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ABSTRACT 

 

Design of controllers for non-linear systems has long drawn the attention of researchers 
especially in the fields of robotics, aerospace engineering and marine engineering. A 
classic example of a non-linear under-actuated control system is the balance control for a 
rotary inverted pendulum. Basically, the control approach for such system focusses on 
torque control of the servo-motor for the purpose of rotating the arm and stabilising the 
pendulum in its upright position at the shortest possible time. The aim of this research is to 
supplement and further enhance the control performance of a linear quadratic regulator 
(LQR) controller with focus on reduced response time and degree of oscillation of the 
pendulum with added robustness against input disturbance applied to the pendulum 
position and voltage to the motor. Initially, this thesis comprehensively analysed the LQR 
controller parameters based on minimal balance time of the pendulum. The LQR controller 
by itself produced high degree of oscillations, long balance time and poor robustness 
against input disturbance. As an enhancement over this approach, an adjustable gain was 
added to the existing LQR control structure. The results showed that for a 30° balancing 
control, the LQR controller with adjustable gain managed to reduce as much as 70% in the 
balance time and 98% in the degree of oscillation, while improved its robustness by 
producing faster balance time and lower oscillation upon excitation by input disturbance 
forces. In conclusion, the LQR controller with adjustable gain has significantly improved 
the control performance of the rotary inverted pendulum system. 
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ABSTRAK 

 

Reka bentuk pengawal untuk sistem tidak linear telah sekian lama menarik perhatian 
penyelidik-penyelidik terutamanya dalam bidang robotik, kejuruteraan aeroangkasa dan 
kejuruteraan marin. Satu contoh klasik sistem kawalan tak lelurus yang kurang pacu gerak, 
ialah kawalan imbangan untuk bandul terbalik berputar. Pada asasnya, kaedah kawalan 
sistem sebegini berfokus kepada kawalan tork pada motor servo bagi tujuan memutar 
lengan dan menstabilkan bandul dalam kedudukan tegak pada masa paling singkat yang 
mungkin. Tujuan penyelidikan ini ialah untuk menambah dan meningkatkan lagi prestasi 
pengawal pengatur linear kuadratik (LQR) dengan fokus kepada pengurangan masa 
tindak balas bandul dan darjah ayunan dengan peningkatan keteguhan terhadap 
gangguan input pada kedudukan bandul dan voltan kepada motor. Tesis ini pada awalnya 
menganalisa secara komprehensif parameter pengawal LQR berdasarkan masa minima 
imbang bandul. Pengawal LQR dengan sendirinya menghasilkan darjah ayunan yang 
tinggi, masa imbang yang panjang dan tahap keteguhan yang rendah terhadap gangguan 
input. Sebagai satu peningkatan atas pengawal ini, satu pekali boleh laras ditambah 
kepada struktur pengawal LQR sedia ada. Keputusan yang diperolehi untuk kawalan 
keseimbangan 30° menunjukkan yang pengawal LQR dengan pekali boleh laras telah 
menurunkan sehingga 70% masa imbang dan 98% darjah ayunan serta memperbaiki 
tahap keteguhan sistem dengan menghasilkan masa imabang yang lebih cepat dan darjah 
ayunan yang lebih rendah apabila terdedah kepada gangguan input. Secara 
kesimpulannya, pengawal LQR yang ditambah baik dengan pekali boleh laras telah 
memperbaiki secara jelas prestasi kawalan sistem bandul terbalik berputar ini. 
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CHAPTER 1 

INTRODUCTION 

 

This chapter introduces the research work on control system design and 

development for rotary inverted pendulum (RIP). Sections included in this chapter are the 

background of the RIP system, problem statement, outlines of research, objectives, scopes, 

and the content of this thesis. In addition, a segment on contribution to knowledge based 

on the research work done is also included. 

 

1.1 Background 

Since the last few decades, control system design for non-linear and under-actuated 

systems has generated great interest among researchers. These interests cover a wide 

spectrum of applications that include control of a space booster rocket, satellite, an 

automatic aircraft landing system, and stabilisation of a robot. Rotary inverted pendulum 

(RIP) system is an example of a classical under-actuated system. The RIP consists of a 

rigid rod called pendulum, which is rotating freely in the vertical plane. The vertical 

pendulum is naturally unstable with the oscillation as it hangs downward at the equilibrium 

point. A swing-up action using rotary actuation of a pivot arm in the horizontal plane by a 

servo-motor would then result in the vertical pendulum achieving upright equilibrium point. 

A robust and stable controller must be applied in order to control the torque of the servo-

motor for the purpose of rotating the arm and stabilising the pendulum in upright position. 

The balancing control of a pendulum in the upright position is studied in this 

research. Firstly, the system model was derived mathematically using Lagrange’s 




