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ABSTRACT 

 

 

This thesis presents the findings of the research work done on the evaluation and 
performance of substrate integrated waveguide (SIW) band-stop filters. The conventional 
waveguide has the advantages of low-insertion losses and high Q in microwave 
communication systems but their physical sizes of rectangular waveguides are large. The 
introduction of substrate integrated waveguide with similar properties of low insertion loss 
that can be integrated with planar circuits fulfill the requirement of microwave 
communication systems. Many researches have carried out detail research work on SIW 
band-pass filters but not many researches have spent enough time on the research of 
performance of SIW band-stop filters. In the construction of SIW band-stop filters, 
resonators feature significantly to realize the structure. Resonators can be constructed from 
closed sections of SIW. Circular and radial shape cavity resonators are proposed to design 
the SIW band-stop filters. The SIW band-stop filters are designed by coupling the cavity 
resonator to the SIW line. The effects on the variation of parameters value of each type of 
resonators are investigated. CST microwave studio is used for all the simulation work in 
this research. The designs of the SIW band-stop filters have been realized by using 
standard PCB process. The measured results are found to be in consistent to the simulated 
results. The dual-radial cavity resonators SIW band-stop filter has shown enhanced 
performance in 9GHz band-stop response with a high stopband attenuation level and 
provide better roll-off of 0.15dB/MHz. These provide better frequency selectivity as 
compared to the rectangular cavity resonator in the previous research work. This band-stop 
filter can be used to provide better signal rejection in the X-band.  
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ABSTRAK 

 

 

Tesis ini membentangkan hasil penyelidikan yang telah dilakukan tentang penilaian dan 
prestasi penapis batas jalur pandu gelombang substrat bersepadu (SIW). Pandu 
gelombang konvensional mempunyai kelebihan pada kehilangan sisipan rendah dan Q 
yang tinggi dalam sistem komunikasi gelombang mikro akan tetapi saiz fizikal pandu 
gelombang segi empat tepat adalah besar. Pengenalan pandu gelombang substrat 
bersepadu dengan sifat-sifat kehilangan sisipan rendah dan boleh disepadukan dengan 
litar satah memenuhi keperluan sistem komunikasi gelombang mikro dimasakini. Banyak 
pengelidik telah melakukan penyelidik mendalam atas penapis jalur lulus SIW tetapi tidak 
ramai penyelidik telah memberi masa yang mencukupi atas penyelidikan tentang prestasi 
penapis batas jalur SIW. Dalam pembinaan penapis batas jalur, penyalun atau resonator 
merupakan bahagian penting untuk menrealisasikan strukturnya. Penyalun boleh 
dibinadari SIW dengan bahagian tertutup mengelilingnya. Penyalun bulatan dan jejarian 
dicadangkan untuk mereka bentuk penapis batas jalur SIW. Penapis batas jalur SIW 
direka bentuk dengan menggandingkan penyalun rongga kepada talian SIW. Kesan 
perubahan  nilai parameter-parameter bagi setiap jenis penyalun dikaji dan selidik. CST 
studio gelombang mikro digunakan untuk semua kerja simulasi dalam kajian ini.Rekaan 
penapis batas jalur SIW telah dihasilkan dengan menggunakan proses standard Papan 
Litar Tercetak. Keputusan pengukuran yang diambil adalah didapati bersama dengan 
keputusan simulasi. Penapis batas jalur SIW dengan penyalun rongga jejarian duaan telah 
menunjukkan prestasi peningkatan pada 9GHz dengan pelemahan batas jalur yang tinggi 
dan mempunyai 0.15dB/MHz kecerunan yang lebih baik. Ini memberi pemilihan frekuensi 
yang lebih baik dari penyalun rongga segi empat tepat dalam kerja penyelidikan 
sebelumnya. Penapis batas jalur ini boleh digunakan untuk memberikan isyarat penolakan 
yang lebih baik dalam X-band. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.0 Background 

The demand for microwave communication systems with high performance such as 

low insertion loss and high selectivity is always a challenge in this field of engineering.  

The high demand of higher volume of channels has made the frequency spectrum to 

become more crowded so much so, interference between close neighbouring channels 

occurs and becomes a problem. The rapid growth in the telecommunication industry is the 

main reason and to meet the challenges now and in the future, extensive researches on 

microwave components to reduce the interferences between close neighbouring channels 

are being carried. Among the many critical components, microwave filter is one which 

provide significant roles in a microwave communication system, mainly, in frequency 

selectivity, featuring small insertion loss and large return loss. One way to efficiently 

utilize the electromagnetic spectrum is to ensure enhanced performance of the microwave 

filters.  

In microwave communication systems, signals play a very important role in 

delivering information.  Problems occur as there is always noise in the signals or there is 

only a certain range of signal that is desired. Therefore, filter is an important device to 

provide solution to this problem. The general requirements of filters are small insertion 

loss, large return loss and high frequency selectivity. A high frequency selectivity filter has 



2 
 

efficiency in frequency application due to the small guard frequency band between each 

channel. Another feature is that filters on demand must be small in size to cater for the 

industry.  

Conventional rectangular waveguides are well known to have low loss and high 

quality factor as compared to planar counter parts. They are normally used in low-loss 

microwave circuit design. Because of its enclosed structure, there is no leakage of 

electromagnetic energy throughout the propagation. However, the integration of both 

planar and non-planar circuits is difficult and bulky. One of the disadvantages of 

conventional waveguide is their huge size as a device. A concept that can offer the solution 

to the integration of waveguide is substrate integrated waveguide. It is a technique that can 

reduce the cut-off frequency of a rectangular waveguide which the waveguide is partly or 

fully filled with dielectric substrate. Thus, the reduction by a factor of r/1   is achieved 

in comparing with the conventional rectangular waveguide that is air-filled. 

 Integrated waveguide techniques was filed patented in 1995 (Flanick et al., 1995). 

The propose of substrate integrated waveguide (SIW) in the other way call post wall 

waveguide or laminated waveguide was investigated theoretically and practically by 

(Uchimura et al., 1998). SIW is formed by having two periodic rows of metalized via-

holes. According to the paper regarding the review of current research trends in SIW, a 

number of papers regarding SIW had been published in the IEEE between year 2005 to 

2008 (Bozzi et al., 2009). These lead to the production of novel modelling techniques for 

SIW components and outstanding performance SIW circuits and systems. Because of the 

almost similar operating mechanism of an SIW to a conventional rectangular waveguide, 

the characteristic of SIW is almost similar but the Q-factor of an SIW is less than 
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conventional rectangular waveguide with air medium due to the dielectric filling and 

volume reduction (Cassivi, 2002). 

Filters are the most popular device among the passive SIW components. A variety 

of different filter topologies were presented. A band-pass filter is designed by etching 

complementary split-ring resonators on the SIW surface to achieve circuit miniaturization 

(Dong et al., 2009). Then, a series of cross-slot structures etched on the SIW dual-mode 

band-pass filter to miniaturize the filter was presented (Chen et al., 2012). A band-pass 

filter using Quarter Substrate Integrated Waveguide Resonator loaded with a fractal-shaped 

was presented (Zhang et al., 2011). A compact band-pass filter using quarter SIW cavity 

resonator with source-load cross coupling was presented (Deng et al., 2011). A pseudo-

elliptic SIW filters with higher-order mode resonances was presented (Salehi et al., 2013). 

A SIW cross-coupling filter with multilayer hexagonal cavity was presented (Bo et al., 

2013). An X-band differential band-pass filter with high common-mode suppression using 

substrate integrated waveguide cavity was presented (Jin et al., 2014). 

There were only a few of numerical methods developed and published for SIW 

structures to obtain a high computational efficiency. One of the methods was presented 

with the combination of method of moments (MOM) and cylindrical eigenfunction 

expansion (Wu et al., 2008). A boundary integral-resonant mode expansion (BI-RME) 

method was applied to analyze the lossless SIW (Bozzi et al., 2006). The modelling of 

SIW components based on BI-RME method makes it possible to determine the wideband 

expression of the frequency response of SIW components without repeated frequency-by-

frequency electromagnetic analyses. This algorithm has improved with the modelling of 

lossy SIW interconnects and components (Bozzi et al., 2008). The full wave 

electromagnetic simulation software such as Computer Simulation Technology (CST) and 




