

Faculty of Electronics and Computer Engineering

PERFORMANCE EVALUATION OF SUBSTRATE INTEGRATED WAVEGUIDE BAND-STOP FILTERS

Tan Gan Siang

MSc. in Electronic Engineering

2015

C Universiti Teknikal Malaysia Melaka

PERFORMANCE EVALUATION OF SUBSTRATE INTEGRATED WAVEGUIDE BAND-STOP FILTERS

TAN GAN SIANG

A thesis submitted in fulfillment of the requirement for the degree of Master of Science in Electronic Engineering

Faculty of Electronics and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Performance Evaluation of Substrate Integrated Waveguide Band-stop Filters" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:	
Supervisor Name	:	
Date	:	

ABSTRACT

This thesis presents the findings of the research work done on the evaluation and performance of substrate integrated waveguide (SIW) band-stop filters. The conventional waveguide has the advantages of low-insertion losses and high Q in microwave communication systems but their physical sizes of rectangular waveguides are large. The introduction of substrate integrated waveguide with similar properties of low insertion loss that can be integrated with planar circuits fulfill the requirement of microwave communication systems. Many researches have carried out detail research work on SIW band-pass filters but not many researches have spent enough time on the research of performance of SIW band-stop filters. In the construction of SIW band-stop filters, resonators feature significantly to realize the structure. Resonators can be constructed from closed sections of SIW. Circular and radial shape cavity resonators are proposed to design the SIW band-stop filters. The SIW band-stop filters are designed by coupling the cavity resonator to the SIW line. The effects on the variation of parameters value of each type of resonators are investigated. CST microwave studio is used for all the simulation work in this research. The designs of the SIW band-stop filters have been realized by using standard PCB process. The measured results are found to be in consistent to the simulated results. The dual-radial cavity resonators SIW band-stop filter has shown enhanced performance in 9GHz band-stop response with a high stopband attenuation level and provide better roll-off of 0.15dB/MHz. These provide better frequency selectivity as compared to the rectangular cavity resonator in the previous research work. This band-stop filter can be used to provide better signal rejection in the X-band.

ABSTRAK

Tesis ini membentangkan hasil penyelidikan yang telah dilakukan tentang penilaian dan prestasi penapis batas jalur pandu gelombang substrat bersepadu (SIW). Pandu gelombang konvensional mempunyai kelebihan pada kehilangan sisipan rendah dan Q yang tinggi dalam sistem komunikasi gelombang mikro akan tetapi saiz fizikal pandu gelombang segi empat tepat adalah besar. Pengenalan pandu gelombang substrat bersepadu dengan sifat-sifat kehilangan sisipan rendah dan boleh disepadukan dengan litar satah memenuhi keperluan sistem komunikasi gelombang mikro dimasakini. Banyak pengelidik telah melakukan penyelidik mendalam atas penapis jalur lulus SIW tetapi tidak ramai penyelidik telah memberi masa yang mencukupi atas penyelidikan tentang prestasi penapis batas jalur SIW. Dalam pembinaan penapis batas jalur, penyalun atau resonator merupakan bahagian penting untuk menrealisasikan strukturnya. Penyalun boleh dibinadari SIW dengan bahagian tertutup mengelilingnya. Penyalun bulatan dan jejarian dicadangkan untuk mereka bentuk penapis batas jalur SIW. Penapis batas jalur SIW direka bentuk dengan menggandingkan penyalun rongga kepada talian SIW. Kesan perubahan nilai parameter-parameter bagi setiap jenis penyalun dikaji dan selidik. CST studio gelombang mikro digunakan untuk semua kerja simulasi dalam kajian ini.Rekaan penapis batas jalur SIW telah dihasilkan dengan menggunakan proses standard Papan Litar Tercetak. Keputusan pengukuran yang diambil adalah didapati bersama dengan keputusan simulasi. Penapis batas jalur SIW dengan penyalun rongga jejarian duaan telah menunjukkan prestasi peningkatan pada 9GHz dengan pelemahan batas jalur yang tinggi dan mempunyai 0.15dB/MHz kecerunan yang lebih baik. Ini memberi pemilihan frekuensi yang lebih baik dari penyalun rongga segi empat tepat dalam kerja penyelidikan sebelumnya. Penapis batas jalur ini boleh digunakan untuk memberikan isyarat penolakan yang lebih baik dalam X-band.

ACKNOWLEDGMENT

First, I would like to express my special gratitude to my main supervisor, Dato' Prof. Dr. Mohd Nor Bin Husain for giving me the opportunity to conduct this master research. I would like to thank him for his patience, encouragement and inspiration in providing me with invaluable advice and guidance throughout this research work. I would also like to thank my co-supervisor, Prof. Madya Tan Kim See for his continuous advice and support. I would like to thank all the lecturers and postgraduate students at the faculty, who have helped in one way or another, in particular, Mr. Mohamad Zoinol Abidin, Dr. Zahriladha, Mr. Sufian, Mr. Sam Weng Yik and Miss Sabariah.

I would like to thank the Malaysian Government in financing the research in the form Exploratory Research Grant Scheme (ERGS) and the MyMaster 15 programme.

Finally, I want to thank my parents, Tan Lay Keat and Lim Meng Su, my brother, Tan Gan Shen and my sisters, Tan Soo Wen and Tan Soo Fung, for their confidence in me, their encouragement and support throughout the duration of my studies.

iii

TABLE OF CONTENTS

			PAGE
DEC	LAR	ATION	
APP	ROV	AL	
ABS	TRA	CT	i
ABS	TRA	K	ii
ACK	NOV	VLEDGMENT	iii
TAB	LE O	F CONTENTS	iv
LIST	C OF	TABLES	vii
LIST	r of	FIGURES	viii
LIST	COF	APPENDICIES	xiii
LIST	Г ОF	ABREVIATION	xiv
LIST	COF	SYMBOLS	XV
LIST	COF	PUBLICATIONS	xvii
1101			
СНА	PTE	R	
1.	INT	RODUCTION	1
	1.0	Background	1
	11	Original Contribution Presented in this Thesis	7
	1 2	Problem Statement	8
	13	Objectives	10
	14	Scopes	10
	1.5	Outline of the Thesis	11
	1.0		11
2.	LIT	ERATURE REVIEW	13
	2.0	Introduction	13
	2.1	Microwave Filters Basic Concept	14
	2.2	Impedance Transformations	15
	2.3	Lowpass to Band-stop Circuit Transformation	16
	2.4	Maxwell Equation	20
	2.5	TE Modes	22
	2.6	Resonators for Filter	24
	2.7	Rectangular Waveguide Cavities	25
		2.7.1 Resonant Frequencies	26
	2.8	Substrate Integrated Waveguide	27
	2.9	Transition of Microstrip Line to SIW	31
	2.10	Substrate Integrated Waveguide Parameters	33
	2.11	Loss Minimization	35
	2 12	Substrate Integrated Waveguide Band-stop Filter	37
	2.13	Summary	42
3.	DES	IGN AND SIMULATION	44
	3.0	Introduction	44
	3.1	Design of SIW Band-stop Filter	46
		3.1.1 Substrate Integrated Waveguide Transmission Line Design	48
	3.2	Material Selection for the SIW Band-stop Filter Design	51
	3.3	Design and Simulation Results	52

	3.4 3.5	3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Transitic Design o 3.5.1 3.5.2	Effective Width of the SIW Line Width of the Resonator Input The Effect of the Position of Resonator The Effect of the Diameter of the Via Hole The Effect of the Spacing between the Edge of the Via Holes on between Microstrip Line and SIW of Rectangular, Circular and Radial SIW Band-stop Filters Design of Rectangular Cavity Resonator SIW Band-stop Filter	54 56 57 59 60 61 63 63 63
	3.6 3.7	3.5.3 Dual-rad Summar	Design of Radial Cavity Resonator SIW Band-stop Filter dial Cavity Resonator SIW Band-stop Filter	65 66 68
4.	RES	ULTS, F	ABRICATION AND MEASUREMENT	70
	4.0	Introduc	otion	70
	4.1	Results	of the Rectangular Cavity Resonator SIW Band-stop Filter	71
		4.1.1	The Effect of Resonator Width to the Band-stop Filter	71
		4.1.2	The Effect of the Resonator Length to the Band-stop Filter	74
		4.1.3	Fabrication of Band-stop Filter	76
		4.1.4	Measurement Results	77
	4.2	Results	of the Circular Cavity Resonator SIW Band-stop Filter	78
		4.2.1	The Effect of the Parameter r_c to the Band-stop Filter	78
		4.2.2	The Effect of the Parameter l_c	81
		4.2.3	Fabrication	83
	4.2	4.2.4	Measurement Results	85
	4.3	Results	of the Radial Cavity Resonator SIW Band-stop Filter	86
		4.3.1	The Effect of Parameter r_r to the Band-stop Filter The Effect of Parameter θ to the Dand stop Filter	86
		4.3.2	The Effect of Parameter θ_r to the Band-stop Filter	89
		4.3.3	Entrication	91
		4.3.4	Fabrication Moogurement Regults	93 04
	11	4.3.3	dial Cavity Desenator SIW Dand ston Filter	94 05
	4.4	$\Delta ual-rac$	Simulation Results of the Rand ston Filters	95 06
		4.4.1	Eabrication	90
		4.4.3	Measurement Results	99
	4.5	Summar	ry	102
5.	DISC	CUSSIO	N: SIW BAND-STOP FILTERS	103
	5.0	Introduc	otion	103
	5.1	Paramet	er Analysis of the SIW Band-stop Filter	104
		5.1.1	Parametric Study of the SIW Line of the SIW Band-stop Filter	104
		5.1.2	Parametric Study of the Rectangular Cavity Resonator SIW Band-stop Filter	107
		5.1.3	Parametric Study of the Circular Cavity Resonator SIW Band-stop Filter	108
		5.1.4	Parametric Study of the Radial Cavity Resonator SIW Band-	109

stop	Filter
stop	1 11001

		stop i nei		
	5.2	Advantages of the Radial Cavity Resonator Over the Rectangular		
		Cavity Resonator		
	5.3	Frequency Shifting between Simulation and Measurement Results	111	
		5.3.1 Effect of the Tolerance of Dielectric Permittivity of the	111	
		Substrate for Rectangular Cavity Resonator		
		5.3.2 Effect of the Tolerance of Dielectric Permittivity of the	112	
		Substrate of Circular Cavity Resonator SIW Band-stop Filter		
		5.3.3 Effect of the Tolerance of Dielectric Permittivity of the	113	
		Substrate of Radial Cavity Resonator SIW Band-stop Filter		
		5.3.4 Influence of the Permittivity Values of Substrate RO4350B	114	
	5.4	Losses in the Band-stop Filter	115	
		5.4.1 Losses of Rectangular Cavity Resonator SIW Band-stop	115	
		Filter		
		5.4.2 Losses of Circular Cavity Resonator SIW Band-stop Filter	115	
		5.4.3 Losses of Radial Cavity Resonator SIW Band-stop Filter	116	
		5.4.4 Losses of Dual-radial Cavity Resonator SIW Band-stop	116	
		Filter		
	5.5	Dual-radial Cavity Resonator SIW Band-stop Filter	117	
		5.5.1 Comparison of the Dual-radial Cavity Resonator SIW Band-	118	
		stop Filter with Previous SIW Band-stop Filter Design		
	5.6	Summary	119	
6.	CON	NCLUSION AND FUTURE WORK	121	
	6.0	Conclusion	121	
	6.1	Future Work	123	
RE	FERE	NCES	124	
API	PEND	ICES	133	

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	Single resonator SIW band-stop filter specifications	47
4.1	Constant value for parametric study of <i>w</i> of rectangular cavity	71
	resonator SIW band-stop filter	
4.2	Constant value for parametric study of l for rectangular cavity	74
	resonator SIW band-stop filter	
4.3	Constant value for parametric study of r_c of circular cavity resonator	79
	SIW band-stop filter	
4.4	Constant value for parametric study of l_c of circular cavity resonator	81
	SIW band-stop filter	
4.5	Constant value for parametric study of r_r of radial cavity resonator	87
	SIW band-stop filter	
4.6	Constant value for parametric study of θ_r of radial cavity resonator	89
	SIW band-stop filter	
4.7	Constant value for parametric study of <i>l</i> of radial cavity resonator SIW	91
	band-stop filter	
5.1	Comparison of dual-radial cavity resonator SIW band-stop filter with	119
	previous paper.	

vii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Typical block diagram of Doppler radar system	6
1.2	Block diagram of the RF front end of wireless communication	6
	systems in the base station (Hunter, 2001)	
2.1	Band-stop filter response Lowpass to band-stop transformation	18
2.2	Band-stop transformation of (a) an inductor and (b) capacitor	19
2.3	An inverse Chebyshev prototype band-stop filter	19
2.4	Ladder prototype network for band-stop filter	20
2.5	Structure of a rectangular waveguide	22
2.6	Electric and magnetic fields for the $TE_{10}\xspace$ mode in a rectangular	23
	waveguide	
2.7	Typical frequency response of a rectangular waveguide	24
2.8	Cutoff frequencies of the TE_{10} -like and TE_{20} -like modes of the	30
	straight pattern SIRW vs. width W for various via diameters D	
	(Cassivi et al., 2002)	
2.9	Dominant mode electric profiles: (a) rectangular waveguide; (b)	31
	microstrip line	
2.10	Taper transition of microstrip line to SIW	32

viii

2.11	Step impedance transition of microstrip line to SIW	33
2.12	Substrate integrated waveguide (Xu and Wu, 2005)	34
2.13	Simulation and measure results of the triple-band SIW band-stop	38
	filter (Han et al., 2007)	
2.14	Simulated and measured result for single stage SIW band-stop filter	39
	(Ahmad and Hunter, 2008)	
2.15	Simulated and measured result for two stage SIW band-stop filter	39
	(Ahmad and Hunter, 2008)	
2.16	Simulated and measured responses of the transmission mode SIW	40
	band-stop filter (Ahmad and Hunter, 2010)	
2.17	Frequency Response of the prototype HN SIW band-stop filter	41
	(Ahmad <i>et al.</i> , 2010)	
2.18	Simulated and measured response of SIW band-stop filter (Zakaria	42
	and Hunter, 2011)	
2.19	Measured response of dual SIW band-stop filter (Yang et al., 2012)	42
3.1	Lumped element band-stop filter	48
3.2	Resonance for single stage lumped element band-stop filter	48
3.3	A substrate integrated waveguide band-stop filter	49
3.4	Substrate integrated waveguide (Xu and Wu, 2005)	50
3.5	(a) Configuration of SIW band-stop filter (b) diameter of the via holes	53
	and spacing between the edge of the via holes	
3.6	Frequency response of variation of effective width of SIW line	55
3.7	Frequency response of variation of width of the resonator input	57
3.8	Frequency response of variation of resonator position (a) three	58

optimum coupling position for resonator along the SIW line (b) three different coupling position with an optimum point of 20.19mm

3.9	Frequency response of variation of diameter of the via holes			
3.10	Frequency response of spacing between the edges of via holes			
3.11	Transition between a microstrip line and a SIW			
3.12	Configuration of rectangular cavity resonator substrate integrated	64		
	waveguide band-stop filter			
3.13	Configuration of the circular cavity resonator SIW band-stop filter	65		
3.14	Configuration of radial cavity resonator substrate integrated	66		
	waveguide band-stop filter			
3.15	Configuration of the first radial cavity resonator SIW band-stop filter	67		
3.16	Configuration of the second radial cavity resonator SIW band-stop	68		
	filter			
3.17	Configuration of dual-radial cavity resonator SIW band-stop filter	68		
4.1	Configuration of rectangular cavity resonator substrate integrated	72		
	waveguide band-stop filter			
4.2	Frequency response of variation of w (a) S_{11} result (b) S_{21} result	73		
4.3	Frequency response of variation of l (a) S_{11} result (b) S_{21} result	75		
4.4	Parameters values of the fabricated rectangular cavity resonator SIW	76		
	band-stop filter			
4.5	Rectangular cavity resonator SIW band-stop filter	77		
4.6	Measured frequency response of rectangular cavity resonator SIW	78		
	band-stop filter			
4.7	Configuration of circular cavity resonator SIW band-stop filter	79		

Х

4.8	Frequency response of variation of r_c (a) S ₁₁ result (b) S ₂₁ result	80-81
4.9	Frequency response of variation of l_c (a) S_{11} result (b) S_{21} result	82-83
4.10	Parameters value of for fabricated circular cavity resonator SIW	84
	band-stop filter	
4.11	Circular cavity resonator SIW band-stop filter	84
4.12	Measured frequency response of circular cavity resonator SIW band-	85
	stop filter	
4.13	Configuration of radial cavity resonator SIW band-stop filter	87
4.14	Frequency response of variation of r_r (a) S ₁₁ result (b) S ₂₁ result	88
4.15	Frequency response of variation of θ_r (a) S ₁₁ result (b) S ₂₁ result	90
4.16	Frequency response of variation of l (a) S_{11} result (b) S_{21} result	92
4.17	Parameters value for fabricated radial cavity resonator SIW band-stop	93
	filter	
4.18	Radial cavity resonator SIW band-stop filter	94
4.19	Simulated and measured result of radial cavity resonator SIW band-	95
	stop filter	
4.20	Parameters values of dual-radial cavity resonator SIW band-stop filter	96
4.21	Frequency response of first radial resonator SIW band-stop filter	97
4.22	Frequency response of second radial resonator SIW band-stop filter	97
4.23	Frequency response of dual-radial resonators SIW band-stop filter	97
4.24	Fabricated single radial cavity resonator SIW band-stop filter	98
4.25	Fabricated single radial cavity resonator SIW band-stop filter	99
4.26	Fabricated dual-radial cavity resonator SIW band-stop filter	99
4.27	Frequency response of first radial resonator SIW band-stop filter	100

- 4.28 Frequency response of second radial resonator SIW band-stop filter 101
- 4.29 Frequency response of dual-radial resonators SIW band-stop filter 101
- 5.1 Comparison between radial and rectangular cavity resonator at 1108.6GHz
- 5.2 Comparison between radial and rectangular cavity resonator at 1119.9GHz
- 5.3 Frequency response of variation of dielectric permittivity of substrate 112for rectangular cavity resonator SIW band-stop filter
- 5.4 Frequency response of variation of dielectric permittivity of substrate 113 for circular cavity resonator SIW band-stop filter
- 5.5 Frequency response of variation of dielectric permittivity of substrate 114 for radial cavity resonator SIW band-stop filter

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
A	Data Sheet RO4350B		133
В	Standard Rectangular Waveguide	Data	135

xiii

LIST OF ABBREVIATION

EM	-	Electromagnetic
RF	-	Radio Frequency
RX	-	Receive
SIW	-	Substrate Integrated Waveguide
SIRW	-	Substrate Integrated Rectangular Waveguide
TE	-	Transverse Electric
TEM	-	Transverse Electromagnetic
TM	-	Transverse Magnetic
TX	-	Transmit
W	-	Width of Substrate Integrated Rectangular Waveguide
D	-	Diameter of Substrate Integrated Rectangular Waveguide

xiv

LIST OF SYMBOLS

- *C* Capacitance
- *L* Inductance
- *R* Resistance
- ω Angular frequency
- ω_c Angular cut-off frequency
- ω_o Angular centre frequency
- *K* Electric current density
- α Bandwidth scaling factor
- *c* Speed of light
- λ Wavelength
- λ_o Centre frequency wavelength
- λ_g Centre guide wavelength
- *Z*⁰ Characteristic impedance
- f_o Centre frequency
- f_c Cut-off frequency
- f_r Resonant frequency
- β Propagation constant
- ε_o Permittivity of free space

XV

- ε_r Relative permittivity
- *h* Substrate thickness
- μ_r Relative permeability

xvi

LIST OF PUBLICATIONS

Journals:

Husain, M. N., <u>Tan, G. S.</u>, & Tan, K. S. (2014). Enhanced Performance of Substrate Integrated Waveguide Bandstop Filter using Circular and Radial Cavity Resonator. *International Journal of Engineering & Technology*, 6(2), pp. 1268-1277. *(Scopus)*

Conference papers:

Husain, M. N., <u>Tan, G. S.</u>, & Tan, K. S. (2014). Rectangular, Circular and Radial Cavity Resonator Substrate Integrated Waveguide Bandstop Filter. In: IEEE, *Student Conference On Research & Development (SCOReD)*. Putrajaya, Malaysia, 16-17 December 2013.

Husain, M. N., <u>Tan, G. S.</u>, & Tan, K. S. (2014). Design of a Substrate Integrated Waveguide Filter using Dual-Radial Cavity Resonator. In: IEEE, *Region 10 Technical Symposiun (TENSYMP)*. Kuala Lumpur, Malaysia, 14-16 April 2014.

xvii

CHAPTER 1

INTRODUCTION

1.0 Background

The demand for microwave communication systems with high performance such as low insertion loss and high selectivity is always a challenge in this field of engineering. The high demand of higher volume of channels has made the frequency spectrum to become more crowded so much so, interference between close neighbouring channels occurs and becomes a problem. The rapid growth in the telecommunication industry is the main reason and to meet the challenges now and in the future, extensive researches on microwave components to reduce the interferences between close neighbouring channels are being carried. Among the many critical components, microwave filter is one which provide significant roles in a microwave communication system, mainly, in frequency selectivity, featuring small insertion loss and large return loss. One way to efficiently utilize the electromagnetic spectrum is to ensure enhanced performance of the microwave filters.

In microwave communication systems, signals play a very important role in delivering information. Problems occur as there is always noise in the signals or there is only a certain range of signal that is desired. Therefore, filter is an important device to provide solution to this problem. The general requirements of filters are small insertion loss, large return loss and high frequency selectivity. A high frequency selectivity filter has efficiency in frequency application due to the small guard frequency band between each channel. Another feature is that filters on demand must be small in size to cater for the industry.

Conventional rectangular waveguides are well known to have low loss and high quality factor as compared to planar counter parts. They are normally used in low-loss microwave circuit design. Because of its enclosed structure, there is no leakage of electromagnetic energy throughout the propagation. However, the integration of both planar and non-planar circuits is difficult and bulky. One of the disadvantages of conventional waveguide is their huge size as a device. A concept that can offer the solution to the integration of waveguide is substrate integrated waveguide. It is a technique that can reduce the cut-off frequency of a rectangular waveguide which the waveguide is partly or fully filled with dielectric substrate. Thus, the reduction by a factor of $1/\sqrt{\varepsilon_r}$ is achieved in comparing with the conventional rectangular waveguide that is air-filled.

Integrated waveguide techniques was filed patented in 1995 (Flanick *et al.*, 1995). The propose of substrate integrated waveguide (SIW) in the other way call post wall waveguide or laminated waveguide was investigated theoretically and practically by (Uchimura *et al.*, 1998). SIW is formed by having two periodic rows of metalized viaholes. According to the paper regarding the review of current research trends in SIW, a number of papers regarding SIW had been published in the IEEE between year 2005 to 2008 (Bozzi *et al.*, 2009). These lead to the production of novel modelling techniques for SIW components and outstanding performance SIW circuits and systems. Because of the almost similar operating mechanism of an SIW to a conventional rectangular waveguide, the characteristic of SIW is almost similar but the Q-factor of an SIW is less than conventional rectangular waveguide with air medium due to the dielectric filling and volume reduction (Cassivi, 2002).

Filters are the most popular device among the passive SIW components. A variety of different filter topologies were presented. A band-pass filter is designed by etching complementary split-ring resonators on the SIW surface to achieve circuit miniaturization (Dong *et al.*, 2009). Then, a series of cross-slot structures etched on the SIW dual-mode band-pass filter to miniaturize the filter was presented (Chen *et al.*, 2012). A band-pass filter using Quarter Substrate Integrated Waveguide Resonator loaded with a fractal-shaped was presented (Zhang *et al.*, 2011). A compact band-pass filter using quarter SIW cavity resonator with source-load cross coupling was presented (Deng *et al.*, 2011). A pseudo-elliptic SIW filters with higher-order mode resonances was presented (Salehi *et al.*, 2013). A SIW cross-coupling filter with multilayer hexagonal cavity was presented (Bo *et al.*, 2013). An X-band differential band-pass filter with high common-mode suppression using substrate integrated waveguide cavity was presented (Jin *et al.*, 2014).

There were only a few of numerical methods developed and published for SIW structures to obtain a high computational efficiency. One of the methods was presented with the combination of method of moments (MOM) and cylindrical eigenfunction expansion (Wu *et al.*, 2008). A boundary integral-resonant mode expansion (BI-RME) method was applied to analyze the lossless SIW (Bozzi *et al.*, 2006). The modelling of SIW components based on BI-RME method makes it possible to determine the wideband expression of the frequency response of SIW components without repeated frequency-by-frequency electromagnetic analyses. This algorithm has improved with the modelling of lossy SIW interconnects and components (Bozzi *et al.*, 2008). The full wave electromagnetic simulation software such as Computer Simulation Technology (CST) and