjusted regression analysis using transition probabilities is presented in Table 6.7.1b using 

height-for-age classification.  

 

If the children defecated within the house or latrines then those children were 35% less likely to 

be severely malnourished as compared to children who defecated in the open fields after 

adjusting for other risk factors (11% - 52%). Children who lived in rural areas had higher odds of 

severe malnutrition as compared to children in urban areas (OR = 2; 95% CI: 1.4-3.0). Father’s 

education was also associated with severe malnutrition at the current state. Children whose 

fathers were illiterate or literate were 1.3 times more likely to be malnourished as compared to 

children whose fathers had at least high school education (1.1 – 1.5) Children who lived in urban 

areas were 31% less likely to be severely malnourished irrespective of previous state of 

malnutrition as compared to children living in rural area. (Table 6.7.1b). 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.7.1b: Adjusted Markov Regression analysis with Transition Probabilities using 

Height-for-age classification: 

Variables OR 95% CI Robust SE P value 

Presence of a separate 

Kitchen 
    No 
    Yes 

 
 

1.04 

 
 

0.89 

 
 

1.21 

 
 

0.597 

 
 

0.78 

Defecation Practice 
     Within the premises         
     Open fields 

 
0.65 

 
0.48 

 
0.89 

 
0.007 

 
0.99 

Mother’s Education 
     Illiterate/Literate 
     Primary/Middle 
     High school/ above 

 
1.21 
1.18 
1.00 

 
0.99 
0.97 

 
1.47 
1.43 

 
0.064 
0.097 

 
0.12 
0.11 

 
Area of Residence 
     Rural 
     Urban 

 
1.96 

 
1.43 

 
2.68 

 
<0.001 

 
0.29 

Type of House 
     Brick and/or cement 
     Brick and/or mud 
     Others 

 
1.00 
1.03 
1.11 

 
 

0.90 
0.90 

 
 

1.19 
1.34 

 
 

0.624 
0.335 

 
 

0.07 
0.12 

 Father’s Education  
    Illiterate/Literate 
     Primary/Middle 
     High school/ above 

 
1.26 
1.15 
1.00 

 
1.07 
0.99 

 
1.49 
1.32 

 
0.005 
0.051 

 
0.10 
0.83 

Type of fuel used for cooking 
     Firewood/Coal/Cow Dung 
     Gas/Kerosene 

 
1.13 

 
0.94 

 
1.36 

 
0.192 

 
0.11 

Type of roof 
     Thatched 
     Tiled 
     RCC/Pukka/Others 

 
1.11 
1.02 
1.00 

 
0.87 
0.82 

 
1.43 
1.26 

 
0.394 
0.873 

 
0.14 
0.11 

Previous State 176.22 148.89 208.57 <0.001 15.41 
Interaction of defecation 

within premises and 

previous time malnutrition 

 
1.24 

 
0.98 

 
1.58 

 
0.073 

 
0.15 

Interaction of type of roof 

with previous time 

malnutrition 

 
 

0.98 

 
 

0.89 

 
 

1.08 

 
 

0.645 

 
 

0.05 
Interaction of urban area of 

residence with previous time 

malnutrition 

 
 

0.59 

 
 

0.46 

 
 

0.75 

 
 

<0.001 

 
 

0.07 
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6.8. Markov Regression Analysis using intensity rate for Height-for-Age 

classification: 

 

The Markov regression analysis using instantaneous rate of transition by height-for-age 

classification is presented in the section 5.8. The unadjusted analysis using intensity rate is 

presented in Table 6.8.1a where as adjusted analysis is presented in Table 6.8.1b. The Markov 

regression using intensity rates was performed considering only two categories which are 

“normal” and “moderate or severe” malnutrition.  

 

The unadjusted analysis using transition intensity matrix is presented in Table 6.8.1a. The 

unadjusted analysis showed that children residing in the rural areas and transiting from normal to 

malnutrition had 1.4 times the hazards of being malnourished as compared to children living in 

urban areas (1.2 – 1.7). At the same time, children living in the urban areas transited faster to 

normal from malnutrition as compared to children living in rural areas (HR = 1.8; 95% CI: 1.5-

2.1). Children who defecated within the premises of the house or used latrines transited faster 

from malnutrition to normal as compared to children who defecated in the open fields (HR = 1.8; 

95% CI: 1.5 – 2.2). Children who lived in a household where coal or firewood was used for 

cooking were slower to transit from malnourished state to normal state (HR = 0.4; 95% CI: 0.3 – 

0.6). Children whose parents were illiterate or literate and who had primary or middle school 

education had slower rate of transition from malnutrition to normal. The Markov regression 

analysis using transition intensity rates also showed that if the household had a thatched or tiled 

roof then those children had slower rate of transition from malnutrition to normal as compared to 

children living in households with RCC or pukka type of roof (Table 6.8.1a).
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The adjusted analysis using the Markov regression is presented in Table 6.8.1b.  

 

The adjusted analysis showed that children residing in urban areas were more likely (HR = 2.2) 

to be transited from normal to malnutrition state as compared to children residing in rural areas 

(1.5 – 3.2). Children who lived in a house without separate kitchen also had higher rates of 

transition to malnutrition state from normal (HR = 1.5; 95% CI: 1.0-2.5). If children lived in 

houses where fuel used for cooking was cow dung or firewood, then there was a slower odds of 

transition from malnutrition state to normal state as compared to children living in houses where 

fuel used for cooking was kerosene or gas (HR = 0.7; 95% CI: 0.6 – 0.9). Children whose 

parents had less than high school education showed slower transition rates as compared to 

children whose parents had at least high school education. Children who lived in thatched type of 

houses had higher hazard of transiting from normal to malnutrition state as compared to children 

living in RCC or pukka houses (HR = 1.3; 95% CI: 1.1 – 1.5) (Table 6.8.1b).



 

 

Table 6.8.1a: Unadjusted Markov Regression Analysis using transition intensity matrix 

using Height-for-age classification: 

 

Variables t 

t+1 

Normal Moderate/Severe 

Malnutrition 

Hazard 

Ratio 

95% CI Hazard 

Ratio 

95% CI 

Sex of the child: 

Male Normal   1.18 0.96 – 1.45 

Malnutrition 0.98 0.83 – 1.16   

Female Normal   1.00  

Malnutrition 1.00    

Area of residence: 
Rural Normal   1.39 1.21 – 1.73 

Malnutrition 1.80 1.51 – 2.14   

Urban Normal   1.00  

Malnutrition 1.00    

Presence of a separate kitchen: 

Yes Normal   1.00  
 Malnutrition 1.00    

No Normal   1.07 0.84 – 1.37 
 Malnutrition 0.70 0.58 – 0.87   

Defecation 
Within the premises / toilet Normal   1.13 0.92 – 1.39 
 Malnutrition 1.83 1.54 – 2.18   

Open fields Normals   1.00  
 Malnutrition 1.00    

Type of fuel used for cooking: 

Cowdung / Coal Normal   0.98 0.75 – 1.29 
 Malnutrition 0.45 0.35 – 0.56   

Gas / Kerosene Normal   1.00  
 Malnutrition 1.00    

 
 
 
 
 
 
 
 
 
 
 
 



 

 

Contd… 
 
 
 

Variables t 

t+1 

Normal Moderate/Severe 

Malnutrition 

Hazard 

Ratio 

95% CI Hazard 

Ratio 

95% CI 

Type of Floor: 

Kucha Normal   0.90 0.72 – 1.12 

Malnutrition 0.62 0.51 – 0.74   

Pukka Normal   1.00  

Malnutrition 1.00    

Consanguineous Marriage: 
Yes Normal   1.07 0.86 – 1.32 

Malnutrition 0.89 0.75 – 1.07   

No Normal   1.00  

Malnutrition 1.00    

Mother’s Education: 

Illiterate/Literate Normal     
 Malnutrition 0.39  0.29 – 0.43   

Primary/Middle School Normal   1.00  0.94 – 1.07 
 Malnutrition 0.62  0.59 - 0.65   

Higher Sec or above Normal   1.00  
 Malnutrition 1.00    

Father’s Education: 
Illiterate/Literate Normal   1.00 0.98 – 1.02 
 Malnutrition 0.39 0.38 – 0.40   

Primary/Middle School Normals   1.01 0.94 – 1.06 
 Malnutrition 0.62 0.59 – 0.64   

Higher Sec or above Normals   1.00  
 Malnutrition 1.00    

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Contd… 
 
 

Variables t 

t+1 

Normal Moderate/Severe 

Malnutrition 

Hazard 

Ratio 

95% CI Hazard 

Ratio 

95% CI 

Number of Family Members: 

<=4 Normal   1.00  

Malnutrition 1.00    

5-6 Normal   0.99 0.86 – 1.14 

Malnutrition 0.90 0.80 – 1.01   

>6 Normal   0.98 0.77 – 1.25 
 Malnutrition 0.82  0.67 – 1.00   

Type of House: 

Brick & cement Normal   1.00  

Malnutrition 1.00    

Brick & mud Normal   0.99 0.93 – 1.05 

Malnutrition 0.71  0.67 – 0.75   

Others Normal   0.97 0.95 – 1.00 
 Malnutrition 0.50 0.49 – 0.52   

Type of Roof: 

Thatched Normal   1.12 1.08 – 1.16 
 Malnutrition 0.55 0.54 – 0.57   

Tiled Normal   1.06 0.97 – 1.15 
 Malnutrition 0.74 0.69 – 0.78   

RCC/Pukka/Others Normal   1.00  
 Malnutrition 1.00    

Birth Order: 

1 Normal   1.00  
 Malnutrition 1.00    

2 Normals   0.98 0.90 – 1.07 
 Malnutrition 0.89 0.83 – 0.97   

>=3 Normal   0.96 0.89 – 1.04 
 Malnutrition 0.80 0.75 – 0.85   



 

 

Table 6.8.1b: Adjusted Markov Regression Analysis using transition intensity matrix using 

Height-for-age classification: 

 

 

 

Variables t 

t+1 

Normal Moderate/Severe 

Malnutrition 

Hazard 

Ratio 

95% CI Hazard  

Ratio 

95% CI 

Area of residence: 
Rural Normal   2.16 1.46 – 3.19 

Malnutrition 1.25 0.90 – 1.74   

Urban Normal   1.00  

Malnutrition 1.00    

Presence of a separate kitchen: 

Yes Normal   1.00  
 Malnutrition 1.00    

No Normal   1.47 1.04 – 2.08 
 Malnutrition 1.17   0.90 – 1.54   

Defecation: 
Within the premises / toilet Normal   0.73 0.49 – 1.08 

 Malnutrition 1.12 0.80 – 1.58   

Open fields Normal   1.00  
 Malnutrition 1.00    

Type of fuel used for cooking: 
Cowdung / Coal Normal   1.08 0.77 – 1.50 
 Malnutrition 0.73 0.56 – 0.95   

Gas / Kerosene Normal   1.00  
 Malnutrition 1.00    

Mother’s Education: 
Illiterate/Literate Normal   0.93 0.85 – 1.02 
 Malnutrition 0.67 0.65 – 0.69   

Primary/Middle Normal   0.96 0.95 – 0.99 
 Malnutrition 0.82 0.81 – 0.83   

High school or above Normal   1.00  
 Malnutrition 1.00    

Father’s Education: 
Illiterate/Literate Normal   1.03 0.57 – 1.19 
 Malnutrition 0.62 0.55 – 0.69   

Primary/Middle Normal   1.01 0.89 – 1.19 
 Malnutrition 0.78 0.76 – 0.81   

High school or above Normal   1.00  
 Malnutrition 1.00    



 

 

Contd… 
 
 

 

 

 

 

Variables t 

t+1 

Normal Moderate/Severe 

Malnutrition 

Hazard 

Ratio 

95% CI Hazard  

Ratio 

95% CI 

Type of Floor: 
Kucha Normal   0.71 0.49 – 1.02 

Malnutrition 0.96 0.71 – 1.30   

Pukka Normal   1.00  

Malnutrition 1.00    

Type of House: 
Brick and Cement Normal   1.00  
 Malnutrition 1.00    

Brick and Mud Normal   1.06 0.99 – 1.07 
 Malnutrition 0.95 0.94 – 0.99   

Others Normal   1.14 1.01 – 1.28 
 Malnutrition 0.90 0.83 – 0.98   

Birthorder: 
1 Normal   1.00  
 Malnutrition 1.00    

2 Normal   0.98 0.96 – 1.00 
 Malnutrition 0.94 0.91 – 0.96   

>=3 Normal   0.95 0.94 – 0.99 
 Malnutrition 0.88 0.86 – 0.89   

Type of Roof: 
Thatched Normal   1.26 1.08 – 1.47 
 Malnutrition 0.90 0.83 – 0.97   

Tiled Normal   1.12 1.08 – 1.17 
 Malnutrition 0.95 0.94 – 0.96   

RCC/Pukka/Others Normal   1.00  
 Malnutrition 1.00    
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Figure 6.8.1 Observed and Expected plots: 

 

The observed and expected percentages in each state are presented in figure   . State 1 represents 

the predicted percentage of “normal” children and state 2 represents the predicted percentage of 

“malnourished” children by the model. The predicted prevalence of “normal” cases is slightly 

overestimated by the model where as the predicted number of “malnutrition” cases is also 

slightly underestimated by the model between 10-30 months.  
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6.9 Comparison of GEE, Markov Regression with transition probabilities and 

transition intensity rates for malnutrition using BMI classification: 

 

6.9.1. Comparison of Longitudinal Data Analysis and Markov Regression Models using 

only two categories (normal and moderate or severe) of BMI classification:  

 

The results comparing GEE or random effects model to the results obtained from Markov 

regression using transition probabilities and intensity rates using binary outcome is shown in 

Table 6.9.1. The Markov regression using transition probabilities and intensity rate showed that 

male children on an average were having higher risk of malnutrition as compared to female 

children. The odds of having malnutrition in male children was 1.4 (1.2 – 1.5) times more as 

compared to female child using Markov regression analysis with transition probabilities and the 

hazard of moving from normal to malnutrition state in male children was 1.2 (1.1 – 1.4) times as 

compared to female children. The GEE analysis also showed male children were more likely to 

be malnourished. The Markov regression model showed area of residence was significantly 

associated with current state of malnutrition irrespective of the previous state of malnutrition 

(OR = 2.2; 95% CI: 1.6 – 3.0). The Markov regression analysis using transition probabilities and 

intensity rates showed presence of a separate kitchen was an important risk factor irrespective of 

the previous state of malnutrition (OR = 1.5; 95% CI: 1.1 – 1.9) for current state of malnutrition. 

The previous state of malnutrition was very highly associated with current state from the Markov 

model (OR = 12.6; 95% CI: 8.3 – 19.3). The table 6.9.1 that shows the comparison of the 

Markov regression and GEE showed that there were many variables that turned out to be 

significant in the Markov regression model as compared to GEE model findings (Table 6.9.1).
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6.9.2 Comparison of Longitudinal Data Analysis and Markov Regression Models using 

ordinal categories of BMI classification: 

 

The Table 6.9.2 shows the comparison of results obtained using GEE and Markov Regression 

using transition probabilities. Both the results show male children are on an average have 

significantly high odds of being severe malnutrition as compared to female children (GEE: OR = 

1.3 (1.2 – 1.6); MR: OR = 1.2 (1.1 – 1.4)). The GEE analysis showed presence of a separate 

kitchen has 25% less likely to have severe malnutrition as compared to no separate kitchen (10% 

- 90%). The Markov regression analysis showed that the previous state of malnutrition was very 

highly significantly associated with the current state of malnutrition. In addition to that, urban 

area of residence, separate kitchen not present and number of family members were also 

significant factors associated with severe malnutrition irrespective of the previous state of 

malnutrition. (Table 6.9.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.9.1 Adjusted Risk Factor analysis considering BMI classification into two 

categories which are ‘normal’ and ‘moderate or severe’ Malnutrition:  

 

 

 

 

 

 

 

 

 

 

Risk Factors 

Generalized 

Estimating 

Equations  

Markov Regression 

using Transition 

Probabilities 

Markov Regression using Transition 

Intensity rate 

Normal to Moderate 

or Severe 

malnutrition 

Moderate or Severe 

to normal 

OR 95% CI OR 95% CI HR 95% CI HR 95% CI 

Sex of the Child 
    Male 
    Female 

 
1.3 

 
    1.1 – 1.5 

 
1.4 

 
    1.2 – 1.5 

 
1.2 
 

 
      1.1 – 1.4 
 

  

Area of Residence 

    Rural 
    Urban 

     
 
1.3 

 
 
      1.0 – 1.6 

 
1.8 

 
   1.4 – 2.2 

Defecation 
     Within the premises 
     Open Fields 

       
 
1.5 

 
 
   1.2 – 2.0 

Presence of a separate 

kitchen 
     Yes 
     No 

 
 
 
1.2 

 
 
 
   1.0 – 1.5 

     
 
 
0.7 

 
 
 
    0.6 – 0.8 

Interaction of rural 

area with previous state 

of malnutrition 

 
 
1.1 

 
 
   1.0 – 1.1 

 
 
2.2 

 
 
    1.6 – 3.0 

    

Interaction of 

malnutrition state at 

time t-1 (previous state) 

with no presence of a 

kitchen 

   
 
 
 
1.5 

 
 
 
 
    1.1 – 1.9 

    

Interaction of 

defecation with 

previous state of 

malnutrition 

   
 
 
1.2 

 
 
 
    1.1 – 1.8 

    

Previous state of 

malnutrition 

(malnutrition state at 

time t-1) 

   
 
 
12.6 

 
 
 
    8.3 – 19.3 

    



 

 

 

Table 6.9.2 Adjusted Risk Factor analysis considering BMI classification into ordinal 

categories (Malnutrition –“Normal”, “Moderate” and “Severe”): 

 

 

Risk Factors Generalized 

Estimating Equations  

Markov Regression 

using Transition 

Probabilities 

OR 95% CI OR 95% CI 

Sex of the child 
        Male 
        Female     

 
1.27 

 
    1.05 – 1.40 

 
1.21 

 
1.07 – 1.25 

Defecation 
     Within the premises         
     Open fields 

 
1.77 

 
     1.30 – 1.91 

 
1.26 

 
1.06 – 1.48 

Presence of a separate 

Kitchen 
     Yes 
     No 

 
 
 
1.28 

 
 
 
    1.01 – 1.61 

  

Interaction of defecation with 

followup 

 
0.94 

 
    0.92 – 0.97 

  

Interaction of sex of the child 

with followup 

 
1.03 

 
    1.01 – 1.05 

  

Previous state of malnutrition 

(malnutrition state at time t-

1) 

   
 
9.30 

 
 
7.85 – 11.01 

Interaction of no presence of 

kitchen and previous state 

   
1.28 

 
  1.08 – 1.51 

Interaction of family 

members with previous state 

of malnutrition 

   
 
1.17 

 
 
  1.06 – 1.29 
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6.10. Comparison of GEE, Markov Regression with transition probabilities and 

transition intensity rates for malnutrition using Height-for-Age classification: 

 

 

6.10.1 Comparison of Longitudinal Data Analysis and Markov Regression Models using 

only two categories (normal, moderate or severe) of Height-for-Age classification:  

 

The results comparing the results from GEE and Markov Regression analysis with transition 

probabilities and intensity rates is shown in tables 6.10.1.  

 

The comparison of the risk factors using GEE and Markov regression using transition probability 

matrix and transition intensity matrix is presented in Table 6.10.1 with height-for-age 

classification. The GEE analysis, Markov regression analysis using intensity and probability 

rates showed that on an average mother’s education as an important risk factor for moderate or 

severe malnutrition. GEE analysis showed that on an average father’s education as also a risk 

factor for malnutrition. The previous state of malnutrition was highly associated with current 

state from Markov regression (OR = 30.0; 95% CI: 25.0 – 36.0). The mother’s education was 

associated with current state of malnutrition irrespective of previous state from the Markov 

regression analysis. The hazard of moving from normal to malnourished state (moderate or 

severe state of malnutrition) for children living in houses where there was no separate kitchen 

was 1.5 (1.0 – 2.1) times as compared to children living in houses with no separate kitchen. 

(Table 6.10.1).  
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6.10.2 Comparison of Longitudinal Data Analysis and Markov Regression Models using 

ordinal categories of BMI classification: 

 

The results comparing GEE and Markov regression using transition probabilities with Height-

for-Age classification classified in an ordinal scale is presented in Table 6.10.2. The common 

risk factor that was present in GEE and Markov regression analysis was area of residence. 

Markov regression analysis showed Area of residence and its interaction with previous time 

malnutrition state, father’s education as the other risk factors for severe malnutrition where as 

GEE analysis showed males being at higher risk and interaction of family members with follow-

up time to be associated with severe malnutrition (Table 6.10.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.10.1 Adjusted Risk Factor analysis considering height-for-age classification into 

two categories which are ‘normal’ and ‘moderate or severe’ Malnutrition: 

  

 

 

 

 

Risk Factors 

Generalized 

Estimating 

Equations  

Markov Regression 

using Transition 

Probabilities 

Markov Regression using Transition 

Intensity rate 

Normal to Moderate 

or Severe 

malnutrition 

Moderate or 

Severe to normal 

OR 95% CI OR 95% CI HR 95% CI HR 95% CI 

Mother’s Education 

    Illiterate/Literate 
    Primary/Middle 
    High school/above 

 
1.65 
1.40 
1.00 

 
1.21 – 2.25 
1.00 – 1.96 

 
1.09 
1.05 
1.00 

 
1.01 – 1.24 
1.01 – 1.41 

 

 
0.93 
0.96 
1.00 

 
0.85 – 1.02 
0.95 – 0.99 

 
0.67  
0.82 
1.00 

 
0.65 – 0.69 
0.81 – 0.83 

Father’s Education 
      Illiterate/Literate 
      Primary/Middle 
      High school/above 

 
1.37 
1.59 
1.00 

 
1.09 – 1.72 
1.21 – 2.09 

     
0.62 
0.78
1.00 

 
0.55 – 0.69 
0.76 – 0.81 

Presence of a 

separate Kitchen 
       Yes 
       No 

    

1.47 1.04 – 2.08 

  

Type of Roof 
     Thatched 
     Tiled 
     RCC/Pukka/Others 

        

Area of residence 
     Rural 
     Urban 

    
2.16 
 

 
1.46 – 3.19 
 

  

Type of Fuel used for 

cooking 
     Firewood/Cow 
dung 
     Gas/Kerosene 

    

  

 
 
 
0.73 

 
 
 
0.56 – 0.95 

Birth order 

    1 

    2 

    >=3 

       
1.00 
0.94 
0.88 

 
 
0.91 – 0.96 
0.86 – 0.89 

Interaction of 

mother’s education 

with previous time 

malnutrition state 

   
 
 
0.63 

 
 
 
0.59 – 0.73 

    

Interaction of area 

and previous time 

malnutrition state 

 
 
1.05 

 
 
1.01 – 1.09 

      

Previous time 

malnutrition state 

   
30.01 

 
24.99 – 36.04 

    



 

 

 

Table 6.10.2 Adjusted Risk Factor analysis considering Height-for-age classification into 

three ordinal categories (Malnutrition – “Normal”, “Moderate” and “Severe”): 

 

Risk Factors 

Generalized Estimating 

Equations  

Markov Regression using 

Transition Probabilities 

OR 95% CI OR 95% CI 

Sex of the child 
     Male 
     Female 

 
1.10 

 
1.01 – 1.19 

  

Area of Residence 
    Rural 
    Urban 

 
 
0.80 

 
 

0.68 – 0.92 

 
1.96 

 
1.43 – 2.68 

Defecation 
    Within the premises 
     Open fields 

   
0.65 

 
0.48 – 0.89 

Mother’s Education 
     Illiterate/Literate 
     Primary/Middle school 
     High school or above 

 
1.45 
1.37 
1.00 

 
1.19 – 1.69 
1.11 – 1.77 

  

Father’s Education 
     Illiterate/Literate 
     Primary/Middle school 
     High school or above 

 
1.17 
1.30 
1.00 

 
1.03 – 1.32 
1.14 – 1.49 

 
1.26 
1.15 
1.00 

 
 1.07 - 1.49 
  0.99 – 1.32 

 

Interaction of greater than 6 

members in a family 

 
1.02 

 
1.00 – 1.04 

  

Interaction of urban area of 

residence with the previous time 

malnutrition state 

   
 
0.59 

 
 

    0.46 – 0.75 

Previous state of malnutrition 

(malnutrition state at time t-1) 

   
176.22 

 
148.89 – 208.57 
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6.11 Comparison of coverage probability and length of the confidence interval: 

 

The Table 6.11a shows the coverage probability and length of the confidence interval for the two 

important risk factors as they were significant using Markov Regression with transition 

probabilities and GEE analysis using BMI classification.  

 

The  table 6.11aa shows that coverage probability for presence of a separate kitchen was 95% 

when Markov Regression analysis with transition probabilities was performed and the average 

length of the confidence interval was smaller than that compared to GEE analysis. The risk 

factors “presence of a separate kitchen”,“defecation” had higher coverage probabilities using 

Markov regression models as compared to GEE. Also, the length of CIs using Markov regression 

was smaller as compared to GEE (Table 6.11a). 

 

Similar findings were also obtained using height-for-age classification which is shown in table 

6.11b. The risk factors had higher coverage probabilities when Markov regression analysis was 

performed as compared to GEE analysis (Table 6.11b). 

 

 

 

 

 

 



 

 

 

Table 6.11a Comparison of coverage probability and length of the confidence interval using 

BMI classification: 

 

Risk Factors  Coverage Probability Length of the Confidence Interval 

 Markov 

Regression with 

transition 

probabilities 

Generalized 

Estimating 

Equations 

Markov Regression 

with transition 

probabilities 

Generalized 

Estimating 

Equations 

Presence of a separate 
Kitchen 

0.948 0.912 0.114 0.131 

Defecation 0.916 0.910 0.159 0.174 

 

 

 

 

Table 6.11b Comparison of coverage probability and length of the confidence interval 

using height for age classification: 

 

 

Risk Factors  Coverage Probability Length of the Confidence Interval 

 Markov 

Regression with 

transition 

probabilities 

Generalized 

Estimating 

Equations 

Markov Regression 

with transition 

probabilities 

Generalized 

Estimating 

Equations 

Area of residence 0.960 0.646 1.620 1.429 

Defecation 0.864 0.804 0.529 1.434 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 
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7. DISCUSSION 
 

The present study used BMI Z scores to classify malnutrition as suggested by practicing 

pediatricians and child psychiatrists and hence there are not many studies that have used this 

index to classify malnutrition. One study used BMI Z score to define underweight (15). The 

study of underweight or stunting (malnutrition) is particularly important as the deficiency of 

micronutrients in a child’s early years may result in a lower attention span, decreased ability to 

concentrate and poor memory. In other words, deficiency of nutrients in children is known to 

have severe impact on the cognitive development of children (86). There are several studies that 

have shown some relation between child malnutrition and cognitive development. Hence it is 

important to study prevalence of malnutrition (underweight and stunting) among children and 

risk factors associated with malnutrition as the cognitive development is not a straightforward 

effect of malnutrition but an interaction of several risk factors with malnutrition (87, 88, 89).  

 

Prevalence: 

There are very few studies that reported the prevalence of malnutrition (underweight or stunting  

or wasting) among children in the age groups 5-7 years. Most of the studies reported are mostly 

for children under five years of age. There is one study reported from Chile that reported 

malnutrition among children aged 6 years. This study used underweight defined by BMI Z score. 

The study was a cross-sectional survey of the children entering grade one from the years 1987 – 

2002. The study found the change in the prevalence of stunting and underweight over the years. 

The study showed that the prevalence of stunting and underweight was above 20% (15). The 

present study reported the prevalence of severe underweight as 22.5% which was similar to the 
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finding from the previous study. According to the National Family Health Survey (NFHS – 3) 

carried out in 2005-2006, child malnutrition rates on India reported that 46% under three are 

underweight (90). The NFHS - 3 reported around 16% to be severely underweight using weight-

for-age Z scores (90) where as the present study reported 23% underweight using weight-for-age 

Z scores and 22.5% using BMI z scores. The prevalence of moderate underweight from the 

present study using BMI z score was about 22%. When the weight-for-age Z score was used the 

prevalence of moderate underweight was 43% which was similar to NFHS 3 moderate 

prevalence (around 40.3%). The prevalence of severe stunting was 25.8% in the present study 

and this around 20% which was similar to the present study. There was a study that reported the 

changes in the malnutrition levels in India in the period 1998 – 2005 (NFHS - 2 to NFHS - 3). 

This study reported that the percentage of stunted children increased from 38.4% to 45.5% and 

has been a marginal worsening in underweight children where the prevalence increased from 

45.9% to 47%. The prevalence of wasted improved from 19.1 to 15.5%  (91, 92, 93). This 

finding suggested that though the present study collected information in the year 1997, the 

results are still valid as there has not been a drastic reduction in the prevalence of malnutrition in 

India. The other important finding from the present study was the incidence density of 

malnutrition (underweight, stunting and/or wasting) was obtained as this study was a prospective 

study which was assessed after every six months for seven follow-up apart from baseline. Most 

of the studies were cross-sectional studies or case-control studies and therefore they do not 

provide the incidence of malnutrition (94, 95, 96).  
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Risk Factors: 

The present study showed that male children were having a higher risk of malnutrition as 

compared to female children. This finding was dissimilar to the finding from the NHFS 3 data 

which reported that there was a difference in severe malnutrition (underweight) across male and 

female children with female children having higher risk of malnutrition as compared to male 

children (90). There was another study reported from case control study from Bangladesh that 

did not show any significant difference in malnutrition (underweight) among male and female 

children. The study reported from Bangladesh involved children less than 2 years of age (4). 

Moreover, this study from Bangladesh involved severely malnourished children who were 

enrolled in a hospital and therefore there are chances of prevalence to be slightly overestimated 

as they are children suffering from diarrhea and thereby severely malnourished.  

A cross sectional study reported in Uganda showed area of residence was an important factor on 

the nutritional health. This difference was present as the study reported that children from urban 

areas had better immunization rates than children from the rural areas (20). The present study 

also showed that children from urban area had better health status as compared to rural areas 

which implied that children from rural areas had higher risk of malnutrition as compared to 

children living in urban areas. There was a contradictory finding that reported that children from 

urban areas had high risk of malnutrition as compared to children from rural areas, however, it 

was also reported that these children from urban areas came from slum areas of Kampala (21).  

There were two studies that reported malnutrition as a cause of poor socio economic status of a 

family (4, 21). This study also brought out similar finding which has been indirectly reflected by 

the “presence of a separate kitchen in the house” which implied that if there was no separate 

kitchen in the house where the child lived then he/she has a high chance of malnutrition 
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(underweight and/or stunting) as compared to child living in a house with a separate kitchen. 

There was another study that reported hygiene practice was influencing the risk of malnutrition 

among children. The study conducted in Uganda reported that children from dirty and very dirty 

households are more underweight that children whose households were clean (20). This study 

also reflected this finding through defecation which implied that if children were from household 

where defecation was within the household were less likely than those children living in houses 

where defecation was outside the premises of the house. The present study also showed mother’s 

education was associated with malnutrition of children. In other words, if the mother was 

illiterate then her child had high risk of being severely stunted as compared to a child whose 

mother had at least high school education. This type of risk factor was also reported from a study 

from Kampala and Bangladesh. The study reported that mother’s education had a positive 

association to stunting of their children (94, 4). It appears that the impact of mother’s education 

on nutrition status is through its ability to improve socio-economic status, health facility 

utilization and greater involvement in child care. However, there was a contradictory finding 

from study reported again from Kampala which reported that there was no correlation between 

the education level of mothers and nutrition status of children (21). The present study has also 

suggested that increase in the number of family size (>6 members) was negatively associated 

with malnutrition (underweight). There was a study which was similar in a way which reported 

that increase in the birth order had higher chance of underweight (4). The other risk factor from 

the present study was “type of fuel used for cooking”. The present study showed that families 

that used firewood or coal or cow dung for cooking as fuel had higher chances of their children 

being malnourished (underweight and/or stunted) as compared to children in families that used 

gas or kerosene for cooking as fuel. This was also an indicator of socio-economic status of the 
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family. A similar finding was reported from a study from Uganda which was that families that 

had alternative sources of fuel in addition to firewood or paraffin had fewer children underweight 

than those who had only firewood for fuel (20).  

 

Generalized Estimating Equations and Random Effects Model: 

The GEE analysis is done when there the outcome is repeatedly collected from the same subject 

and in the present study malnutrition (underweight or stunted) is repeatedly observed for each 

child for eight times. Hence there is a need to adjust for the correlations between the outcomes 

measured over time. The present study used autoregressive correlation structure for adjusting for 

correlations and these correlations were decided upon looking at the cross-tabulations over the 

eight time points from baseline. There has been an article that describes that though GEE is 

robust to wrongly specified correlation structure still the estimates are improper for a wrong 

choice of correlation structure (28). In the present study autoregressive 1 correlation structure 

was chosen.  

There has been a paper that compared GEE to multilevel modeling in genetic association 

analysis. The study showed that compared to GEE, MLM had less underestimated odds ratio 

(50).  Another study comparing the risk factors smoking intervention trial also compared results 

from GEE to random effects model which concluded that test statistic findings are similar which 

means that risk factors that turned out to be significant were similar in both the models (49).  

This finding was similar to the present study finding. The risk factors using GEE and Random 

effects model was similar as there was a high correlation of the responses at the “child” level. 

The ICC at the household level was very small. The random slope at the “child” level was 

assessed using difference in the likelihood of the random intercept alone and, random intercept 
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and random slope model at the “child” level which was not significant for the a priori specified 

risk factors. Hence the final model was mainly the random intercept at the “child” level which 

means that adjustment is needed only due to the repeated follow-up of each child in the study 

which is the same adjustment done using GEE analysis. Therefore, results from GEE and random 

effects model were similar. This is shown in the appendix table 5. The R square using GEE 

model was 34% which is above our satisfaction but the main purpose was to compare GEE to 

Markov regression model.  

 

Markov Chain and First Mean Passage Time: 

The principle of Markov chain is that the current state is dependent on the previous state. Using 

the principle, the first mean transition time can be calculated. The first mean passage time 

provides the transition time taken to move from one state to another state of malnutrition. In 

other words, this provides us the time taken for a severely underweight or stunted child to get 

normal. This estimate is useful if we wanted to know on an average how long will severely or 

moderately malnourished children will get normal and if any factors affect this time so that 

appropriate intervention can be provided to that particular child. This type of time was not 

reported so far in any longitudinal studies. The present study reported the transition probability 

to move from one state to another. The present study also reported the transition probability from 

one state at the previous time to state of malnutrition at the current time. The transition 

probability from normal state of malnutrition to severe state of malnutrition was found to be 

0.009 (0.9%). A study reported the transition probability in non-insulin diabetes study where the 

study had three progression states which were asymptomatic, symptomatic and death state. Once 

a person transited to “death” state he/she cannot transit to a symptomatic or an asymptomatic 
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state. The progression rate from symptomatic state to death state was found to be 2.27% (52). 

However, the non-insulin diabetes study was done in absorbing state which means once transited 

to death state there is no back transition to previous states but the present study was for non-

absorbing states which means transition probabilities can be obtained from severe state to normal 

state as well. Another study calculated the “mean survival time” from the transition probabilities 

from one state to another. There were four states of transition in the study of systemic lupus 

erythematosus (55). Most of the studies that applied Markov model were for absorbing states 

(52, 53, 54, 55, 60) and for continuous time Markov models (57). The present study has been 

applied to discrete time Markov model and also for non-absorbing states. The present study 

showed that children who were living in houses with a separate kitchen severely underweight 

took nearly two and a half years to return to normal where as children who were living in houses 

without separate kitchen took nearly four years to return to normal. Another finding from the 

present study was that children who were severely underweight in whose house had defecation 

within the premises of the house took 2.4 (2.1 – 2.8) years to return to normal than those children 

who were living in houses where defecation was in the open fields (3 (2.6 – 3.5) years). The 

present study also showed differences across risk factors in the duration of time for stunted 

children as well. If a child was severely stunted, then it took about 9 (7.8 – 10.6) years to return 

to normal state if that child was living in a house with a separate kitchen and it took nearly 12 

(9.8 – 13.4) years to return to normal from severely stunted state for the child who lived in a 

house without a separate kitchen. Similarly, if a child lived in a house where type of fuel used for 

cooking was firewood or coal or cow dung then that child had taken nearly 10 (8.8 – 12.1) years 

to move from severe stunting to normal when compared to a child who lived in a house where 

fuel used for cooking was gas or kerosene who took about 7 (6.2 – 8.2) years to return to normal 
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state. These kinds of findings were not available in any studies and also important to understand 

how certain risk factors were responsible for differences in the duration to return to normal from 

moderate or severe state of malnutrition.  

 

Markov Regression: 

The present study accounts for the risk factors of malnutrition at the current state irrespective of 

the previous state of malnutrition which is a Markovian property. The study showed that area of 

residence where the children lived was a significant factor that was associated with severe 

underweight irrespective of the previous state of malnutrition. Similarly, if there was a no 

separate kitchen then there was a significant association of severe underweight at the current 

time irrespective of the previous state of malnutrition at the previous time. A study with 

covariables explored the effects of factors that influenced the onset, progression and regression 

of diabetic retinopathy among subjects with insulin-dependent diabetes mellitus (60). The 

present study explored many variables and the interactions with previous state of malnutrition. 

The present study also specified the risk of transition from normal to severe malnutrition state at 

the current time. The present study showed that if there was no separate kitchen in the household 

where children live are at a high risk of transiting from normal to malnourished state rather than 

transiting from malnourished state to normal state of malnutrition. This finding indirectly 

reflected the socio economic status of the family (21). A similar finding was also reported in a 

study where one of the main risk factor of malnutrition was poor socio economic status of the 

family (4). There was another study that had risk factor associated with malnutrition to be the 

father’s occupation as rickshaw driver which indicated the low socio economic status of the 

family. A study observed the risk factors for functionality disability changes with time and the 
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data was a multi-state Markov model. After adjusting for covariates, it was found that ages, sex 

and size of infarct had no effect on transition rate. This analysis was done by calculating the 

hazard ratios from one state to another.  The present study showed that absence of a separate 

kitchen within the house was one of the important risk factor that determined the risk of 

association with current time severe underweight despite any association of previous time’s state 

of underweight with the current time’s state of underweight. The number of family members 

especially when >6 also determines a high risk of severe underweight. This was reflected in a 

study that reported a high risk of underweight was observed when there was an increase in birth 

order (4). Children from urban areas had lower risk of severe stunting despite the previous state 

of stunting where as mother’s education had an average effect on severe stunting promoting the 

fact that if mother’s were educated, then there was sign of improving socio-economic status of 

the family and also better child care. The finding of the present study was similar to the finding 

from NFHS 3 which reported that there was a high risk factor of malnutrition when mothers’ of 

the children were illiterate. (20, 21, 91, 95).  

 

Comparison of GEE and Markov Regression models: 

The Markov regression analysis was performed only using a first order Markov model. The 

Markov regression analysis was performed only considering the children who had at least one 

transition in the seven follow-up. Hence the Markov regression analysis considered slightly less 

number of observations than the GEE or Random effect model analyses. Robust standard errors 

were obtained for Markov regression analysis with transition probabilities which were compared 

to the asymptotic standard errors and they were similar, suggesting that first order Markov model 

was valid. The Markov regression using intensity rate matrix could not converge when three 
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states of malnutrition was considered. The convergence was not achieved as the transition 

probability was very small especially when the transition was from normal to severe states. 

Hence the comparison of Markov regression using intensities, probabilities and GEE was 

performed using “normal state” and “malnutrition state” which is “moderate state or severe 

state”. The comparison of the 95% confidence intervals from Markov regression and GEE was 

only done for risk factors that were significant from the adjusted model (61). Another study 

reported the risk factors for progression of liver fibrosis (62). A study compared Markov model 

regression, Markov regression with random effects to find the risk factors for transition in 

Bacterial Vaginosis among women (64) and it was found that Markov regression with random 

effects had better fit to the data. The present study also had comparison of models however; the 

models were GEE and Markov regression models. The observed and expected plots of 

malnutrition were not very different suggesting that Markov model has fitted well to the data. 

There was no study that compared results of GEE and Markov regression model especially in 

terms of coverage probabilities and standard errors using simulations. However, our findings 

support that coverage probability was higher in Markov regression than GEE.  

Limitations: 

The main limitation of the present study was that data being a secondary data, that is, the period 

when the data was collected was during 1982 - 1986 and it has been 25 years. Markov regression 

modeling outcome is more evident if there are time varying covariates where as the present study 

has most of the covariates not changing over time. In order to prove further Markov regression is 

consistently better, this concept has to be experimented with various datasets with varying 

incidence densities and, time intervals for follow-up.  
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8. SUMMARY AND CONCLUSION 
 

8.1 Summary: 

Background: Malnutrition refers to many diseases each with a specific deficiency in one or 

more nutrients and each characterized by cellular imbalance between the supply of nutrients and 

energy on the one hand, and the body’s demand for them to ensure growth maintenance. 

Malnutrition is an important indicator of child health. It is now recognized that 6.6 million out of 

12.2 million deaths among children under-five – or 54% of young child mortality in developing 

countries – is associated with malnutrition. India has the highest percentages of undernourished 

children in the world. During 1982, seven localities and 22 villages were selected for this study. 

These localities and villages were selected from Vellore town and KV Kuppam development 

block sampling frames respectively. All children aged 5-7 years were screened for signs of 

malnutrition by consultant pediatricians. The children from rural and urban areas of Vellore town 

were screened at baseline and followed up for every six months for 7 times. Malnutrition was 

assessed based on these indicators which are BMI Z scores, Height-for-age. The BMI Z scores 

were classified as “normal” if the BMI Z scores were >-2 standard deviations, “moderate” when 

Z scores were between -2 and -3 standard deviations and, “severe” if the Z scores were <-3 

standard deviations (67). The main hypothesized risk factors for the study were ‘defecation 

practices at household level’ (within the household; in the open fields), ‘type of fuel used for 

cooking in the house’ (firewood or cow dung or coal; gas or kerosene) and ‘presence of a 

separate kitchen within the household premises’ (yes; no). The other confounders that were seen 

important that have to be adjusted were sex of the child (male; female) and area of residence 

(rural; urban). Some other covariates that were also included for Generalized Estimating 



 

~ 131 ~ 

 

Equations and Markov Regression using transition probabilities are education of mother and 

father (illiterate or literate; primary or middle school; high school or above), consanguineous 

marriage of the parents whose children were included in the study (yes; no), type of roof 

(thatched; tiled; RCC or pukka), type of house (brick and cement; brick and mud; others) and 

birth order (1; 2; >=3), number of members in a family (<=4; 5-6; >6), type of floor (kucha; 

pukka). 

 

Aims and Objectives: The main aim was to find the risk factors for malnutrition.  

The objectives of the study are: (i) To estimate the first mean passage time which indicates the 

average time spent by a child to move from one state to another, to find risk factors of using GEE 

and Random Effects model, to find risk factors of protein energy malnutrition using transition 

probabilities, to find the risk factors by calculating the transition intensity matrices and to 

compare the results obtained from GEE and Markov regression models using transition 

probabilities and transition intensities. 

 

Prevalence and Incidence: The overall prevalence of severe underweight was 22.5%. The 

prevalence of severe underweight was higher among children (25%) than female children 

(19.9%). The prevalence of severe underweight was lower among children living in the rural 

areas as compared to children living in the urban areas (16.5% vs 28% respectively). The overall 

incidence for severe underweight was 11.6% and higher incidence rate was observed among 

male children than female children. The incidence density of severe underweight was around 5% 

per year. The prevalence of severe stunting was 25.8%. Higher prevalence of severe stunting was 

found among male children than female children (27.9% vs 23.5% respectively). The incidence 
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was also higher among children in the rural areas (33.2%) as compare to children living in the 

urban areas (18.9%). The cumulative incidence of stunting was 20.6% and the incidence density 

for stunting was about 2% per year. 

 

Mean Passage Time and Risk Factors: The overall transition probability from normal state of 

underweight to moderate was 0.12 and severe state was 0.009. The transition probability of 

moving from severe underweight to moderate underweight and normal weight was found to be 

0.28 and 0.10 respectively.  The average number of years taken to transit from severe state of 

underweight to normal state was about 2.7 (2.3 - 3.1) years. The mean number of years taken to 

transit from severe underweight to normal across male and female children was almost similar. 

The MPT from severe underweight to normal in the urban areas was less as compared to MPT in 

the rural areas. It was also found that children who lived in houses with no separate kitchen and 

children living in houses that used firewood or cow dung for cooking had had lower transition 

time from severe underweight to normal as compared to children living in houses that had 

separate kitchen or used gas or kerosene for cooking. The probability of transition from severe 

stunting to normal was 0.001. The overall MPT from severe stunting to normal was around nine 

and a half years (8.4 years – 11.3 years). There was no difference across male children and 

female children in MPT for stunting. The average number of years taken to move from severe 

stunting to normal was higher among children in the rural areas as compared to children living in 

urban areas (11.9 years vs 8.1 years). The mean first passage time in the present study clearly 

indicates how late or early a person transits from one state of an outcome to another state of that 

outcome when the child experiences a “risky” factor of the exposure in non-absorbing state 

models. This is useful in chronic disease epidemiology where a motive is to find out how long 
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would the transition time be, on an average, for a person to transit from one state to another.  So 

that appropriate treatment procedures can be provided. Similar findings of “longer time” were 

observed when the children lived in houses without separate kitchen, defecated in the open fields 

and used firewood or cow dung for cooking. The risk factors for severe underweight obtained 

using GEE were defecation and sex of the child. The risk factors for severe underweight using 

Markov regression other than the two risk factors mentioned using GEE were family members, 

presence of a separate kitchen and the state of underweight at the previous time. The risk factors 

that turned out important for severe stunting using GEE were area of residence, mothers’ 

education, fathers’ education. The factors important for severe stunting using Markov regression 

were defecation, area of residence, father’s education, and the state of stunting at the previous 

time. The transition times cannot be estimated using GEE or Random Effect Models as these 

models do not account for the fact that the current state of malnutrition is mainly due to the state 

of malnutrition at the previous time (a Markov Chain principle). Markov regression using 

transition probabilities involves modeling the outcome state at the current state conditioning on 

the state of the outcome at the previous time and other covariates. Hence if the previous state of 

outcome is highly correlated, then it is important to perform Markov regression. Markov 

regression using intensity rates involves modeling the outcome for a specific transition. This 

model is very specific to what had been the state of malnutrition in the previous time. If there 

was a specific hypothesis relating to the specific transition, then the model using the ‘transition 

rates’ would be better. GEE analysis considers the correlations of the different states of 

malnutrition overtime and adjusts for that correlation. In most longitudinal data analysis, it is 

worth considering risk factors that are associated with the movement to current state from 

previous state. It is essential to test whether current state depends on the state at previous time 
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i.e., if the state of malnutrition at the previous time was significantly associated with current state 

of malnutrition, then the Markov regression using transition probability is appropriate. In this 

study, state of malnutrition at the previous time was significantly associated with current state of 

malnutrition. The standard errors obtained from the Markov regression using transition 

probabilities were smaller than those compared to GEE analysis and had better coverage 

probability with shorter length. The risk factor profile for GEE and Markov regression were 

different with relatively more risk factors using Markov regression as this may be due to higher 

SEs obtained from GEE analysis when adjusted for the correlation structure. The simulations 

performed for underweight and stunting showed better coverage probabilities and shorter length 

of confidence intervals when Markov regression analysis was performed than GEE.  

 

8.2 Conclusion: 

In any longitudinal study with discrete non-absorbing outcome, it is essential to estimate the 

duration of time spent in each state of the outcome. This will help us to study the impact of 

duration of stay with other risk factors. In longitudinal data if the current state of the outcome 

depends on the state of the outcome at the previous time, then Markov regression is the best 

approach to find the risk factors. GEE approach evaluates the overall correlation structure and 

therefore more likely to have larger standard errors and thereby likely to deal with false positive 

findings.  
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9. IMPACT OF THE STUDY 
 

1. In longitudinal studies with discrete outcome, it is recommended that First Mean Passage 

Time need to be calculated to study the impact of this duration on the subsequent 

outcome. The traditional survival analyses that will provide median time, if calculated 

will under estimate this duration. 

2. In longitudinal studies with discrete outcome, if the current state of outcome depends on 

the immediate previous state of the outcome, then the Generalized Estimating Equations 

or Multi Level Modeling method to study the risk factors need not be used. If used this 

procedure will under estimate the risk factors. In such situations, Markov Regression will 

provide better estimate of Standard Errors and therefore, better coverage probability for 

the 95% Confidence Interval (CI) and narrow 95% CI. 

3. This study found that ‘presence of a separate kitchen’ was one of the important factors 

that had an impact on the mean transition time from one state to another state of 

malnutrition. If the child lived in a house that had no separate kitchen, then there was a 

long transition time to move from severe state of malnutrition to normal state as 

compared to a child living in a house that had a separate kitchen.  

4. This study also found ‘defecation’ as an important factor that had on the mean transition 

time. The children who lived in houses where defecation was in the open fields had 

higher transition time as compared to those children who lived in houses where 

defecation was within the premises of the house.  

5. The children whose mothers’ had low education turned out to be an important factor. The 

analysis showed that children whose mothers’ were illiterate had a high risk of being 
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severely malnourished as compared to children whose mothers’ had high school or higher 

level of education.  

6. There was also an impact on malnutrition due to the type of fuel used for cooking. If the 

fuel used for cooking was firewood or coal or cow dung then there was a high risk of 

children living in such houses to be malnourished as compared to children living in 

houses where gas or kerosene was used as fuel for cooking.  

7. The overall impact of the study findings were that social factors like “mothers’ 

education”, and economic factors which are reflected by the “type of fuel used for 

cooking”, “presence of a separate kitchen” were important and hence the 

recommendation would be to plan interventions in children living in such environments 

to reduce protein energy malnutrition among children.  
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11. APPENDIX 
Table 1a: Incidence of Severe Malnutrition using BMI Categories for all children by Age of 

the Child at recruitment 

Age of the child at Baseline = 5 years 

From 

(Time t ) 

To ( t+1) 

Baseline: Normal 

n             % 

    Moderate 

n                % 

Severe 

n              % 

Total ISM 95% CI 

Normal 692         89.1   67            8.6 18             2.3 777  
4.15 

 
3.08 – 5.55 Moderate 137         52.7   98           37.7 25             9.6 260 

Severe   65         27.5   80           33.9 91           38.6 236 

1
st
 Year:      

Normal 738         86.7   96            11.3 17             2.0 851  
3.79 

 
2.79 – 5.11 Moderate   76         32.8 132            56.9 24           10.3 232 

Severe   10           7.6   41            31.1 81           61.4 132 

2
nd

 Year:      

Normal 682         81.7 141            16.9 12             1.4 835  
6.21 

 
4.92 – 7.79 Moderate   49         17.7 171            61.7 57           20.7 277 

Severe     5           4.3   32            27.8 78           67.8 115 

*ISM – Incidence of severe malnutrition 
Tables 6a, 6b and 6c present the incidence of severe malnutrition in each year from baseline by 

age of the children at inception. The incidence of severe malnutrition was nearly 4% in the first 

two years and increased to 6% from second to third year when the age of child at inception was 5 

years. The incidence of malnutrition was 3%, 4% and 5% respectively in the three years of follo-

up from baseline when the age of the child at inception was 6 years (table 6b). 

There were very few cases in the age group 7 years at inception. The severe malnutrition 

incidence was 4% and 6% in the three years of follow-up from baseline.  

Tables 7a and 7b represent the severe malnutrition incidence for 3 years from baseline. The 

incidence of severe malnutrition was lower for girls over the three years (3%, 3% and 4%) while 

the incidence of severe malnutrition was higher for boys as compared to girls (4%, 5% and 8%) 

respectively.  



 

 

 

Table 1b: Incidence of Severe Malnutrition using BMI Categories for all children by Age of 

the Child at recruitment 

Age of the Child at Baseline = 6 years 

From 

(Time t ) 

To ( t+1) 

Baseline: Normal 

n               % 

    Moderate 

n              % 

Severe 

n              % 

Total ISM 95% CI 

Normal 380         82.2 43           10.0   8            1.9 431  
3.15 

 
2.02 – 4.84 Moderate 131         64.2 61           29.9 12            5.9 204 

Severe   72         30.4 87           36.7 78          32.9 237 

1
st
 Year:      

Normal 487         86.5   65          11.5 11            2.0 563  
4.81 

 
3.47 – 6.60 
 

Moderate   53         28.5 108          58.1 25          13.4 186 

Severe     7           7.3   36          37.5 53          55.2   96 

2
nd

 Year:      

Normal 473         84.2   87          15.5   2            0.4 562  
5.34 

 
3.94 – 7.18 Moderate   45         21.8 122          59.2 39          18.9 206 

Severe     2           2.2   25          27.2 65          70.7   92 

*SI – Severely malnourished 

 

Table 1c: Incidence of Severe Malnutrition using BMI Categories for all children by Age of 

the Child at recruitment 

Age of the Child at Baseline = 7
 
years 

From 

(Time t ) 

To ( t+1) 

Baseline: Normal 

n             % 

    Moderate 

n              % 

Severe 

n             % 

Total ISM 95% CI 

Normal 38        92.7   3             7.3   0            0.0 41  
4.00 

 
0.9 – 11.58 Moderate 21        61.8 10            29.4   3            8.8 34 

Severe   7        20.0   9            25.7 19          54.3 35 

1
st
 Year:      

Normal 54        84.4 10            15.6   0           0.0 64  
5.88 

 
2.22- 13.36 Moderate   5        23.8 11            52.4   5          23.8 21 

Severe   0          0.0   5            22.7 17          77.3 22 

2
nd

 Year:      

Normal 47        79.7 11            18.6   1            1.7 59  
5.92 

 
4.67-17.91 Moderate   4        16.0 14            56.0   7          28.0 25 

Severe   1          4.5   3            13.6 18          81.8 22 

*SI – Severely Prevalence 



 

 

 

Table 2a: Incidence of Severe Malnutrition using BMI Categories for all children by Sex of 

the child 

Male: 

From 

(Time t ) 
To ( t+1) 

Baseline: 
Normal 

n             % 

Moderate 

n              % 

Severe 

n              % 
Total ISM 95% CI 

Normal 525        87.1  58         9.6  20         3.3 603  
4.40 

 
3.21 – 5.99 Moderate 155        59.4  88        33.7  18         6.9 261 

Severe   73        24.7 109       36.9 113      38.3 295 

1
st
 Year:      

Normal 607        84.2  95        13.2 19          2.6 721  
5.50 

 
4.22 – 7.13 Moderate   76        31.3 133       54.7 34        14.0 243 

Severe   12          8.1   42       28.2 95        63.8 149 

2
nd

 Year:      

Normal 569       80.6 127       18.0 10         1.4 706  
7.87 

 
6.33 – 9.73 Moderate   45       16.5 161       59.0 67        24.5 273 

Severe     6         4.0   32       21.5 111      74.5 149 

 

 

Table 2b. Incidence of Severe Malnutrition using BMI Categories for all children by Sex of 

the child 

Female: 

From 

(Time t ) 

To ( t+1) 

Baseline: Normal 

n             % 

    Moderate 

n              % 

Severe 

n              % 

Total ISM 95% CI 

Normal 585       90.6  55           8.5   6           0.9 646  
3.17 

 
2.19 – 4.56 Moderate 134       56.5  81         34.2 22           9.3 237 

Severe   71       33.3  67         31.5 75         32.2 213 

1
st
 Year:      

Normal 672       88.8   76        10.0   9           1.2 757  
3.04 

 
2.11 – 4.35 Moderate   58       29.6 118        60.2 20          10.2 196 

Severe     5         5.0   40        39.6 56          55.5 101 

2
nd

 Year:      

Normal 633        84.4 112         14.9   5           0.7 750  
4.16 

 
3.07 – 5.61 Moderate   53        22.6 146         62.1 36          15.3 235 

Severe     2          2.5   28         35.0 50          62.5   80 

*SI – Severely Prevalence 



 

 

 

Table 3a: Incidence of Severe Malnutrition using BMI Categories for all children Area of 

Residence  

Rural: 

From 

(Time t ) 

To ( t+1) 

Baseline: Normal 

n             % 

    Moderate 

n              % 

Severe 

n              % 

Total ISM 95% CI 

Normal 582       85.7   76         11.2 21            3.1 679  
5.56 

 
4.23 – 7.26 Moderate   92       41.6 100         45.2 29          13.1 221 

Severe   21       11.7   65         36.3 93          52.0 179 

1
st
 Year:      

Normal 604       89.2   60           8.9 13            1.9 677  
3.38 

 
2.38 – 4.78 Moderate   73       30.5 148         61.9 18            7.5 239 

Severe     6         4.2   50         35.2 86           60.6 142 

2
nd

 Year:      

Normal 606        85.8   94         13.3   6            0.8 706  
5.25 

 
4.00 – 6.84 Moderate   45       16.9 176         66.2 45           16.9 266 

Severe     3         2.6   39         33.9 73            63.5 115 

 

 

Table 3b: Incidence of Severe Malnutrition using BMI Categories for all children by Area 

of Residence 

Urban: 

From 

(Time t ) 
To ( t+1) 

Baseline: 
Normal 

n           % 

Moderate 

n              % 

Severe 

n           % 
Total ISM 95% CI 

Normal 528      92.6 37          6.5 5        0.9 570 
 

1.89 
 

1.14 – 3.07 
Moderate 197      71.1 69        24.9 11        4.0 277 

Severe 123      34.4 111       33.7 95      28.9 329 

1
st
 Year:      

Normal 675      84.3 111       13.9 15        1.9 801 
 

5.09 
 

3.89 – 6.65 
Moderate 61      30.5 103       51.5 36      18.0 200 

Severe 11      10.2 32       29.6 65      60.2 108 

2
nd

 Year:      

Normal 596      79.5 145        19.3 9        1.2 750 
 

6.75 
 

5.34 – 8.50 
Moderate 53      21.9 131        54.1 58      24.0 242 

Severe 5        4.4 21        18.4 88      77.2 114 

*SI – Severely Prevalence 



 

 

The tables 3a and 3b are the incidence of severe malnutrition among children in rural and urban 

areas. The incidence of severe malnutrition in urban was low in the first year from baseline (2%) 

but increased in second year (5%) and third year (7%). The incidence of severe ma

similar over the three years (5% in the first year from baseline, 4% in the second year and 5% in 

the third year). 

Figure 1: Incidence of Severe Malnutrition by age of the child at inception using BMI 

classification: 

Figure 2: Incidence of Severe Malnutrition by Sex of the Child using BMI classification:

Note: MAL – Malnutrition 
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b are the incidence of severe malnutrition among children in rural and urban 

areas. The incidence of severe malnutrition in urban was low in the first year from baseline (2%) 

but increased in second year (5%) and third year (7%). The incidence of severe ma

similar over the three years (5% in the first year from baseline, 4% in the second year and 5% in 
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b are the incidence of severe malnutrition among children in rural and urban 

areas. The incidence of severe malnutrition in urban was low in the first year from baseline (2%) 

but increased in second year (5%) and third year (7%). The incidence of severe malnutrition was 

similar over the three years (5% in the first year from baseline, 4% in the second year and 5% in 
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Figure 3: Incidence of Severe Malnutrition by Area of Residence using BMI classification:

 

Note: MAL – Malnutrition 

 

Table 4a: Incidence of severe malnutrition using Height

Child at baseline 

At 5
th

 Year: 

  From  

(Time t ) 

Baseline:     Normal 

n               % 

   

n               %

Normal 470           88.7   56          10.6

Moderate   37             9.4 312          79.2

Severe     1             0.3   49          14.0

1
st
 Year:   

Normal 462           94.7   25            5.1

Moderate   53           13.5 322          81.7

Severe     0             0.0   72          21.6

2
nd

 Year:   

Normal 504           98.4     

Moderate 103           24.4 315          74.6

Severe     0             0.0 103          35.2

Incidence density of severe malnutrition per year
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Figure 3: Incidence of Severe Malnutrition by Area of Residence using BMI classification:

          

Incidence of severe malnutrition using Height-for-Age classification by Age of the 

To ( t+1) 

   Moderate 

n               % 

Severe 

  n              % 

Total ISM 

56          10.6     4             0.8 530  
5.30 312          79.2   45           11.4 394 

49          14.0 299           85.7 349 

   

25            5.1     1             0.2 488  
2.27 
 

322          81.7   19             4.8 394 

72          21.6 261           78.4 333 

   

    8            1.6     0             0.0 512  
0.43 315          74.6     4             0.9 422 

103          35.2 190           64.8 293 

of severe malnutrition per year 
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At 6
th

 Year: 

  From  

(Time t ) 

To ( t+1) 

Baseline:     Normal 

n               % 

   Moderate 

n               % 

Severe 

  n              % 

Total ISM 95% CI 

Normal 376           93.1   27            6.7     1             0.2 404  
3.13 

 
2.03 – 4.76 
 

Moderate   26             9.7 222          82.8   20             7.5 268 

Severe     0             0.0   43          21.5 157           78.5 200 

1
st
 Year:       

Normal 367           93.9   24            6.1     0             0.0 391  
1.64 

 
0.88 – 2.95 Moderate   30           10.8 238          85.3   11             3.9 279 

Severe     0             0.0   25          14.3 150           85.7 175 

2
nd

 Year:       

Normal 390           97.3    11           2.7     0             0.0 401  
0.29 

 
0.01 – 1.11 Moderate   45           15.0 253          84.3     2             0.7 300 

Severe     0             0.0   38          23.9 121           76.1 159 

Incidence density of severe malnutrition per year 
 

 

At 7
th

 Year: 

  From  

(Time t ) 

To ( t+1) 

Baseline:     Normal 

n               % 

   Moderate 

n               % 

Severe 

  n              % 

Total SI 95% CI 

Normal 47             92.2   4              7.8   0               0.0 51  
3.7 

 
0.083 – 10.77 Moderate   5             16.7 22            73.3   3             10.0 30 

Severe   0               0.0   3            10.3 26             89.7 29 

1
st
 Year:       

Normal 47             92.2   4              7.8   0               0.0 51  
1.28 

 
0.01 – 7.59 Moderate   4             14.8  22           81.5   1               3.7 27 

Severe   0               0.0   5            17.2 24             82.8 29 

2
nd

 Year:       

Normal 49             96.1   2              3.9   0               0.0 51  
0.00 

 
0.00 – 5.43 Moderate   2               6.7 28            93.3   0               0.0 30 

Severe   0               0.0   5            20.0 20             80.0 25 

Incidence density of severe malnutrition per year 
 

 

 

 



 

 

 

Table 4b: Incidence of severe malnutrition using Height-for-Age classification by Sex of the 

Child 

Male 

  From  

(Time t ) 

To ( t+1) 

Baseline:     Normal 

n               % 

   Moderate 

n               % 

Severe 

  n              % 

Total SI 95% CI 

Normal 446           90.5   44            8.9     3             0.6 493  
5.73 

 
4.34 – 7.53 Moderate   30             8.7 269          78.2   45           13.1 344 

Severe     1             0.3   41   12.7 280           87.0 322 

1
st
 Year:       

Normal 425           92.8   32            7.0     1             0.2 458  
2.27 

 
1.41 – 3.58 Moderate   37           11.0 282          83.9   17   5.1   336 

Severe     0             0.0   46          14.4 273           85.6 319 

2
nd

 Year:       

Normal 456           98.9     5            1.1     0             0.0 461  
0.36 

 
0.07 – 1.11 Moderate   85           23.0 281          76.2     3             0.8 369 

Severe     0             0.0   91          30.5 207           69.5 298   

Incidence density of severe malnutrition per year 
 

 

 

Female: 

  From  

(Time t ) 

To ( t+1) 

Baseline:     Normal 

n               % 

   Moderate 

n               % 

Severe 

  n              % 

Total SI 95% CI 

Normal 447           90.9   43            8.7     2             0.4 492  
2.98 

 
2.00 – 4.38 Moderate   38   10.9 287          82.5   23             6.6 348 

Severe     0             0.0   54          21.1 202    78.9 256 

1
st
 Year:       

Normal 451           95.6   21            4.4     0             0.0 472  
1.67 

 
0.97 – 2.82 Moderate   50           13.7 300          82.4   14             3.8  364 

Severe     0             0.0    56          25.7 162           74.3 218 

2
nd

 Year:       

Normal 487           96.8 16              3.2     0             0.0 503  
0.35 

 
0.07 – 1.06 Moderate   65           17.0 315          82.2     3             0.8 383 

Severe     0             0.0   55          30.7 124           69.3 179 

Incidence density of severe malnutrition per year 
 

 



 

 

 

Table 4c: Incidence of severe malnutrition using Height-for-Age classification by Area of 

the Residence 

Rural: 

  From  

(Time t ) 

To ( t+1) 

Baseline:     Normal 

n               % 

   Moderate 

n               % 

Severe 

  n              % 

Total SI 95% CI 

Normal 367           95.3   18            4.7     0             0.0 385  
2.89 

 
1.88 – 4.41 Moderate   45           13.2 275          80.6   21             6.2 341 

Severe     1   0.3   61          17.3 291    82.4 353 

1
st
 Year:       

Normal 379           93.3   26            6.4     1             0.2 406  
2.14 

 
1.29 – 3.47 Moderate   22             6.4 306          89.2   15             4.4 343 

Severe     0             0.0   49          15.9 260           84.1 309 

2
nd

 Year:       

Normal 397           97.5   10            2.5   0               0.0 407  
0.25 

 
0.01 – 0.97 Moderate   55           14.0 336          85.5   2               0.5 393 

Severe     0             0.0   71          24.7 216           75.3 287 

Incidence density of severe malnutrition per year 
 

 

 

Urban: 

  From  

(Time t ) 

To ( t+1) 

Baseline:     Normal 

n               % 

   Moderate 

n               % 

Severe 

  n              % 

Total SI 95% CI 

Normal 526           87.7    69         11.5     5             0.8 600  
5.47 

 
4.18 – 7.11 Moderate   23             6.6  281         80.1   47           13.4 351 

Severe     0             0.0   34          15.1 191           84.9 225 

1
st
 Year:       

Normal 497           94.8   27            5.2     0             0.0 524  
1.82 

 
1.10 – 2.95 Moderate   65           18.2 276          77.3   16             4.5 357 

Severe     0             0.0   53          23.2 175           76.8 228 

2
nd

 Year:       

Normal 546           98.0   11            2.0     0             0.0 557  
0.44 

 
0.13 – 1.16 Moderate   95           26.5 260          72.4     4             1.1 359 

Severe     0             0.0  75           39.5 115           60.5 190 

Incidence density of severe malnutrition per year 
 

 



 

 

 

Table 5: Bivariate (unadjusted) analysis for malnutrition (ordinal outcome) by socio-

demographic and household variables with random intercept and random slope at child 

level and random intercept at household level 

Variables 

‘Naïve’ 

Regression 

OR (SE) 

Random 

Intercept at 

Child level 

OR (SE) 

Random 

Intercept and 

Random slope 

at Child level 

OR (SE) 

Random 

Intercept and, 

Random slope at 

Child level and 

Random 

Intercept at 

Household level 

OR (95% CI) 

Sex of the child 
    Female 
    Male 

 
0.68 (0.02) 
 

 
0.41 (0.07) 

 
0.47 (0.06) 

 

0.47 (0.37, 0.59) 

ICC  - 0.76 - 0.0011 

Area of Residence 
    Rural 
    Urban 

 
 
1.02 (0.03) 

 
 
1.25 (0.21) 

 
 
1.16 (0.14) 

 
 
1.20 (0.94,1.52) 

ICC - 0.763 - 0.0001 

Birth Order 
     1 
     2 
     ≥3 

 
1.00 
0.95 (0.04) 
0.92 (0.04) 

 
1.00 
0.85 (0.23) 
0.82 (0.18) 

 
 
0.88 (0.17) 
0.83 (0.13) 

 
 
0.87 (0.60, 1.26) 
0.83 (0.61,1.13) 

ICC - 0.763 - 0.02 

Mother’s Education 
     Illiterate/ Literate 
     Primary/Middle      
           School 
     High school/      
            College 

 
1.11 (0.06) 
1.10 (0.06) 
1.00 

 
1.19 (0.34) 
1.14 (0.35) 
1.00 

 
1.21 (0.44) 
1.18 (0.25) 

 
1.21 (0.78,1.80) 
1.18 (0.82,1.79) 

ICC - 0.765 - 0.0008 

Father’s Education 
      Illiterate/ Literate 
     Primary/Middle 
School 
     High school/ 
College 

 
1.04 (0.04) 
1.01 (0.04) 
1.00 

 
0.99 (0.21) 
0.99 (0.23) 
1.00 

 
1.02 (0.15) 
1.01 (0.16) 
1.00 

 
1.01 (0.75, 1.35) 
0.97 (0.71,1.33) 
1.00 

ICC - 0.765 - 0.0034 

Number of Family 

Members 
     <=4 
     5 – 6 
     >6 

 
 
1.00 
0.99 (0.04) 
0.94 (0.04) 

 
 
1.00 
0.85 (0.23) 
0.82 (0.18) 

 
 
1.00 
1.13 (0.30) 
0.95 (0.25) 

 
 
1.00 
1.10 (0.77, 1.58) 
0.96 (0.66,1.38) 

ICC - 0.763 - 0.00006 



 

 

 

Contd…. 

Variables 

‘Naïve’ 

Regression 

OR (SE) 

Random 

Intercept at 

Child level 

OR (SE) 

Random 

Intercept and 

Random slope 

at Child level 

OR (SE) 

Random 

Intercept and, 

Random slope at 

Child level 

Random 

Intercept at 

Household level 

OR (95% CI) 

Fuel for cooking 
     Drug/Firewood 
     Gas/Kerosene 

 
1.01 (0.04) 

 
1.05 (0.26) 

 
1.07 (0.18) 

 
1.07 (0.77,1.50) 

ICC - 0.763 - 0.0008 

Defecation 
     Within 
premises/latrine 
     Open field 

 
1.12 (0.03) 

 
1.47 (0.25) 

 
1.35 (0.16) 

 
1.36 (1.08,1.73) 

ICC - 0.763 - 0.0009 

Type of roof 
     Thatched 
     Tiled 
     RCC/Pukka 
     Others        

 
0.88 (0.08) 
0.89 (0.09) 
0.74 (0.07) 
1.00 

 
0.68 (0.35) 
0.75 (0.39) 
0.40 (0.22) 
1.00 

 
0.76 (0.26) 
0.77 (0.29) 
0.45 (0.18) 
1.00 

 
0.53 (0.23,1.20) 
0.50 (0.22,1.13) 
0.23 (0.10,0.52) 
1.00 

ICC - 0.762 - 0.02 

Type of Floor 
     Kucha 
     Pukka 

 
1.09 (0.03) 

 
1.18 (0.21) 

 
1.16 (0.14) 

 
1.15 (0.91,1.46) 

ICC - 0.763 - 0.032 

Presence of a 

Separate    

Kitchen 
     Yes 
     No 

 
 
 
1.00 
1.20 (0.04) 

 
 
 
1.00 
1.40 (0.28) 

 
 
 
1.00 
1.35 (0.19) 

 
 
 
1.00 
1.38 (1.05,1.83) 

ICC - 0.762 - 0.0006 

Consanguineous 

Marriage 
     Yes 
     No    

 
 
1.09 (0.03) 

 
 
1.18 (0.21) 

 
 
1.16 (0.14) 

 
 
1.17 (0.92, 1.50) 

ICC - 0.763 - 0.001 

Type of House 
     Brick and/or mud 
     Brick and cement 
     Others 

 
1.15 (0.04) 
1.00 
1.29 (0.05) 

 
1.37 (0.28) 
1.00 
1.65 (0.41) 

 
1.30 (0.19) 
1.00 
1.52 (0.26) 

 
1.30 (0.98,1.72) 
1.00 
1.52 (1.08,2.14) 

ICC - 0.76 - 0.002 
Note: ICC – Intraclass Correlation Coefficient 


