

Faculty of Manufacturing Engineering

DESIGN OF LINEAR QUADRATIC REGULATOR CONTROLLER WITH ADJUSTABLE GAIN FUNCTION FOR ROTARY INVERTED PENDULUM SYSTEM

Tang Teng Fong

Master of Science in Manufacturing Engineering

2015

C Universiti Teknikal Malaysia Melaka

DESIGN OF LINEAR QUADRATIC REGULATOR CONTROLLER WITH ADJUSTABLE GAIN FUNCTION FOR ROTARY INVERTED PENDULUM SYSTEM

TANG TENG FONG

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Design of linear quadratic regulator controller with adjustable gain function for rotary inverted pendulum system" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Tang Teng Fong
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	:	
Supervisor's Name	:	Associate Prof. Dr. Zamberi bin Jamaludin
Date	:	

DEDICATION

To my beloved parents, Tang Chin Siang and Ong Geok Ee, For taking good care and giving guidance in life and academic. To my concerned sister, Tang Hoay Sean, For giving moral support. And also for those I love very much.

ABSTRACT

Design of controllers for non-linear systems has long drawn the attention of researchers especially in the fields of robotics, aerospace engineering and marine engineering. A classic example of a non-linear under-actuated control system is the balance control for a rotary inverted pendulum. Basically, the control approach for such system focusses on torque control of the servo-motor for the purpose of rotating the arm and stabilising the pendulum in its upright position at the shortest possible time. The aim of this research is to supplement and further enhance the control performance of a linear quadratic regulator (LQR) controller with focus on reduced response time and degree of oscillation of the pendulum with added robustness against input disturbance applied to the pendulum position and voltage to the motor. Initially, this thesis comprehensively analysed the LQR controller parameters based on minimal balance time of the pendulum. The LQR controller by itself produced high degree of oscillations, long balance time and poor robustness against input disturbance. As an enhancement over this approach, an adjustable gain was added to the existing LQR control structure. The results showed that for a 30° balancing control, the LQR controller with adjustable gain managed to reduce as much as 70% in the balance time and 98% in the degree of oscillation, while improved its robustness by producing faster balance time and lower oscillation upon excitation by input disturbance forces. In conclusion, the LQR controller with adjustable gain has significantly improved the control performance of the rotary inverted pendulum system.

ABSTRAK

Reka bentuk pengawal untuk sistem tidak linear telah sekian lama menarik perhatian penyelidik-penyelidik terutamanya dalam bidang robotik, kejuruteraan aeroangkasa dan kejuruteraan marin. Satu contoh klasik sistem kawalan tak lelurus yang kurang pacu gerak, ialah kawalan imbangan untuk bandul terbalik berputar. Pada asasnya, kaedah kawalan sistem sebegini berfokus kepada kawalan tork pada motor servo bagi tujuan memutar lengan dan menstabilkan bandul dalam kedudukan tegak pada masa paling singkat yang mungkin. Tujuan penyelidikan ini ialah untuk menambah dan meningkatkan lagi prestasi pengawal pengatur linear kuadratik (LQR) dengan fokus kepada pengurangan masa tindak balas bandul dan darjah ayunan dengan peningkatan keteguhan terhadap gangguan input pada kedudukan bandul dan voltan kepada motor. Tesis ini pada awalnya menganalisa secara komprehensif parameter pengawal LQR berdasarkan masa minima imbang bandul. Pengawal LOR dengan sendirinya menghasilkan darjah ayunan yang tinggi, masa imbang yang panjang dan tahap keteguhan yang rendah terhadap gangguan input. Sebagai satu peningkatan atas pengawal ini, satu pekali boleh laras ditambah kepada struktur pengawal LQR sedia ada. Keputusan yang diperolehi untuk kawalan keseimbangan 30° menunjukkan yang pengawal LQR dengan pekali boleh laras telah menurunkan sehingga 70% masa imbang dan 98% darjah ayunan serta memperbaiki tahap keteguhan sistem dengan menghasilkan masa imabang yang lebih cepat dan darjah ayunan yang lebih rendah apabila terdedah kepada gangguan input. Secara kesimpulannya, pengawal LQR yang ditambah baik dengan pekali boleh laras telah memperbaiki secara jelas prestasi kawalan sistem bandul terbalik berputar ini.

ACKNOWLEDGMENTS

Firstly, I am blessed by the Lord Jesus Christ with wisdom and knowledge throughout the research. The Lord has also granted me patience and peace during the writing and times of facing challenges. Thank you the Lord for granting the success in my academic career.

Next, I would like to thank my respective supervisor, Associate Prof. Dr. Zamberi bin Jamaludin and co-supervisor, Dr. Muhamad Arfauz bin Abdul Rahman from Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka (UTeM). I am grateful for having concerned and dedicated supervisors to guide and support me in this research. Under their supervision, the research work is closely directed and monitored besides abundance of encouragement and ideas towards the completion of this thesis.

Particularly, I would like to express my gratitude to my father, Tang Chin Siang and dear mother, Ong Geok Ee who ensure my good health and continuous moral support as well as advice. Moreover, special thanks to my close friend, Miss Tan Teng Teng, who shared my happiness and sadness as well as knowledge throughout the journey of research.

Lastly, a special thanks to my research group members, Mr. Chiew Tsung Heng, Ir. Dr. Lokman Abdullah, Mr. Jailani bin Jamaludin and Madam Nur Aidawati binti Rafan, who willing to spend their precious times in sharing their knowledge and information about the research with me.

TABLE OF CONTENTS

			3.3.1.4	State-space Model for the Pendulum in	35
		332	Frequency	Response Method	37
		222	Validation	of System Model	20
	34	Summa	v anuarior rv	i of System Model	40
	5.1	Guilling	- 9		10
4.	Cont	roller Desi	gn		42
	4.1	Introdu	ction		42
	4.2	Design	of Linear Qu	adratic Regulator Controller	43
		4.2.1	Numerica	l Analysis	46
	4.3	Design Gain Fu	of Linear Qu inction	adratic Regulator Controller with Adjustable	54
	4.4	Summa	ry		62
5.	RESU	JLT AND	DISCUSSI	DN	63
	5.1	Analysi	s of Control	Performance	63
	5.2	Analysi	s of Control	Performance with Applied Disturbance	67
		5.2.1	Disturban	ce at Input Voltage	67
		5.2.2	Input Dist	urbance at the Pendulum Position	74
	5.3	Analysi	s of Tracking	g Control Performance	78
	5.4	Summa	ry	-	81
6.	CON	CLUSION	AND FUT	URE STUDY	83
	6.1	Conclus	sion		83
	6.2	Recom	nendation an	d Future Study	84
REF	FERENC	CES			86
APP	ENDIC	ES			90

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	Mechanical and electrical system parameters based on Teraoft (2009)	30
4.1	Summary on effects of Q matrix on control performance	50
4.2	Average gain for the first trial data	57
4.3	Average gain values of 5 trials	58
5.1	Analysis result of the pendulum oscillation	66
5.2	Summary of percentage reduction in the pendulum oscillation for disturbance input voltage at two different time locations	71
5.3	Analysis of pendulum oscillation results with the disturbance applied at the pendulum position for first input disturbance and second input disturbance	77
G.1	Trial 1	111
G.2	Trial 2	111
G.3	Trial 3	111
G.4	Trial 4	111
G.5	Trial 5	112
G.6	Trial 6	112

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Simplified linear inverted pendulum	8
2.2	Simplified rotary inverted pendulum	9
2.3	The Segway personal transporter	11
2.4	HRP-4C Humanoid	11
2.5	Transporting the loads by using a crane	11
3.1	Flow chart of overall methodology	22
3.2	Experimental setup of rotary inverted pendulum	24
3.3	System setup of EMECS	25
3.4	Rotary inverted pendulum from TeraSoft	25
3.5	Flow chart of the system identification and modelling	27
3.6	Free body diagram of a rotary inverted pendulum	29
3.7	Schematic diagram of a rotary inverted pendulum when the pendulum is in the upright position	32
3.8	Schematic diagram of a rotary inverted pendulum when the pendulum is in the downward position	35
3.9	Simulink diagram for FRF measurement	38
3.10	Comparison between system FRF, parametric model and mathematical model in frequency response	39
4.1	Flow chart of the controller design	42
4.2	Balance interval of pendulum for the analysis of the Q parameter	45
4.3	The LQR simulation control scheme	46

4.4	Effect of Q_1 on (a) arm and (b) pendulum angular positions	47
4.5	Effect of Q_2 on (a) arm and (b) pendulum angular positions	48
4.6	Effect of Q_3 on (a) arm and (b) pendulum angular positions	48
4.7	Effect of Q_4 on (a) arm and (b) pendulum angular positions	49
4.8	Simulation results for balance control of the LQR controller for angular positions of the (a) arm and (b) pendulum	52
4.9	Direction of (a) arm rotation and (b) pendulum rotation in actual system	53
4.10	The LQR experiment control scheme	53
4.11	Experimental result of the LQR controller for pendulum	54
4.12	Result of the first trial data for the angular position of the pendulum and the angular velocity of the arm in rejecting disturbance forces using only the LQR controller	56
4.13	The graph of arm velocity against pendulum position	59
4.14	A schematic diagram of the LQR control scheme with added adjustable gain	60
4.15	Balance interval of pendulum for the LQR controller with adjustable gain	61
5.1	Experimental result for balance control of the LQR controller and the improved LQR controller for angular positions of the (a) arm and (b) pendulum	64
5.2	Analysis of control performance in terms of the pendulum oscillation	65
5.3	The improved LQR control scheme with disturbance applied as input voltage	68
5.4	Characteristics of disturbance input voltage in signal builder	68
5.5	Input disturbance signal and experimental result of the pendulum with disturbance applied as input voltage	69
5.6	Analysis of control performance with disturbance applied as input voltage for (a) first input disturbance and (b) second input disturbance	70
5.7	Schematic diagram of the input disturbance at different direction as the balance control	72

5.8	Schematic diagram of the input disturbance in the same direction as the balance control	73
5.9	The improved LQR control scheme with disturbance applied at the pendulum position	74
5.10	Continuous disturbance signal passed at the pendulum position	75
5.11	Experimental results for the system with disturbance input applied at the pendulum position	75
5.12	Analysis of control performance with disturbance applied at the pendulum position for (a) first input disturbance and (b) second input disturbance	77
5.13	Step input signal and the improved LQR control scheme for tracking performance	79
5.14	Step input signal and the measured angular position of the arm with the step input	80
5.15	Measured angular position of the pendulum with the input step function	80
E.1	Rotary inverted pendulum system	102
E.2	3-1	102
E.3	3-2	103
E.4	3-3	103
E.5	3-4	103
E.6	4-1	104
E.7	4-2	104
E.8	4-3	104
F.1	The LQR experiment Simulink diagram	105
F.2	The LQR with adjustable gain experiment Simulink diagram	105
F.3	Simulink diagram for the disturbance applied as input voltage	106
F.4	Simulink diagram for the disturbance applied at the pendulum position	106

F.5	Simulink diagram for the tracking performance	107
G.1	Trial 1	108
G.2	Trial 2	109
G.3	Trial 3	109
G.4	Trial 4	110
G.5	Trial 5	110

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Determination of Linear Mathematical Model for the Pendulum in Upright Position	90
В	Determination of State-space Model for the Pendulum in Upright Position	94
С	Determination of Linear Mathematical Model for the Pendulum in Downward Position	96
D	Determination of State-space Model for the Pendulum in Downward Position	100
E	Rotary Inverted Pendulum System Scheme	102
F	Simulink Block Diagrams of the LQR Control Scheme and the LQR with Adjustable Gain Function Control Scheme	105
G	Determination of the Adjustable Gain Function	108

LIST OF ABBREVIATIONS

AC/DC	-	Analogue converter/ digital converter
ACO	-	Ant colony optimization
ADC	-	Analogue-to-digital converter
D	-	Derivative
DAC	-	Digital-to-analogue converter
DAQ	-	Data acquisition system
DC	-	Direct current
DOF	-	Degree of freedom
EMECS	-	Electro-Mechanical Engineering Control System
FL	-	Fuzzy logic
FRF	-	Frequency response function
FSF	-	Full state feedback
GA	-	Genetic algorithm
GPIO	-	General-purpose input/output
Ι	-	Integral
LIP	-	Linear inverted pendulum
LQR	-	Linear quadratic regulator
Р	-	Proportional
PC	-	Personal computer
PID	-	Proportional integrated derivative
PWM	-	Pulse-width modulation

RIP	-	Rotary inverted pendulum
SMC	-	Sliding mode controller
TORA	-	Translational oscillations with a rotational actuator
VSC	-	Variable structure control
VTOL	-	Vertical take-off and landing

LIST OF SYMBOLS

Mathematical Symbol:

~	-	Approximately equivalent
00	-	Infinity
Ω	-	Ohm
$\frac{\partial f}{\partial x}$	-	Partial derivative
π	-	Pi
±	-	Plus or minus
-	-	Minus
%	-	Percentage
/	-	Divide
+	-	Plus
=	-	Equal
А	-	Ampere
COS	-	Cosine
dB	-	Decibel
f(x)	-	Function notation
G	-	Gravitational acceleration
Hz	-	Hertz
kg	-	Kilogram
m	-	Meter
N	-	Newton

0	-	Degree
rad	-	Radian
S	-	Second
sin	-	Sine
t	-	Time
Т	-	Transpose
V	-	Volt

System Model Symbol:

$\ddot{ heta}_1$	-	Angular acceleration of arm
$\ddot{\theta}_2$	-	Angular acceleration of pendulum
$\ddot{\alpha}_2$	-	Angular acceleration of pendulum (downward position)
θ_1	-	Angular position of arm
θ_2	-	Angular position of pendulum
α2	-	Angular position of pendulum (downward position)
$\dot{ heta}_1$	-	Angular velocity of arm
$\dot{\theta}_2$	-	Angular velocity of pendulum
$\dot{\alpha}_2$	-	Angular velocity of pendulum (downward position)
R_m	-	Armature resistance
$ au_1$	-	Control torque
е	-	Control voltage
c_1	-	Distance to centre of arm mass
<i>c</i> ₂	-	Distance to centre of pendulum mass
J_1	-	Inertia of arm

J_2	-	Inertia of pendulum
l_1	-	Length of arm
l_2	-	Length of pendulum
<i>m</i> ₁	-	Mass of arm
<i>m</i> ₂	-	Mass of pendulum
K_{b}	-	Motor back-emf constant
K _u	-	Motor driver amplifier gain
K _t	-	Motor torque constant
C_1	-	Viscous friction co-efficient of arm
C_2	-	Viscous friction co-efficient of pendulum

Control System Symbol:

ż	-	Future state		
A	-	System matrix		
В	-	Control matrix or input matrix		
С	-	Output matrix		
D	-	Feed forward matrix		
G(s)	-	Transfer function of system model		
$G_{PID}(s)$	-	Transfer function of PID controller		
J	-	Quadratic performance index		
K_d	-	Derivative gain (PID controller)		
K_d	-	State-feedback gains (LQR controller)		
K _i	-	Integral gain		
т	-	Adjustable gain		
Q	-	Diagonal weight matrix		

R	-	Weight factor
S	-	Riccati solution
Ts	-	Sampling time
и	-	Input
u(t)	-	Input signal
x	-	Current state
y(t)	-	Output

LIST OF PUBLICATIONS

Journal:

 Fong, T.T., Jamaludin, Z. and Abdullah, L., 2014. System Identification and Modelling of Rotary Inverted Pendulum. *International Journal of Advances in Engineering & Technology (IJAET)*, 6(6), pp. 2342–2353.

Conference:

 Fong, T.T., Jamaludin, Z., Hashim, A.Y.B. and Rahman, M.A.A., 2014. Design and Analysis of Linear Quadratic Regulator for a Non-linear Positioning System. 3rd *International Conference on Design and Concurrent Engineering (iDECON)*, Melaka, 22nd – 23rd September 2014. [Accepted]

CHAPTER 1

INTRODUCTION

This chapter introduces the research work on control system design and development for rotary inverted pendulum (RIP). Sections included in this chapter are the background of the RIP system, problem statement, outlines of research, objectives, scopes, and the content of this thesis. In addition, a segment on contribution to knowledge based on the research work done is also included.

1.1 Background

Since the last few decades, control system design for non-linear and under-actuated systems has generated great interest among researchers. These interests cover a wide spectrum of applications that include control of a space booster rocket, satellite, an automatic aircraft landing system, and stabilisation of a robot. Rotary inverted pendulum (RIP) system is an example of a classical under-actuated system. The RIP consists of a rigid rod called pendulum, which is rotating freely in the vertical plane. The vertical pendulum is naturally unstable with the oscillation as it hangs downward at the equilibrium point. A swing-up action using rotary actuation of a pivot arm in the horizontal plane by a servo-motor would then result in the vertical pendulum achieving upright equilibrium point. A robust and stable controller must be applied in order to control the torque of the servo-motor for the purpose of rotating the arm and stabilising the pendulum in upright position.

The balancing control of a pendulum in the upright position is studied in this research. Firstly, the system model was derived mathematically using Lagrange's