# Distal femoral rotational axes of knees in an elderly Indian population

A Dissertation submitted in partial fulfillment of M.D Radiodiagnosis (Branch VIII) examination of The TAMIL NADU Dr M.G.R MEDICAL UNIVERSITY, CHENNAI,

to be held in April, 2016.

# **CERTIFICATE**

This is to certify that the dissertation entitled "Distal femoral rotational axes of knees in an elderly Indian population" is a bonafide original work of Dr. Jayavelu Hariram Prasad D, submitted in partial fulfillment of the requirement for M.D Radiodiagnosis (Branch-VIII) Degree Examination of The Tamil Nadu Dr M.G.R Medical University, Chennai, to be conducted in April, 2016.

Guide:

Dr. Jyoti Panwar, MBBS, MD, FRCR Professor, Department of Radio Diagnosis, Christian Medical College, Vellore.

# **CERTIFICATE**

This is to certify that the dissertation entitled "Distal femoral rotational axes of knees in an elderly Indian population" is a bonafide original work of Dr. Jayavelu Hariram Prasad D, submitted in partial fulfillment of the requirement for M.D Radiodiagnosis (Branch-VIII) Degree Examination of The Tamil Nadu Dr M.G.R Medical University, Chennai, to be conducted in April, 2016.

Head of the Department:

Dr. N K Shyamkumar, MBBS, DMRD, DNB, FRCR, FRANZCR, Professor & H.O.D., Department of Radiodiagnosis, Christian Medical College, Vellore.

# **CERTIFICATE**

This is to certify that the dissertation entitled "Distal femoral rotational axes of knees in an elderly Indian population" is a bonafide original work of Dr. Jayavelu Hariram Prasad D, submitted in partial fulfillment of the requirement for M.D Radiodiagnosis (Branch-VIII) Degree Examination of The Tamil Nadu Dr M.G.R Medical University, Chennai, to be conducted in April, 2016.

Principal:

Dr. Alfred Job Daniel, D.Ortho, MS Ortho, DNB Principal, Christian Medical College & Hospital, Vellore.

# DECLARATION

I, Dr. Jayavelu Hariram Prasad D, hereby declare that this dissertation entitled "Distal femoral rotational axes of knees in an elderly Indian population" is an original work done by me in partial fulfillment of the requirement for M.D Radiodiagnosis (Branch- VIII) Degree Examination of The Tamil Nadu Dr M.G.R Medical University, Chennai to be conducted in April, 2016.

Candidate:

Dr. Jayavelu Hariram Prasad D, Post Graduate Resident, Department of Radiodiagnosis, Christian Medical College, Vellore.

# **ORIGINALITY REPORT**

# turnitin

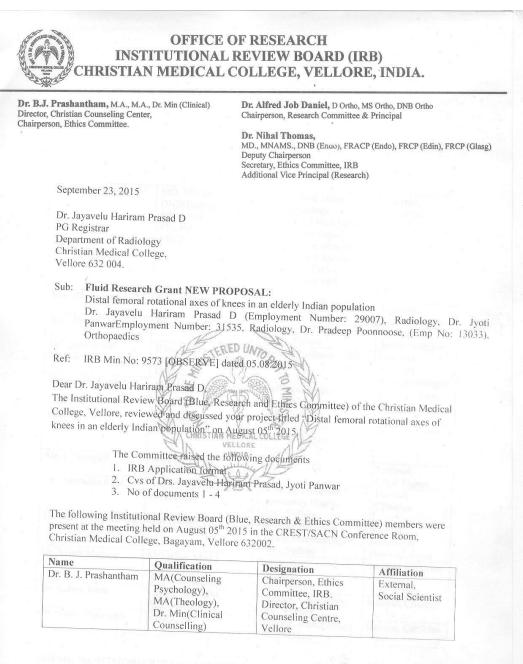
# **Digital Receipt**

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

| 201418054.radiology Dr Jayavelu D   |
|-------------------------------------|
| TNMGRMU EXAMINATIONS                |
| Distal femoral rotational axes of k |
| JV_THESIS_WRITEUP1.doc              |
| 30.16M                              |
| 92                                  |
| 4,864                               |
| 28,023                              |
| 08-Oct-2015 09:10PM                 |
| 581923091                           |
|                                     |

Distal femoral rotational axes of knees in an elderly Indian population


A Dissertation submitted in partial fulfillment of M.D Radiodiagnosis (Branch VIII) examination of The TAMIL NADU Dr M.G.R MEDICAL UNIVERSITY, CHENNAI, to be held in April, 2016.

Copyright 2015 Turnitin. All rights reserved.

|                                                                                                                                                               |                                                              | 201418054.radiology D                                                            | Dr Jayavelu D Us      | er Info Messages      | Student - Eng          | lish 👻 🕐 Help     | Logout |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|-----------------------|------------------------|-------------------|--------|
| turnitin                                                                                                                                                      |                                                              |                                                                                  |                       |                       |                        |                   |        |
| Class Portfolio Peer Review My Gra                                                                                                                            | des Discussion                                               | Calendar                                                                         |                       |                       |                        |                   |        |
| NOW VIEWING: HOME > THE TAM IL NADU DR.M.G.F                                                                                                                  | MEDICAL UTY 2014-15 EXA                                      | MINATIONS                                                                        |                       |                       |                        |                   |        |
| Welcome to your new class homepage! From<br>for your papers.<br>Hover on any item in the class homepage for m                                                 |                                                              | in see all your assignments for your cla                                         | ss, view additional a | ssignment information | n, submit your work, a | nd access feedbac | k ×    |
|                                                                                                                                                               |                                                              | Class Homepage                                                                   |                       |                       |                        |                   |        |
| This is your class homepage. To submit to an ass<br>esubmissions are allowed the submit button will re<br>post date has passed, you will also be able to view | ead "Resubmit" after you ma<br>v the feedback left on your p | ke your first submission to the assignm                                          | ent. To view the pa   | per you have submitte |                        |                   |        |
|                                                                                                                                                               | Info                                                         | Dates                                                                            |                       | Similarity            |                        |                   |        |
| TNMGRMU EXAMINATIONS                                                                                                                                          | 0                                                            | Start 01-Sep-2014 11:27AM<br>Due 30-Oct-2015 11:59PM<br>Post 30-Oct-2015 12:00AM |                       | 3%                    | Resubm                 | it View           | Ł      |
|                                                                                                                                                               |                                                              |                                                                                  |                       |                       |                        |                   |        |
|                                                                                                                                                               |                                                              |                                                                                  |                       |                       |                        |                   |        |
|                                                                                                                                                               |                                                              |                                                                                  |                       |                       |                        |                   |        |
|                                                                                                                                                               |                                                              | Copyright © 1998 – 2015 Tumitin, LLC. All rig                                    | hts reserved.         |                       |                        |                   |        |

Usage Policy Privacy Pledge Helpdesk Research Resources

## **INSTITUTIONAL REVIEW BOARD (IRB) CLEARANCE**



2 of 4

 Ethics Committee Blue, Office of Research, 1st Floor, Carman Block, Christian Medical College, Vellore, Tamil Nadu 632 002.

 Tel: 0416 - 2284294, 2284202
 Fax: 0416 - 2262788, 2284481

 E-mail: research@cmcvellore.ac.in

#### OFFICE OF RESEARCH INSTITUTIONAL REVIEW BOARD (IRB) HRISTIAN MEDICAL COLLEGE, VELLORE, INDIA.

**Dr. B.J. Prashantham**, M.A., M.A., Dr. Min (Clinical) Director, Christian Counseling Center, Chairperson, Ethics Committee.

Dr. Alfred Job Daniel, D Ortho, MS Ortho, DNB Ortho Chairperson, Research Committee & Principal

**Dr. Nihal Thomas,** MD., MNAMS., DNB (Endo), FRACP (Endo), FRCP (Edin), FRCP (Glasg) Deputy Chairperson Secretary, Ethics Committee, IRB Additional Vice Principal (Research)

| D. 111 1 m                                 |                                                                        | Ruditional vice l'Incipal (Researci                                                                                                                                                         | 1)                                     |
|--------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Dr. Nihal Thomas<br>Mrs. Pattabiraman      | MD, MNAMS,<br>DNB(Endo),<br>FRACP (Endo)<br>FRCP(Edin)<br>FRCP (Glasg) | Professor & Head,<br>Endocrinology.<br>Additional Vice Princip<br>(Research), Deputy<br>Chairperson (Research<br>Committee), Member<br>Secretary (Ethics<br>Committee), IRB, CMC<br>Vellore |                                        |
|                                            | BSc, DSSA                                                              | Social Worker, Vellore                                                                                                                                                                      | External,                              |
| Rev. Joseph Devaraj                        | BSc, BD                                                                | Chaplaincy Department,<br>CMC, Vellore                                                                                                                                                      |                                        |
| Dr. Jayaprakash<br>Muliyil                 | BSc, MBBS, MD, D<br>MPH, Dr PH (Epid),<br>DMHC                         | Retired Durf.                                                                                                                                                                               | Scientist                              |
| Mrs. Emily Daniel                          | MSc Nursing                                                            | Professor, Medical<br>Surgical Nursing,                                                                                                                                                     | &Epidemiologis<br>Internal, Nurse      |
| Mrs. Sheela Durai                          | MSC Nursing<br>CHRISTIAN MEDI<br>VELLC                                 | RE Vellord                                                                                                                                                                                  | Internal, Nurse                        |
| Mr. C. Sampath                             | BSC, BL                                                                | Advocate, Vellore                                                                                                                                                                           | External,                              |
| Dr. Anuradha Rose<br>Dr. Denise H. Fleming | MBBS, MD, MHSC<br>(Bioethics)                                          | Associate Professor,<br>Community Health,<br>CMC, Vellore                                                                                                                                   | Legal Expert<br>Internal,<br>Clinician |
|                                            | BSc (Hons), PhD                                                        | Honorary Professor,<br>Clinical Pharmacology,<br>CMC, Vellore                                                                                                                               | Internal,<br>Scientist &               |
| Dr. Vivek Mathew                           | MD (Gen. Med.)<br>DM (Neuro)<br>Dip. NB (Neuro)                        | Professor,<br>Neurology,                                                                                                                                                                    | Pharmacologist<br>Internal, Clinician  |
| Dr. Bobby John<br>Dr. Simon Pavamani       | MBBS, MD, DM,<br>PhD, MAMS                                             | CMC, Vellore<br>Professor, Cardiology,<br>CMC, Vellore                                                                                                                                      | Internal, Clinician                    |
| A. Sinton Pavamani                         | MBBS, MD                                                               | Due C main                                                                                                                                                                                  | Internal, Clinician                    |

IRB Min No: 9573 [OBSERVE] dated 05.08.2015

3 of 4

 Ethics Committee Blue, Office of Research, 1st Floor, Carman Block, Christian Medical College, Vellore, Tamil Nadu 632 002.

 Tel: 0416 - 2284294, 2284202
 Fax: 0416 - 2262788, 2284481

 E-mail: research@cmcvellore.ac.in

#### OFFICE OF RESEARCH INSTITUTIONAL REVIEW BOARD (IRB) HRISTIAN MEDICAL COLLEGE, VELLORE, INDIA.

**Dr. B.J. Prashantham,** M.A., M.A., Dr. Min (Clinical) Director, Christian Counseling Center, Chairperson, Ethics Committee. Dr. Alfred Job Daniel, D Ortho, MS Ortho, DNB Ortho Chairperson, Research Committee & Principal

Dr. Nihal Thomas, MD., MNAMS., DNB (Enuo), FRACP (Endo), FRCP (Edin), FRCP (Glasg) Deputy Chairperson Secretary, Ethics Committee, IRB Additional Vice Principal (Research)

| Dr. Rajesh Kannangai     | MD, PhD.                             | Professor, Clinical<br>Virology, CMC, Vellore                                           | Internal,                               |
|--------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|
| Dr. Balamugesh           | MBBS, MD(Int Med),<br>DM, FCCP (USA) | Professor, Pulmonary<br>Medicine, CMC,<br>Vellore                                       | Clinician<br>Internal, Clinician        |
| Dr. Anand Zachariah      | MBBS, PhD                            | Professor, Medicine,<br>CMC, Vellore                                                    | Internal, Clinician                     |
| Dr. Anup<br>Ramachandran | PhD                                  | The Wellcome Trust<br>Research Laboratory<br>Gastrointestinal<br>Sciences, CMC, Vellore | Internal,<br>Basic Medical<br>Scientist |

We approve the project to be conducted as presented.

Kindly provide the total number of patients enrolled in your study and the total number of withdrawals for the study entitled. "Distal femoral rotational axes of knees in an elderly Indian population" on a monthly basis. Please send copies of this to the Research Office (research@cmcvellore.ac.in)

Fluid Grant Allocation:

CHRISTIAN MEDICAL COLLEGE A sum of 5,000/- INR (Rupees Five Thousand) will be granted for 6 months.

TO4

Yours sincerely

Dr. NIHAL THOMAS MD.,MNAMS.,DNB(Endo),FRACP(Endo),FRACP(Class) Vice - Principal (Research) - Reg. No. 43983 Christian Medical College, Vellore - 632,004.

Dr. Nihal Thomas Christian Media Secretary (Ethics Committee) Institutional Review Board Christian Medical College, Vellore

IRB Min No: 9573 [OBSERVE] dated 05.08.2015

4 of 4

 Ethics Committee Blue, Office of Research, 1st Floor, Carman Block, Christian Medical College, Vellore, Tamil Nadu 632 002.

 Tel: 0416 - 2284294, 2284202
 Fax: 0416 - 2262788, 2284481

 E-mail : research@cmcvellore.ac.in

# ACKNOWLEDGEMENTS

This study could be carried out only due to the untiring efforts and hard work of many individuals. I wish to place in record my sincerest appreciation and immense gratitude to them.

To my Head of the Department, Dr. Shyamkumar and Professor, Dr. Sridhar Gibikote, without whose constant support, encouragement and guidance, this study would not have been a possibility.

To my guide, Dr. Jyoti Sureka for her continued support and guidance in performing this study and drafting this dissertation.

To my co-guide, Dr. Pradeep Poonnoose for his constant guidance and support in performing this study.

Mr. Prakash Ramasami, for his help in data analysis.

Ms. Mythily Vandana, for her constant help, guidance, encouragement and support.

Dr. Subin Kuruvilla Thomas, Dr. Rajkumar J and Mr. Raja for their continued help and encouragement.

CMC Vellore and all my teachers, for making this study and this course a reality.

I am grateful most importantly to all the patients without whom this study would not have been possible.

My family, friends and colleagues for their love, constant support and encouragement.

Above all, I thank the Lord for his abundant grace and mercy.

## CONTENTS

| TITLE               | PAGE NUMBER |
|---------------------|-------------|
| INTRODUCTION        | 13          |
| AIM & OBJECTIVES    | 15          |
| LITERATURE REVIEW   | 16          |
| MATERIALS & METHODS | 47          |
| RESULTS             | 54          |
| STUDY CASES         | 66          |
| DISCUSSION          | 86          |
| CONCLUSIONS         | 90          |
| REFERENCES          | 91          |
| ANNEXURE            | 94          |

#### ABSTRACT

TITLE: Distal femoral rotational axes of knees in an elderly Indian population.
DEPARTMENT: Department of Radiodiagnosis, CMC, Vellore.
NAME OF THE CANDIDATE: Dr. Jayavelu Hariram Prasad D.
DEGREEE AND SUBJECT: MD Radiodiagnosis.
NAME OF THE GUIDE: Dr. Jyoti Panwar

**AIMS AND OBJECTIVES**: To define the angular relationships of the distal femoral rotational axes in an Indian population aged between 50 and 75 years using Magnetic Resonance Imaging (MRI) scans of the knee joint.

**MATERIALS AND METHODS**: Institutional Review Board approved retrospective study of 300 MRI knees of patients aged between 50 and 75 years to define the Posterior Condylar Angle (PCA) and Whiteside's Epicondylar Angle (W-EP). The results were compared with pre-existing literature to assess whether knowing these values in this age group may help in bringing about changes in the design of TKA implants for the elderly Indian population.

**RESULTS:** Total number of knees studied was 300 (147 left and 153 right, in 144 men and 156 women). Mean age of patients was 56.7 years (SD 6.3 years), range – 50 to 75

years. The mean PCA and W-EP were 5.5° (SD, 1.2°; range, 2.2°–8.8°), 92.5° (SD, 2°; range, 90° - 99.4°), respectively.

**CONCLUSIONS:** Differences have been noted in the distal femoral rotational axes between various races. Mean PCA and W-EP angles in the Indian population are similar to other Asian races such as the Chinese and Japanese in that they are more externally rotated but dissimilar when compared the Western population. Hence using fixed values to describe the angles between the axes can lead to femoral component malrotation. Therefore knowledge of the racial differences is important when implants for the Indian population are designed.

**Keywords:** Elderly Indian knee, Whiteside's line, Posterior condylar axis, Transeipcondylar axis, Rotational malalignment.

#### **INTRODUCTION**

Osteoarthritis is a disease of the joints. It is the most common joint disorder in the world. It is also known as **degenerative arthritis**, **degenerative joint disease**, or **osteoarthrosis**. It occurs due to breakdown of joint cartilage and underlying bone. It specifically affects the joints unlike other arthritis such as rheumatoid arthritis and systemic lupus erythematosus which affect other organs of the body also. It frequently causes pain, los of function and disability in adults. By the age of 65 years, majority of people show radiographic evidence of OA, and by 75 years it rises up to 80 % of the group.

Multiple factors such as female gender, obesity, old age, heredity, athletics, metabolic disorders and repetitive stress injuries have been thought to contribute in the development of OA. Occupational activity such as kneeling, squatting, or lifting heavy weights are also thought to contribute to the development of osteoarthritis.

The diagnosis of knee osteoarthritis includes a physical exam, family history of osteoarthritis, a detailed medical history, X-rays, MRI and blood investigations to rule out other conditions and to confirm the diagnosis.

Knee arthroplasty is the final treatment for osteoarthritis of the knee. This requires proper diagnostic workup, especially with cross-sectional imaging such as Computed tomography or Magnetic Resonance Imaging to study the anatomy of

13

the knee joint and the various axes and angles. These axes and angles help in planning the correct resection techniques so that the correct implant is chosen and that any event of implant failure can be prevented.

The various reference landmarks that have been described in literature to study the femoral component rotation in knee arthroplasty are the posterior condylar axis, the transepicondylar axis, the Whiteside's anteroposterior line, the posterior condylar angle and the Whiteside's epicondylar angle.

The aim of our study is to define these various axes and angles in the elderly Indian population aged between 50 and 75 years using MRI images of the knee joint.

#### AIM:

To define the angular relationships of the distal femoral rotational axes in an Indian population aged between 50 and 75 years using Magnetic Resonance Imaging (MRI) scans of the knee joint.

#### **OBJECTIVES:**

1. To measure the posterior condylar angle (PCA) of the distal femur in patients aged between 50 and 75 years.

2. To measure the Whiteside's epicondylar angle (W-EP) of the distal femur in patients aged between 50 and 75 years.

3. To compare the results of this study and previously known literature and determine whether it may help in bringing about changes in the design of TKA implants for the elderly Indian population.

#### **LITERATURE REVIEW**

#### **ANATOMY OF THE KNEE JOINT:**

The knee joint is the largest joint of the body. It is a complex joint joining the lower end of femur and upper end of tibia. The patella (also known as kneecap) and fibula are other bones that are involved in the knee joint. The fibula is not directly involved in the formation of the knee joint. The knee joint is a synovial hinge joint which allows mainly flexion and extension and a minimal amount of internal and external rotations.

The knee joint consists of 2 articulations: first between the femur and tibia and second between the patella and femur. The articulation between the femur and tibia forms the tibiofemoral joint and articulation between patella and femur forms the patellofemoral joint.

The soft tissues that are involved in the knee joint are muscles, tendons, ligaments and menisci. Tendons connect bones that are involved in the knee joint to the leg muscles so that movement occurs at the knee joint. Ligaments join bones that are involved in the knee joint and help in providing stability to the knee joint.

The various ligaments that are involved with the knee joint are

- > The anterior cruciate ligament
- > The posterior cruciate ligament
- > The medial and lateral collateral ligaments

**Menisci**: Menisci are 2 'C-shaped' pieces of cartilage located on the medial and lateral tibial plateaus. The 2 menisci are the medial and lateral menisci. Their function is to absorb the shock between the femur and tibia.

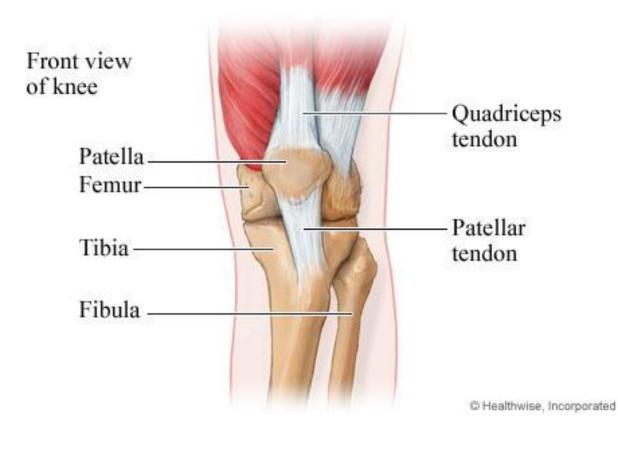
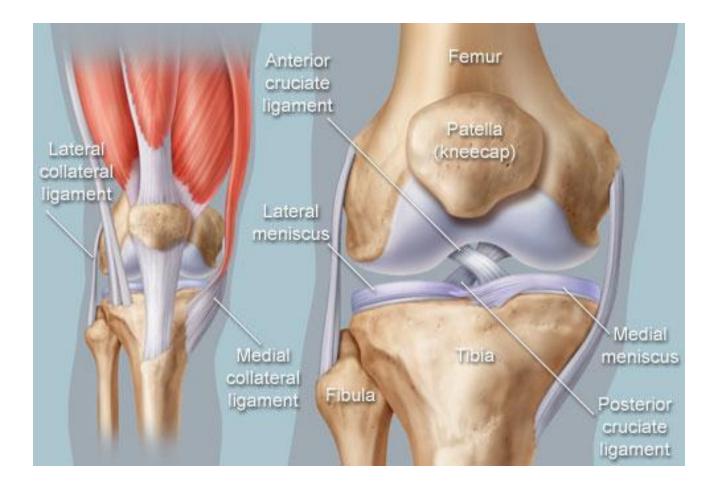
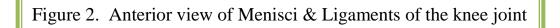





Figure 1. Anterior view of the knee





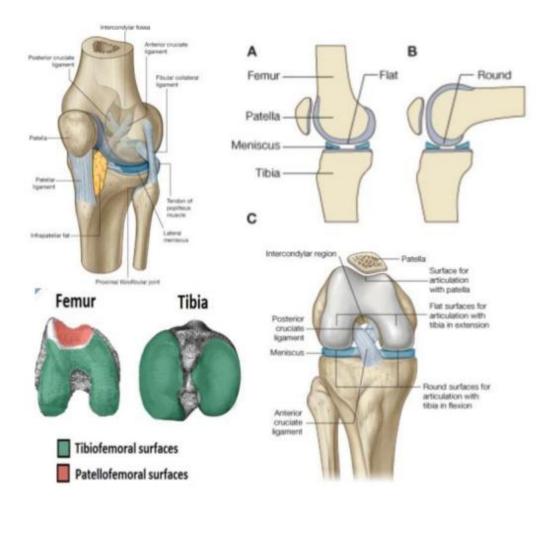
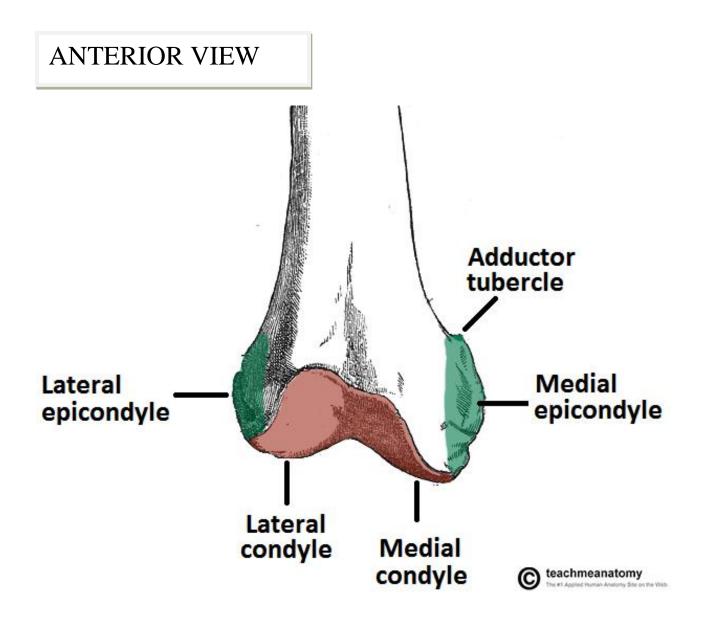
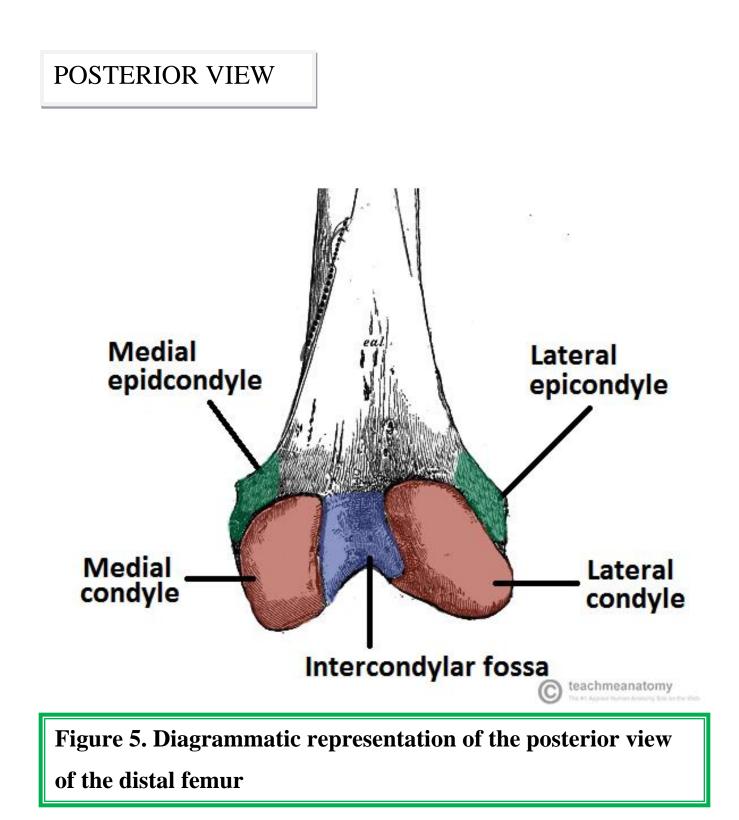



Figure 3. Articular surfaces of the knee joint


#### **ANATOMY OF THE DISTAL FEMUR:**

The femur is the strongest and longest bone in the entire human body. The proximal end forms the head of the femur, which articulates with the acetabulum of the pelvis to form the hip joint. The distal end forms 2 condyles and hence is wider. The distal end articulates with the proximal end of the tibia forming the knee joint.


The 2 condyles of the distal end of femur are - the medial and lateral condyles. These condyles articulate with the tibia and patella. The medial femoral condyle articulates with the medial tibial condyle and lateral femoral condyle articulates with lateral tibial condyle. The patella articulates posteriorly with the distal femur in the region of the patellofemoral fossa (also known as the trochlear groove).

The medial and lateral condyles have corresponding epicondyles which are bony elevations located in areas of non-articulation on the condyles. Some muscles and the collateral ligaments which provide stability to the knee joint are attached in these areas. The medial collateral ligament attaches to the medial epicondyle and the lateral collateral ligament attaches to the lateral epicondyle.

The intercondylar fossa is a depression located on the posterior aspect of the femur, between the 2 femoral condyles. It contains 2 facets for the attachment of the anterior and posterior cruciate ligaments.







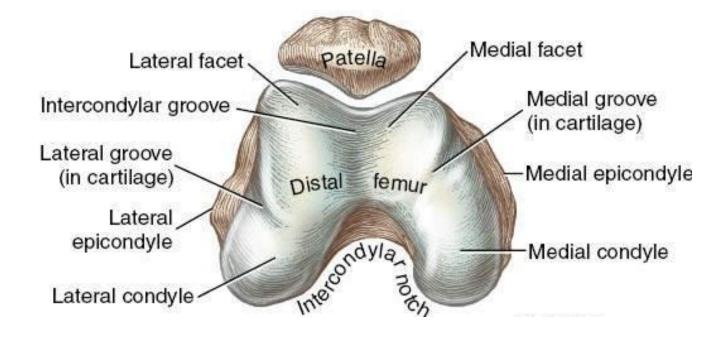
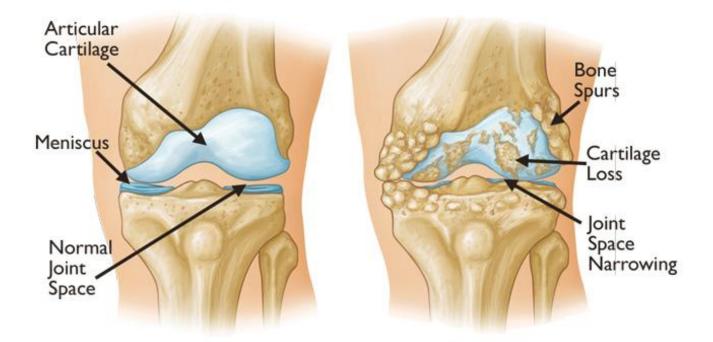



Figure 6. Diagrammatic representation of the anatomy of the distal femur

#### **OSTEOARTHRITIS OF THE KNEE**

The knee joint is susceptible to both acute and chronic injury. A number of pathological conditions affect the knee joint. They are osteoarthritis, chondromalacia patella, knee effusion, meniscal tear, ACL strain or tear, PCL strain or tear, patellar subluxation, patellar tendonitis, rheumatoid arthritis, gout, pseudogout and septic arthritis.

The various symptoms of knee osteoarthritis are joint pain, limitation of movement, tenderness, locking of the knee, crepitus and joint effusion.


Symptomatic OA of the knee occurs in 10% of men and 13% of women of 60 years of age or older. This number is likely to increase due to the constantly aging population and the epidemic of obesity.(1)

**Epidemiology**: Felson et al. reported that  $1/3^{rd}$  of adults have signs of OA on radiological studies, although Andrianakos et al., found clinically significant osteoarthritis of the knee, in only 8.9% of the adult population. The likelihood of developing osteoarthritis increases with age.(2) Studies have shown that the right knee is more commonly involved (23%) than the left (16.3%) in men aged 60 to 64 years. But in women it seems to be more evenly balanced (right knee - 24.2%; left knee- 24.7%) The prevalence of knee osteoarthritis is higher among 70- to 74-year-olds, rising as high as 40%.(3)

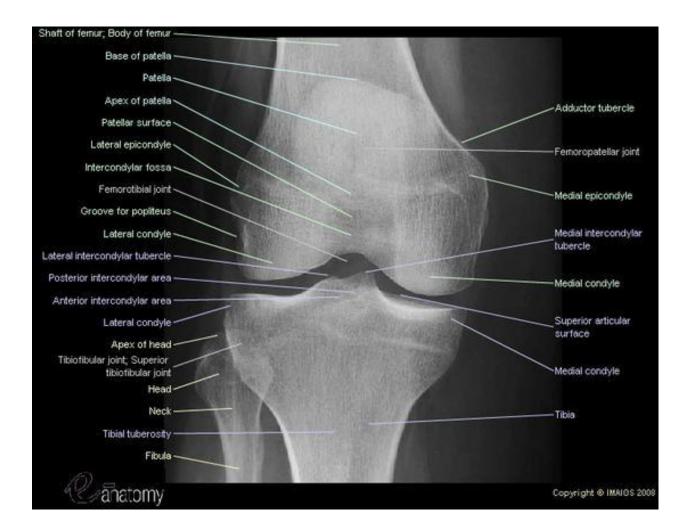
In India the prevalence of osteoarthritis of the knee is estimated to be higher in the urban (5.5%) than the rural community (3.3%). A study conducted in Bangalore, India by Nisha et al found a prevalence of 17% and 5.6% in the adult population and 54.1% and 16.4% in the elderly.(4)

**Treatment**: The primary aims of treating osteoarthritis of the knee are to relieve pain and increase mobility. The treatment algorithm usually includes a combination of exercise, weight loss, anlagesics & anti-inflammatory drugs, steroids or hyaluronic acid injections into the knees and topical therapies. Knee braces, physiotherapy and occupational therapy have also been used. Surgery is often resorted to only when symptomatic treatment options fail.

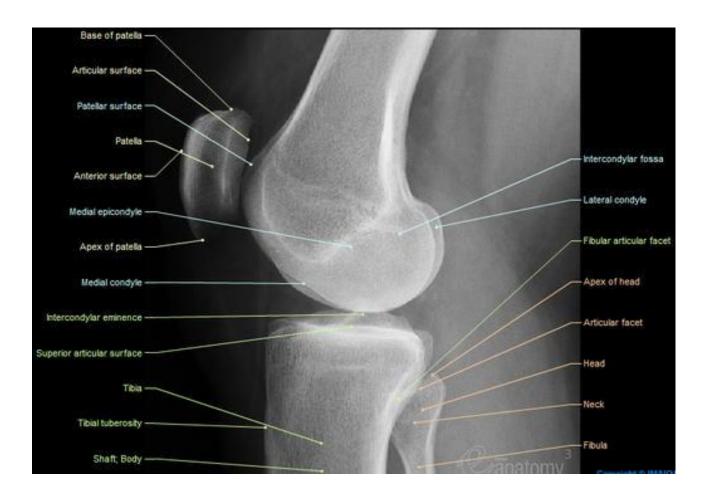
The common surgical options are scopy of the joint (arthroscopy), resection of bone (osteotomy), and joint replacement surgery (arthroplasty). Arthroplasty is an operation in which the joint surfaces are replaced with metal or plastic parts. The replacement could be partial or total. Commonly knee arthroplasty is reserved for patients above 50 years of age and with severe osteoarthritis.



# Figure 7. OSTEOARTHRITIS OF KNEE – DIAGRAMMATIC REPRESENTATION



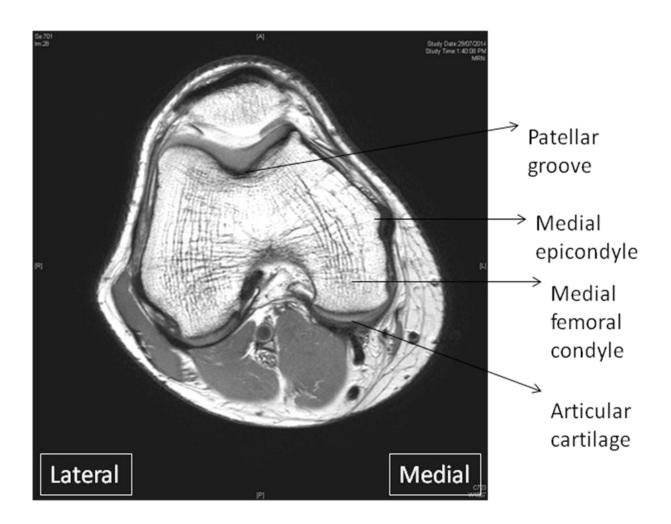

NORMAL RIGHT KNEE JOINT

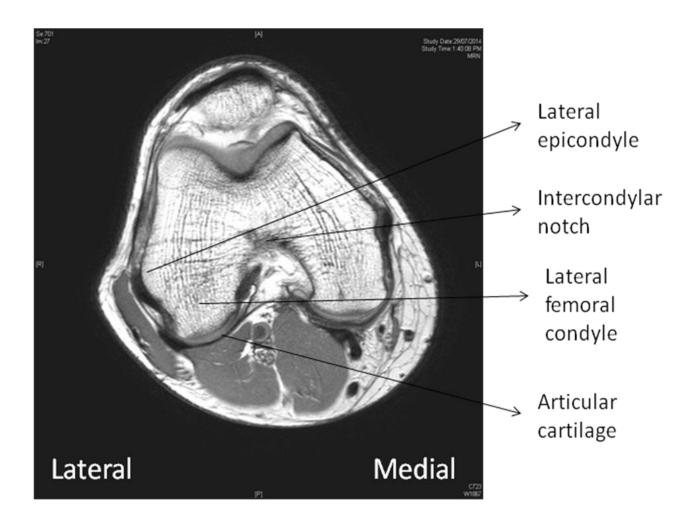

**OSTEOARTHRITIS RIGHT KNEE** 

# **Figure 8. A-P RADIOGRAPH OF NORMAL KNEE JOINT AND OSTEOARTHRITIS OF KNEE JOINT**

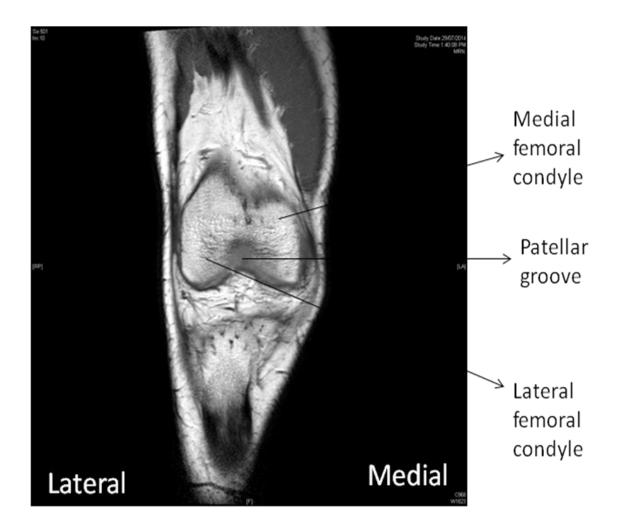
## IMAGING ANATOMY OF THE KNEE JOINT

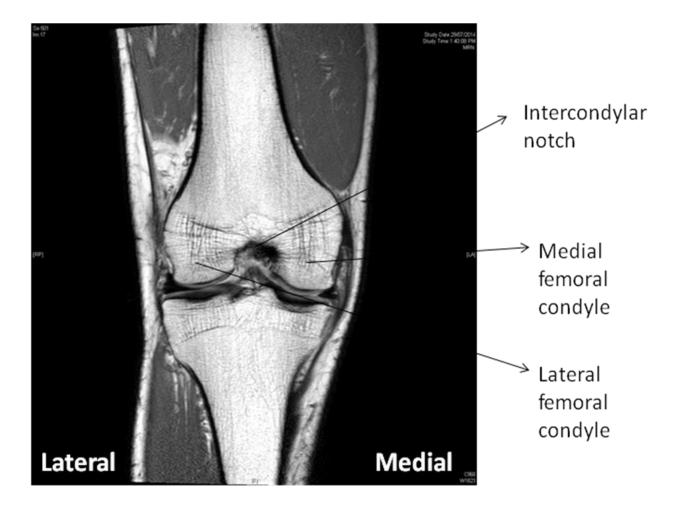


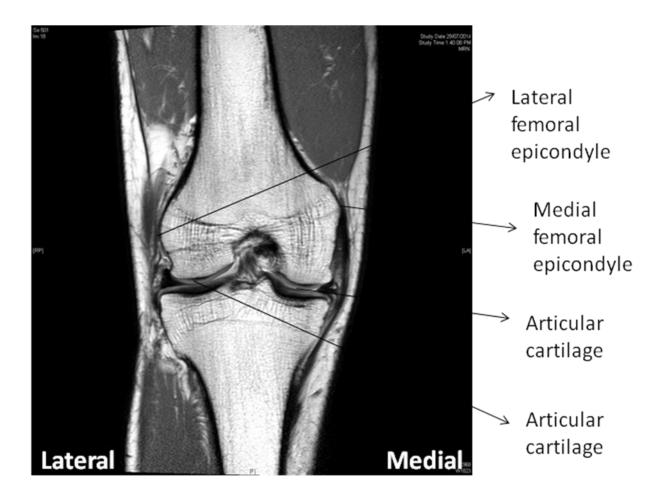

# Figure 9. A-P RADIOGRAPH OF NORMAL RIGHT KNEE JOINT



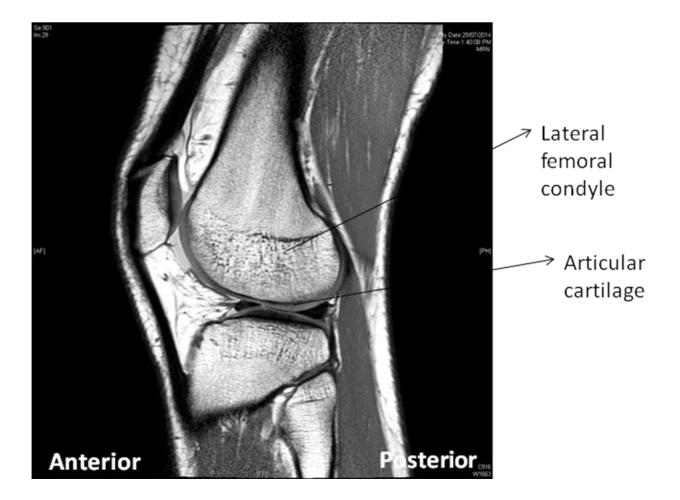

# Figure 10. LATERAL RADIOGRAPH OF NORMAL RIGHT KNEE JOINT

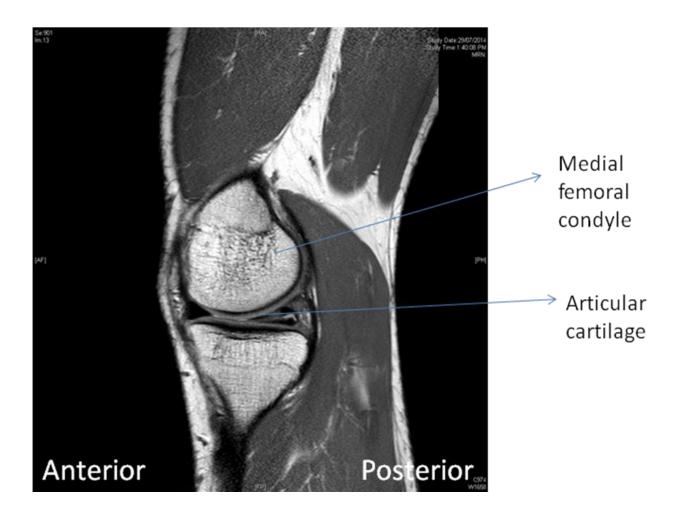

## **RELEVANT NORMAL MRI ANATOMY**


Proton Density Images of Right Knee (Axial sections)







Proton Density Images of Right Knee (Coronal sections)

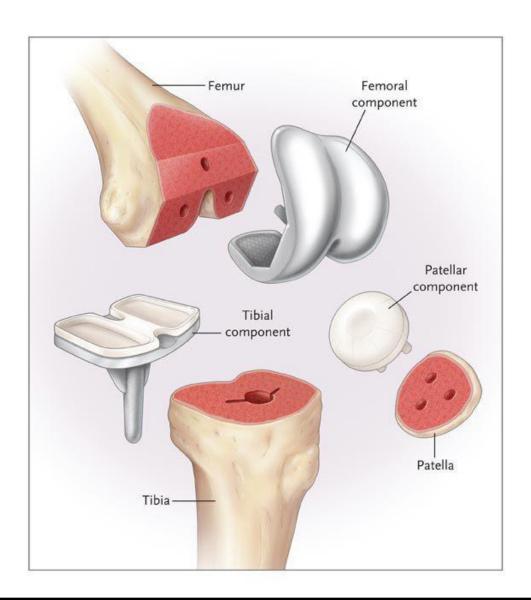







Proton Density Images of Right Knee (Sagittal sections)






#### TOTAL KNEE ARTHROPLASTY (TKA)

Knee arthroplasty (also known as knee replacement) is an operation done to replace the articular surfaces of the femoral condyles and tibial condyles. It is performed to relieve pain and disability. The most common indication for knee arthroplasty is Osteoarthritis. Other indications include Rheumatoid arthritis and Psoriatic arthritis. Osteoarthritis is a condition most commonly seen in the elderly wherein the articular surfaces of the knee joint undergo damage causing joint narrowing and debilitating pain.



Figure 11. Osteoarthritis of knee – Before and After Total Knee Arthroplasty Knee arthroplasty can be of 2 types - partial or total. The procedure consists of replacing the damaged joint surfaces of the femoral and tibial condyles with metal and plastic components. The implants are shaped in such a way that they permit normal motion of the knee joint.



# **Figure 12. Components of Total Knee Arthroplasty**





Figure 13. KNEE RADIOGRAPH – POST TOTAL ARTHROPLASTY

#### **ROTATIONAL ALIGNMENT IN TKA**

In TKA, "rotational alignment" is defined as the positioning of the implants in the axial plane. The accuracy of rotation of the femoral component in TKA affects soft tissue balancing i.e. medio-lateral stability during knee flexion, patello-femoral tracking(5–7), rotational alignment of the tibia in extension and also prevents anterior femoral notching. Polyethylene wear in the patellar component is affected by external rotation and may cause anterior knee pain after TKA(8).

The distal femur anatomy has an important role in the normal movements of the knee joint, i.e. its biomechanics. Therefore it is pertinent to understand the distal femoral condylar anatomy for the treatment of knee osteoarthritis.

The three commonly used axes for determining the rotational alignment of the femoral component in TKA are – the **posterior condylar axis**, the **transepicondylar axis** (**TEA**) and the **anteroposterior axis** (**Whiteside's line**). The **posterior condylar axis** is a line joining both the femoral condyles, touching

its posterior articular surface.

The **transepicondylar axis** is a line joining the most prominent part of the lateral and the medial epicondyles.

The **anteroposterior axis (Whiteside's line)** is drawn by joining the deepest point of the patellar groove to the midpoint of the intercondylar notch.

Various studies have proved that there is a wide variation in these axes among different racial groups.

41

Various studies have also proved that measured resection technique based on a single angle or axis as the sole reference is often inaccurate in determining the femoral component rotation in TKA.

**Mullaji et al** had done a study on 100 normal non-arthritic knees among 42 men and 8 women. They used Computed tomography images of the lower end of femur for the measurement of angles formed by the distal femoral rotational axes. They had concluded that, in knees with severe valgus deformity, using the posterior condylar axis alone as the reference axis could result in malrotation due to a preexisting lateral femoral condylar hypoplasia(9).

**Boisgard et al** aimed at assessing the reliability of the posterior condylar axis as a reference for the control of femoral implant rotation and at measuring the posterior condylar angle. They prospectively studied 103 arthritic knees (81 varus, 22 valgus) before a TKA was performed in 103 patients (75 women, 28 men). They used CT images of the distal femur for the assessment of the PCA. The mean PCA value obtained for all the patients was 2.65 degrees (range 0 to 7 degrees). The PCA was significantly increased in the valgus knees. The results obtained indicated a marked variability in the PCA value. Hence they concluded that if the posterior condylar axis was being used as a guide for rotation, the PCA had to

be calculated individually for each patient using adjustable jigs based on the value that was obtained(10).

Two types of transepicondylar axes have been described in literature. They are the surgical axis and the clinical axis. The surgical axis is drawn between the lateral epicondyle and the centre of the medial epicondylar sulcus. The clinical axis is drawn between the most prominent part of the lateral and medial epicondyles(10,11).

**Yoshino et al** studied 48 patients who were posted for Total Knee Arthroplasty to describe the surgical epicondylar axis and the clinical epicondylar axis. They performed CT images of both knees and measured the posterior condylar angle. They were able to detect the medial epicondylar sulcus in the CT scan images in only 33 knees. The degree of difficulty in detecting the medial epicondylar sulcus was dependent on the severity of osteoarthritis. But they were able to detect the most prominent point of medial epicondyle in all knees. They had opined that it may be difficult to define the transepicondylar axis because of difficulty in finding the most prominent point or the sulcus of the medial epicondyle(12). Hence they recommended the use of the clinical transepicondylar axis in selective planning for TKA.

**Tanavalee et al** also evaluated the differences and reliability between the two epicondylar axes using Computerized tomography. CT scans of the distal femur were done in 55 osteoarthritic knees. 32 knees had a varus deformity and 23 knees were neutral in alignment. Axes for rotational alignment of the femoral component were lined including posterior condylar (PC), anteroposterior (AP), anatomic or clinical epicondylar, and surgical epicondylar axes. They also concluded that the clinical epicondylar axis was more reliable for femoral rotational alignment than the surgical epicondylar axis as it was easier to define and using the surgical epicondylar axis could lead to patellofemoral tracking problems in TKA(13).

**Berger et al**(11) studied 75 embalmed femurs to identify a secondary anatomic axis other than the posterior condylar axis to determine the rotational alignment of the femoral component when the posterior condylar surfaces could not be used. The surgical epicondylar axis was defined as the line connecting the lateral epicondylar prominence and the sulcus of the medial epicondyle. The posterior condylar angle (PCA) was measured as the angle between the posterior condylar surfaces and the surgical epicondylar axis. The PCA measured using the surgical epicondylar axis as the reference yielded a mean value of 3.5 degrees (+/- 1.2 degrees) of internal rotation for males and a mean value of 0.3 degree (+/- 1.2 degrees) of internal rotation for females. Therefore they concluded that rotational alignment of the femoral component can be accurately estimated using the PCA.

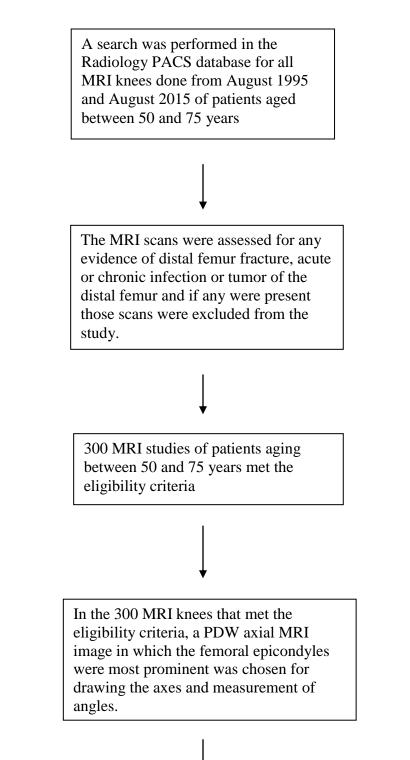
Hence they regarded the surgical axis to be more reliable in measuring the PCA even though it was more difficult to define it clinically<sup>6</sup>.

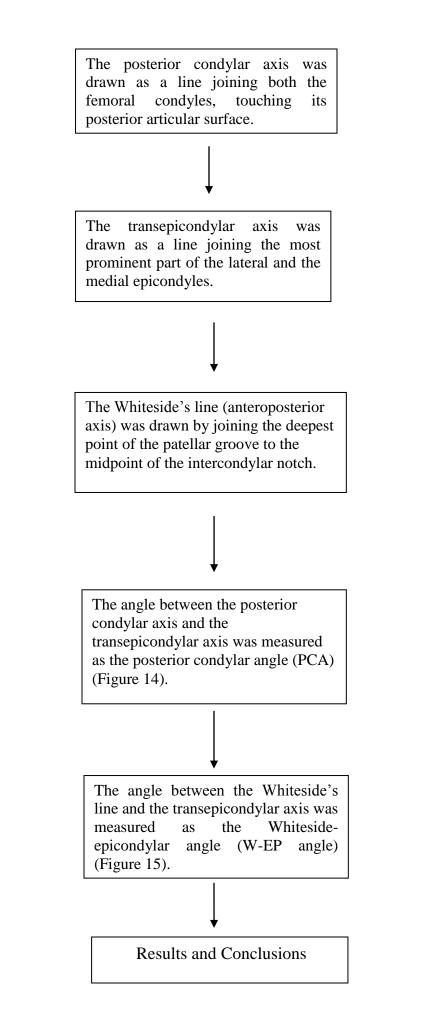
**Nagamine et al** assessed how reliable were the anteroposterior and posterior condylar axes for determining femoral component rotational alignment in TKA. They performed CT scans of 84 knees (27 varus knees with medial tibiofemoral osteoarthritis in 26 patients, 17 knees with patellofemoral arthritis in 14 patients, and 40 normal knees in 40 volunteers). They found consistent values of the posterior condylar angle in both osteoarthritic and normal knees but there were significant differences in the Whiteside's epicondylar angle between the medial tibiofemoral osteoarthritis knees and normal knees

Therefore they opined that defining the Whiteside's line or the anteroposterior line may be difficult in deformed knees due to erosive changes involving the anterior portion of the lateral femoral or medial femoral condyles(14).

Arima J et al studied 30 cadaveric femora to identify the anteroposterior axis, the posterior condylar axis, and the transepicondylar axis and to determine the reliability and the usefulness of each axis in total knee arthroplasty. The mean posterior condylar angle that was measured was 4 degrees. It was difficult to accurately defined the transepicondylar axis. Hence they concluded that the anteroposterior axis was a reliable landmark for rotational alignment of the femoral component in a valgus knee(6).

Hence, when determining rotational alignment of the femoral component in total knee arthroplasty, it becomes important to take into consideration all the relevant axes.


Few studies have been done in normal subjects aged below 40 years who had no evidence of osteoarthritis using CT and few studies using MRI. But only few studies have been done in Osteoarthritic knees, that too using only CT.


The aim of our study is to define the angular relationships of these axes in an Indian population aged between 50 and 75 years using Magnetic Resonance Images (MRI) of the knee. Knowing these values in this age group may help in bringing about changes in the design of TKA implants for the elderly Indian population.

#### MATERIALS AND METHODS

The study protocol was approved by our Institutional Review Board (IRB).

#### **Diagrammatic Algorithm of the study:**





#### **SCAN PROTOCOL:**

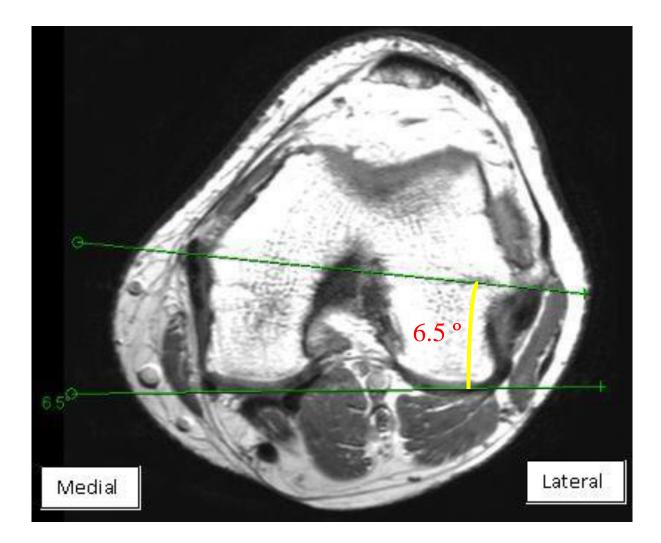
MRI of the Knee:

The following sequences were acquired:

- i. Proton density sagittal images
- ii. Proton density axial images
- iii. Proton density coronal images
- iv. T1W axial images
- v. T2W sagittal SPAIR images
- vi. T2W coronal SPAIR images
- vii. T2W axial SPAIR images

#### **METHODOLOGY**

The MRI images were analysed in a Picture Archiving & Communication System [PACS] monitor using GE Centricity software (Version 3.1.1.2). A Proton Density weighted axial MRI image, in which the femoral epicondyles were most prominent, was used for measurement of the various angles.


The **posterior condylar axis** is a line joining both the femoral condyles, touching its posterior articular surface.

The **transepicondylar axis** is the line joining the most prominent part of the lateral and the medial epicondyles.

The **anteroposterior axis (Whiteside's line)** is drawn by joining the deepest point of the patellar groove to the midpoint of the intercondylar notch.

The angle between the posterior condylar axis and the transepicondylar axis was defined as the **posterior condylar angle (PCA)** (Figure 14).

The angle between the Whiteside's line and the transepicondylar axis was defined as the **Whiteside-epicondylar angle (W-EP angle)** (Figure 15).



# **Figure 14 – Measurement of Posterior Condylar angle**

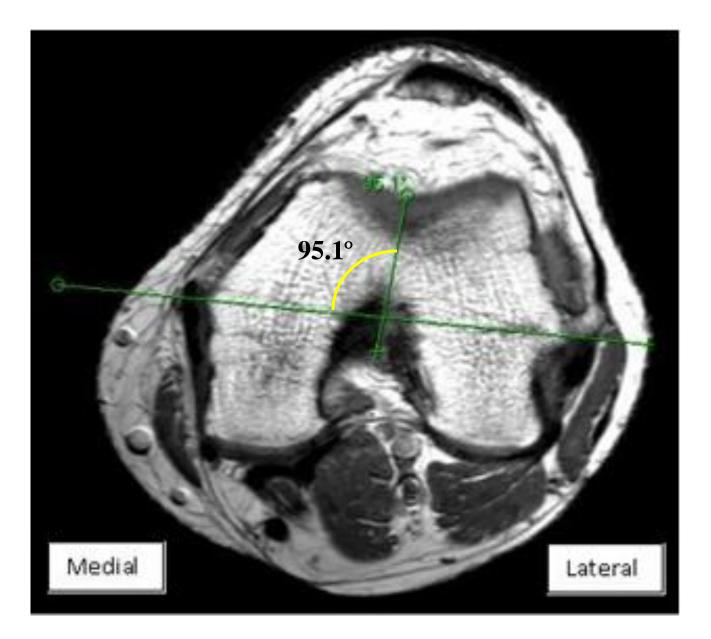
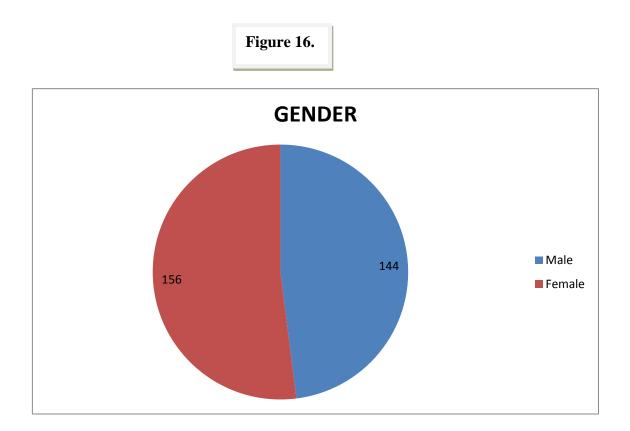
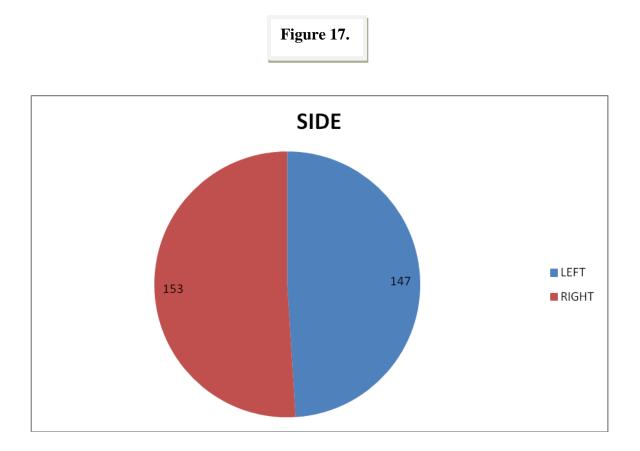



Figure 15 – Measurement of Whiteside's Epicondylar angle


The Mean and Standard deviation for age, Posterior condylar angle, Whiteside's Epicondylar angle were calculated using SPSS software (Version 17.0).

Differences between genders and sides were compared using Student's *t*-test and paired *t*-test, respectively. A p value of <0.05 was considered significant.

# **RESULTS**


#### **GENDER DISTRIBUTION**

1. The total number of patients was 300, of which 144 were men and 156 were women), as depicted in Figure 16.



## **SIDE DISTRIBUTION**

2. A total of 300 knees were analyzed of which 147 were of the left side and 153 were of the right side, as depicted in Figure 17.



## **AGE DISTRIBUTION**

3. The mean age of patients whose MRI knee images were analyzed was 56.7 years (SD 6.3 years), range – 50 to 75 years, as depicted in **Table 1**.

| Total number | 300        |
|--------------|------------|
| Mean age     | 56.7 years |
| SD           | 6.3 years  |
| Minimum age  | 50 years   |
| Maximum age  | 75 years   |

#### POSTERIOR CONDYLAR ANGLE & WHITESIDE'S EPICONDYLAR ANGLE

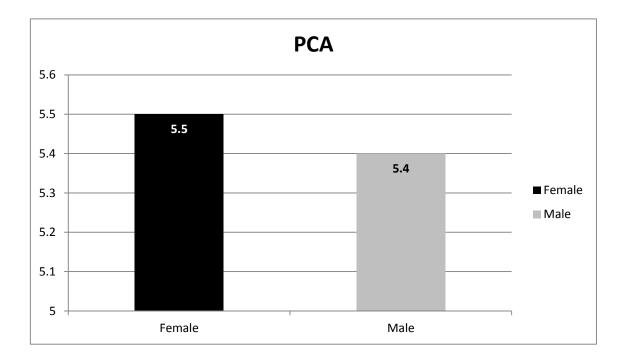
4. The overall mean PCA and W-EP were 5.5° (SD, 1.2°; range, 2.2°-8.8°), 92.5°

(SD, 2°; range, 90° - 99.4°), respectively. (**Table 2**)

# TABLE 2

|              | PCA   | W-EP   |
|--------------|-------|--------|
| Total number | 300   | 300    |
| Mean         | 5.5 ° | 92.5 ° |
| SD           | 1.2 ° | 2 °    |
| Minimum      | 2.2 ° | 90 °   |
| Maximum      | 8.8 ° | 99.4 ° |
|              |       |        |

#### POSTERIOR CONDYLAR ANGLE (PCA)


#### **GENDER DISTRIBUTION**

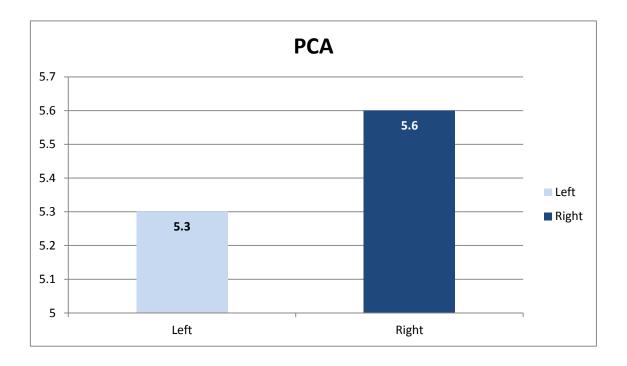
5. The mean PCA in the men was 5.4° and in the women was 5.5°, as depicted in **Table 3 & Figure 18.** There was no significant difference between the genders (p -0.84)

## TABLE 3

| Gender | Total number | Mean  | SD    |
|--------|--------------|-------|-------|
| Female | 156          | 5.5 ° | 1.2 ° |
| Male   | 144          | 5.4 ° | 1.2 ° |

# FIGURE 18




#### **SIDE DISTRIBUTION**

6. The mean PCA in the left knees was 5.3° and in the right knees was 5.6°, as depicted in **Table 4 & Figure 19.** There was no significant difference between the sides (p - 0.06)

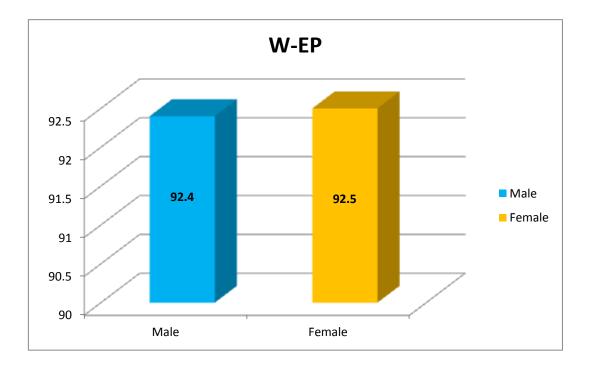
# TABLE 4

| Side  | Total number | Mean  | SD  |  |
|-------|--------------|-------|-----|--|
| Left  | 147          | 5.3 ° | 1.2 |  |
| Right | 153          | 5.6°  | 1.2 |  |
|       |              |       |     |  |

# FIGURE 19



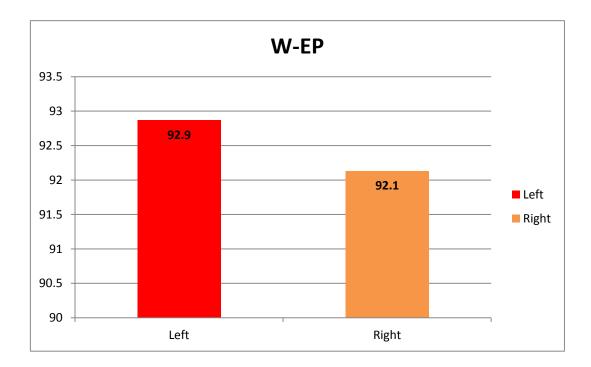
#### WHITESIDE'S EPICONDYLAR ANGLE (W-EP)


#### **GENDER DISTRIBUTION**

7. The mean W-EP in the men was 92.4° and in the women was 92.5°, as depicted in **Table 5** and **Figure 20**. There was no significant difference between the genders (p - 0.44).

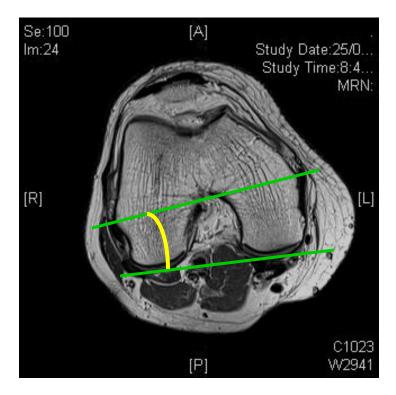
# TABLE 5

| Gender | Mean  | Number | SD  | Minimum | Maximum |
|--------|-------|--------|-----|---------|---------|
|        |       |        |     |         |         |
| Female | 92.5° | 156    | 1.9 | 90 °    | 98.7 °  |
|        |       |        |     |         |         |
| Male   | 92.4° | 144    | 2   | 90 °    | 99.4 °  |
|        |       |        |     |         |         |
|        |       |        |     |         |         |

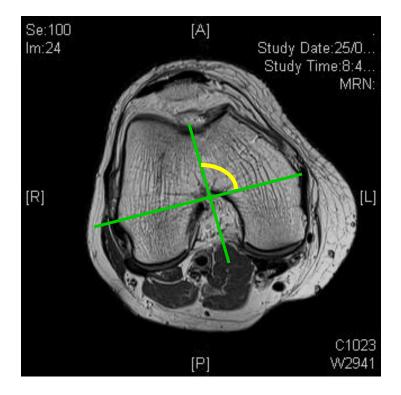

# FIGURE 20



8. The mean W-EP in the left knees was 92.9° and in the right knees was 92.1°, as depicted in **Table 6 and Figure 21**. There was significant difference between the sides (p - 0.001).

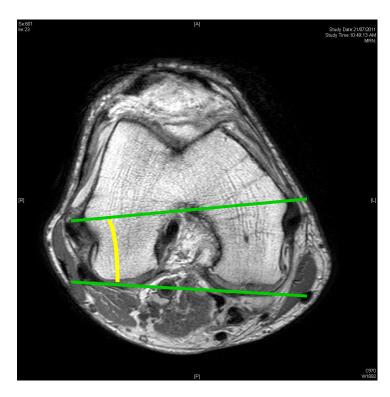

|       | TABLE 6 |        |     |         |         |  |
|-------|---------|--------|-----|---------|---------|--|
| Side  | Mean    | Number | SD  | Minimum | Maximum |  |
| Left  | 92.9 °  | 147    | 2.1 | 90°     | 99 °    |  |
| Right | 92.1 °  | 153    | 1.8 | 90°     | 99.4 °  |  |
|       |         |        |     |         |         |  |

# FIGURE 21

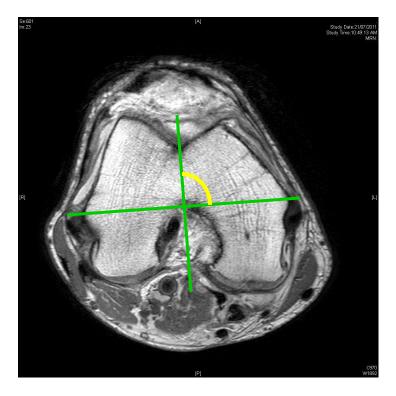



## **STUDY CASES – REPRESENTATIVE SAMPLES**

Case 1:

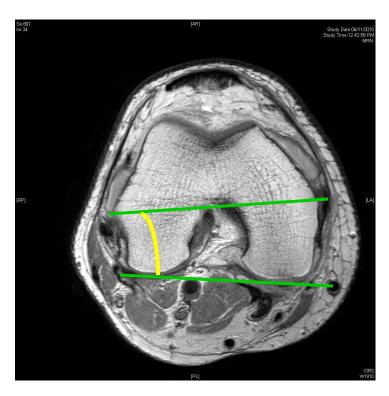



$$PCA = 8.8^{\circ}$$

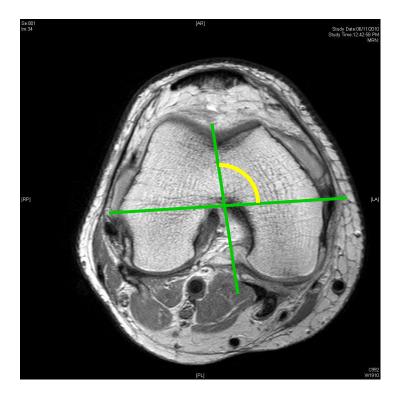



$$W-EP = 90.3^{\circ}$$






 $PCA = 7.6^{\circ}$ 

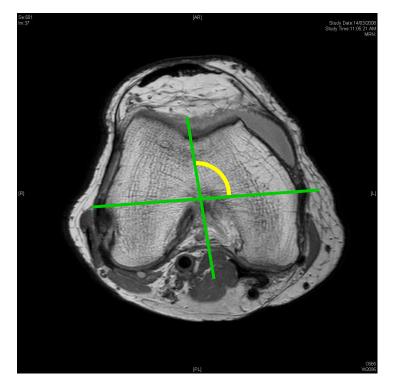



# $W-EP = 90.5^{\circ}$



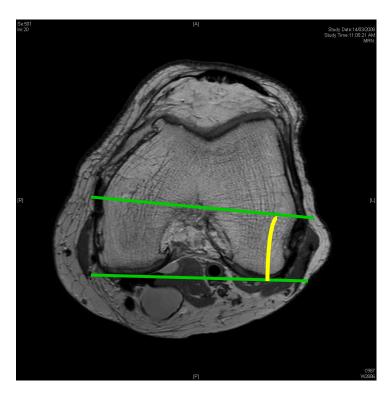


 $PCA = 8.5^{\circ}$ 




$$W-EP = 95.3^{\circ}$$

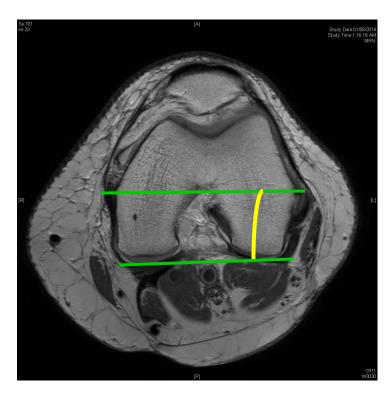




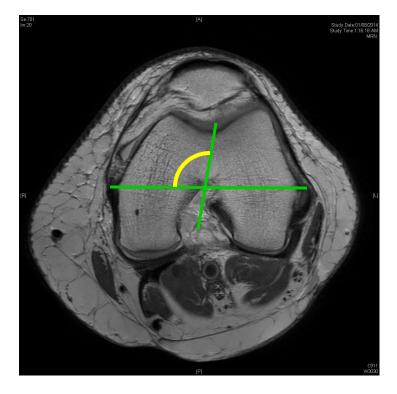

$$PCA = 4.3^{\circ}$$



$$W-EP = 93.3^{\circ}$$



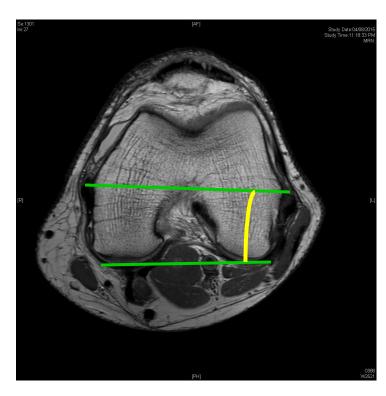




$$PCA = 4.4^{\circ}$$

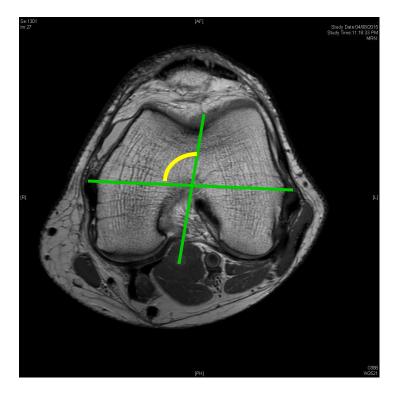







 $PCA = 5.8^{\circ}$ 



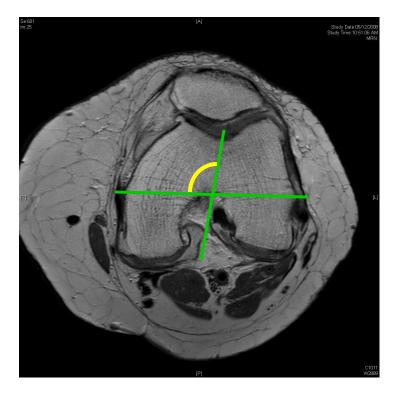

$$W-EP = 93.3^{\circ}$$

71



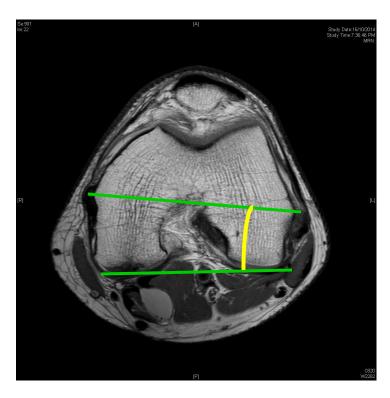


 $PCA = 3^{\circ}$ 

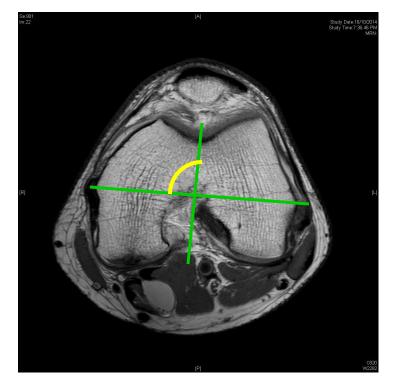



$$W-EP = 99^{\circ}$$






$$PCA = 6^{\circ}$$




$$W-EP = 94.5^{\circ}$$





 $PCA = 4.8^{\circ}$ 



$$W-EP = 90.5^{\circ}$$



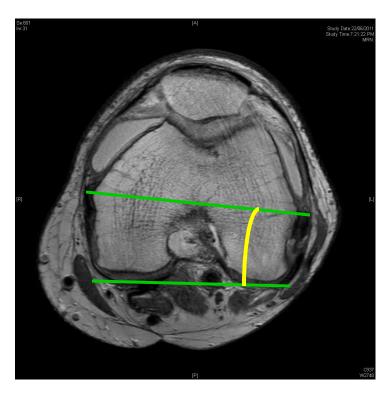



$$PCA = 6.9^{\circ}$$

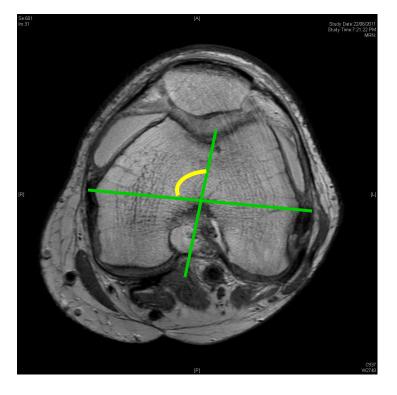


$$W-EP = 91.8^{\circ}$$



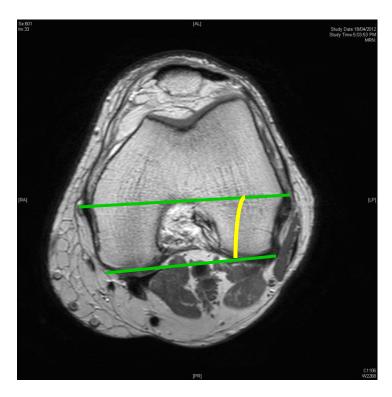



$$W-EP = 3.5^{\circ}$$

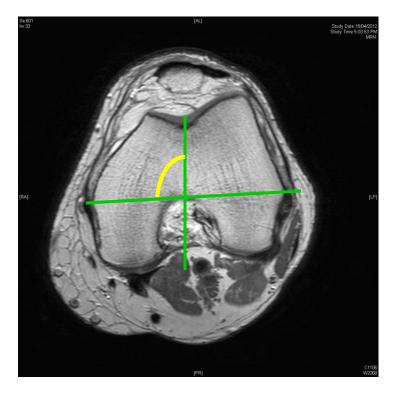



$$W-EP = 93.4^{\circ}$$



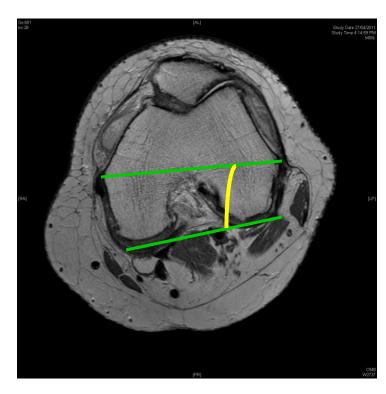



$$PCA = 3.9^{\circ}$$




$$W-EP = 97.6^{\circ}$$



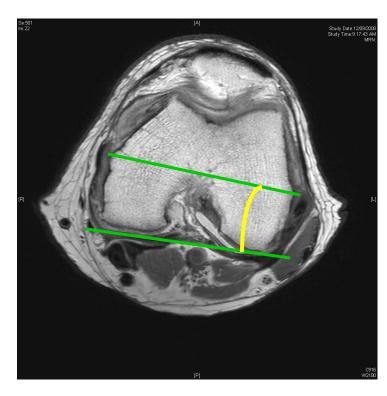



$$PCA = 3.6^{\circ}$$

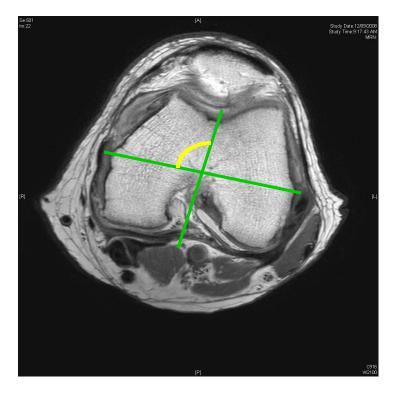



# $W-EP = 90.1^{\circ}$



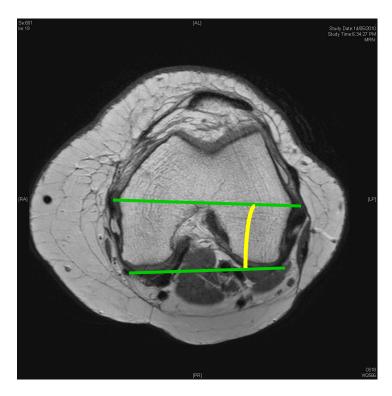



$$PCA = 5^{\circ}$$




$$W-EP = 92.8^{\circ}$$

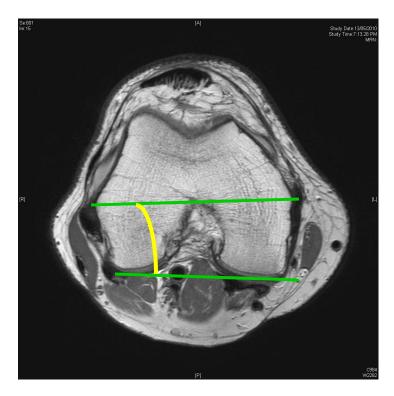




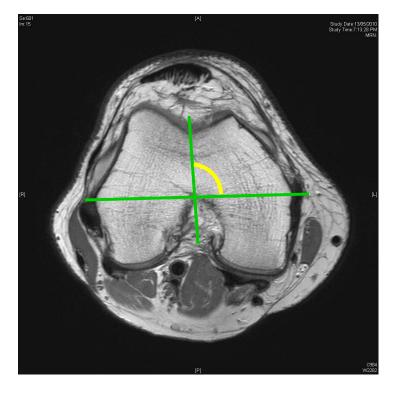

 $PCA = 7.3^{\circ}$ 



$$W-EP = 94.3^{\circ}$$

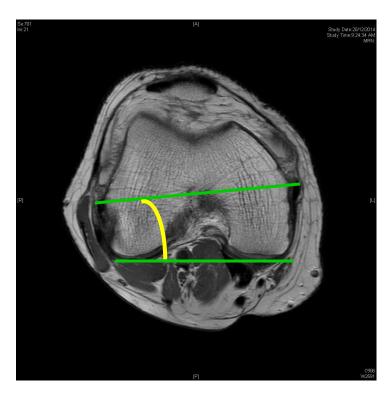




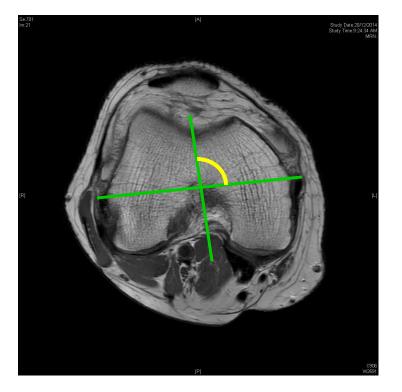


$$PCA = 4.1^{\circ}$$

$$W-EP = 94^{\circ}$$



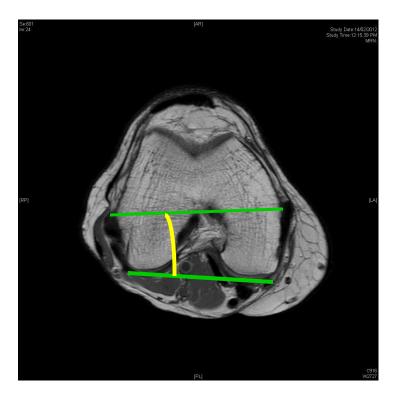



$$PCA = 4^{\circ}$$

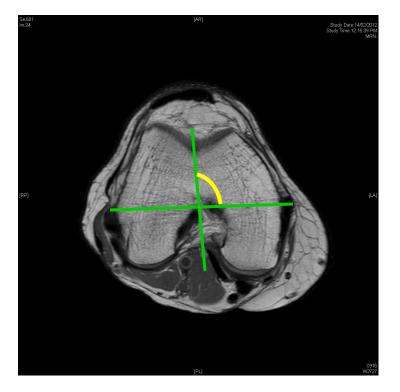



$$W-EP = 92^{\circ}$$






$$PCA = 6.9^{\circ}$$

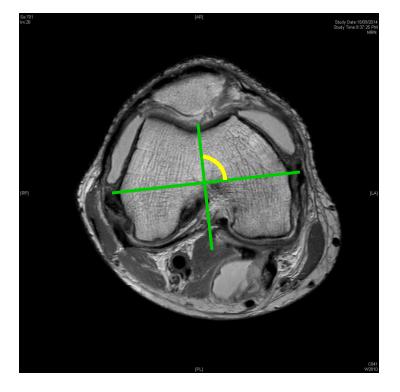



$$W-EP = 91.6^{\circ}$$





$$PCA = 8.3^{\circ}$$




$$W-EP = 91.8^{\circ}$$





 $W-EP = 5.3^{\circ}$ 



# $W-EP = 90.1^{\circ}$

#### DISCUSSION

#### **Posterior Condylar Angle (PCA):**

The Posterior condylar angle is about 3 degrees according to Western studies – [Boisgard et al  $2.65^{\circ}(10)$ , Griffin et al -  $3.11^{\circ}(15)$ , Berger-  $3.5^{\circ}(11)$ ]. Most proprietary jigs used in total knee arthroplasty employing the measured resection technique place the anterior and posterior cuts at 3 degrees external rotation to the PCA.

In our study, the PCA in the Indian knee in the 50 to 75 years age group is about  $5.5^{\circ}$ - which is slightly lesser than the Japanese(14) ( $5.8^{\circ}$ ) and Chinese females ( $5.8^{\circ}$ ) but greater than in Chinese males ( $5.1^{\circ}$ )(8) and the Western knees [Boisgard et al 2.65°(10), Griffin et al -  $3.11^{\circ}(15)$ , Berger-  $3.5^{\circ}(11)$ ].

Tul et al described a PCA of 4.7°(16) and so did Mullaji et al who described a PCA of 5 degrees in Indian knees(9) (**Table 7**). This means that the implantation of standard femoral jigs with 3° inbuilt external rotation with reference to the PCA in TKA can result in femoral component internal rotation in the Indian knees.

#### Table 7:

| Population              | Mean PCA                                          |
|-------------------------|---------------------------------------------------|
| Indian – Our study      | 5.5°                                              |
| Indian (Tul et al)      | 4.7°                                              |
| Indian ( Mullaji et al) | 5°                                                |
| Western                 | 3.11°, 3.5°, 2.65°                                |
| Japanese                | 5.8°                                              |
| Chinese                 | $5.1^{\circ}$ (males) and $5.8^{\circ}$ (females) |

### Whiteside – Epicondylar angle:

The mean Whiteside-Epicondylar angle was seen to be more externally rotated in our study (92.5°). This was similar to other studies done on Indian knees (Tul et al - 92.7°(16) and Mullaji et al – 90.8°(9)) and the Chinese population. However this was not the case in the Western and Japanese population (**Table 8**). The Japanese population<sup>3</sup> was similar in age characteristics to our study group (mean age of 50.2 years vs 56.7 years) whereas cadavers were used in the Western study(8). The implication of this is that if we take a tangent to the Whiteside's line as the reference while performing total knee arthroplasty it would cause external rotation of the femoral component.

#### Table 8:

| Population             | Mean W-EP angle |
|------------------------|-----------------|
| Indian – Our study     | 92.5°           |
| Indian (Tul et al)     | 92.7°           |
| Indian (Mullaji et al) | 90.8°           |
| Western                | <90°            |
| Japanese               | 87.7°           |
| Chinese                | 91.7°           |

The externally rotated W-EP angles have a significant bearing on the total knee arthroplasties done in the Indian knees. When in case the posterior condylar cuts are made parallel to the epicondylar axis, it may lead to a narrower and thinner lateral condyle when compared to the medial condyle being broader and thicker. To describe this phenomenon Yip referred to the analogy of the "mountain and molehill" (the medial femoral condyle being "the mountain" and the lateral femoral condyle "the molehill"). This could reassure the orthopedic surgeon that proper rotational alignment has been achieved<sup>4</sup>.

Akagi et al noted that if the implant is externally rotated with respect to the posterior condylar axis revision rate for lateral release is significantly less(7). But this has its own limitations. Excessive externally rotation of the implant can result

in anterolateral femoral notching, patellar maltracking, compromised cover for the tibia and rotational malalignment of the tibia. It has therefore been postulated that using implants with inbuilt rotations could help prevent the occurrence of such complications.

#### CONCLUSION

Our study confirms the findings of Mullaji et al<sup>6</sup> and Tul et al that the PCA in the Indian knee is more externally rotated than in the Western knees. Like the Chinese knees, the mean W-EP angle in Indian knees is also more externally rotated.

Mullaji et al had used Computerized tomography scans for the measurements and had proposed that using MRI scans would yield a better assessment; as the cartilaginous joint surfaces are not assessed in CT scans<sup>6</sup>. Our study is the first one to assess these angular measurements in the elderly age group of 50 to 75 years using MRI of the knees.

### REFERENCES

- 1. Zhang Y, Jordan JM. Epidemiology of Osteoarthritis. Clin Geriatr Med. 2010 Aug;26(3):355–69.
- 2. Michael JW-P, Schlüter-Brust KU, Eysel P. The Epidemiology, Etiology, Diagnosis, and Treatment of Osteoarthritis of the Knee. Dtsch Arzteblatt Int. 2010 Mar;107(9):152–62.
- 3. Litwic A, Edwards MH, Dennison EM, Cooper C. Epidemiology and burden of osteoarthritis. Br Med Bull. 2013;105:185–99.
- Ajit NE, B N, Fernandes RJ, Roga G, Kasthuri A, Shanbhag D, et al. Prevalence of knee osteoarthritis in rural areas of Bangalore urban district. Internet J Rheumatol Clin Immunol [Internet]. 2014 Jan 6 [cited 2015 Oct 7];1(S1). Available from: http://www.chanrejournals.com/index.php/rheumatology/article/view/49
- 5. Anouchi YS, Whiteside LA, Kaiser AD, Milliano MT. The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop. 1993 Feb;(287):170–7.
- 6. Arima J, Whiteside LA, McCarthy DS, White SE. Femoral rotational alignment, based on the anteroposterior axis, in total knee arthroplasty in a valgus knee. A technical note. J Bone Joint Surg Am. 1995 Sep;77(9):1331–4.
- Effect of Rotational Alignment On Patellar Tracking in Total...: Clinical Orthopaedics and Related Research [Internet]. LWW. [cited 2015 Oct 8]. Available from: http://journals.lww.com/corr/Fulltext/1999/09000/Effect\_of\_Rotational\_Align ment\_On\_Patellar.19.aspx
- 8. Yip DKH, Zhu YH, Chiu KY, Ng TP. Distal rotational alignment of the Chinese femur and its relevance in total knee arthroplasty1. J Arthroplasty. 2004 Aug;19(5):613–9.
- Mullaji AB, Sharma AK, Marawar SV, Kohli AF, Singh DP. Distal femoral rotational axes in Indian knees. J Orthop Surg Hong Kong. 2009 Aug;17(2):166–9.
- 10. Boisgard S, Moreau P-E, Descamps S, Courtalhiac C, Silbert H, Moreel P, et al. Computed tomographic study of the posterior condylar angle in arthritic knees: its use in the rotational positioning of the femoral implant of total knee prostheses. Surg Radiol Anat. 2003 Aug 14;25(3-4):330–4.

- Determining the Rotational Alignment of the Femoral Componen...: Clinical Orthopaedics and Related Research [Internet]. LWW. [cited 2015 Oct 8]. Available from: http://journals.lww.com/corr/Fulltext/1993/01000/Determining\_the\_Rotational \_Alignment\_of\_the.8.aspx
- 12. Yoshino N, Takai S, Ohtsuki Y, Hirasawa Y. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty. 2001 Jun;16(4):493–7.
- 13. A T, P Y, C N. Surgical epicondylar axis vs anatomical epicondylar axis for rotational alignment of the femoral component in total knee arthroplasty. J Med Assoc Thail Chotmaihet Thangphaet. 2001 Jun;84 Suppl 1:S401–8.
- 14. Nagamine R, Miura H, Inoue Y, Urabe K, Matsuda S, Okamoto Y, et al. Reliability of the anteroposterior axis and the posterior condylar axis for determining rotational alignment of the femoral component in total knee arthroplasty. J Orthop Sci. 1998 Jul;3(4):194–8.
- 15. Griffin FM, Math K, Scuderi GR, Insall JN, Poilvache PL. Anatomy of the epicondyles of the distal femur: MRI analysis of normal knees. J Arthroplasty. 2000 Apr;15(3):354–9.
- 16. Pun TB, Krishnamoorthy VP, Korula RJ, Poonnoose PM. Distal femoral rotational alignment in the Indian population An important consideration in total knee arthroplasty. J Clin Orthop Trauma. 2015 Dec;6(4):240–3.

17. Victor J. Rotational alignment of the distal femur: A literature review. Orthopaedics & Traumatology: Surgery & Research (2009) 95, 365—372

18. Frederic P, Pierre-Emmanuel S, Emmanuel T. Knee Surgery, Sports Traumatology, Arthroscopy December 2014, Volume 22, Issue 12, pp 3054-3059

- 19. www.imaios.com
- 20. www.r-radiology.com
- 21. www.quizlet.com
- 22. www.slideshare.net
- 23. www.teachmeanatomy.info
- 24. www.studyblue.com

- 25. www.medacta.com
- 26. physioworks.com.au
- 27. ivanlt.wordpress.com
- 28. www.kneereplacementsurgerymexico.com
- 29. www.onehealth.co.uk
- 30. kneesurgerysydney.com.au
- 31. en.wikipedia.org/wiki/Knee\_replacement
- 32. http://orthoinfo.aaos.org/

# ANNEXURE

## DATA SHEET

| PATIENT ID | AGE | PCA | W-EP | SEX    | SIDE  |
|------------|-----|-----|------|--------|-------|
| 196710G    | 75  | 2.5 | 90.4 | MALE   | LEFT  |
| 153636     | 75  | 4.3 | 93.3 | MALE   | LEFT  |
| 153636     | 75  | 4.4 | 93.4 | MALE   | RIGHT |
| 734484D    | 75  | 6   | 90   | MALE   | LEFT  |
| 27779      | 70  | 8.8 | 90.3 | MALE   | RIGHT |
| 45016      | 69  | 6.7 | 91.6 | FEMALE | LEFT  |
| 956033D    | 68  | 3.9 | 90.7 | FEMALE | LEFT  |
| 708037D    | 67  | 5.9 | 92.9 | MALE   | RIGHT |
| 620026     | 67  | 6.1 | 90.2 | FEMALE | RIGHT |
| 2370C      | 66  | 4.3 | 98.6 | MALE   | LEFT  |
| 028405C    | 66  | 7.6 | 90.5 | MALE   | RIGHT |
| 205002D    | 65  | 7.8 | 91.2 | FEMALE | RIGHT |
| 215116F    | 64  | 3.8 | 93.4 | FEMALE | LEFT  |
| 704177A    | 63  | 3.6 | 93.6 | FEMALE | RIGHT |
| 170413D    | 62  | 5.5 | 91   | MALE   | RIGHT |
| 093154G    | 62  | 5.4 | 94.5 | MALE   | LEFT  |
| 158112C    | 62  | 5.8 | 93.8 | MALE   | LEFT  |
| 652181C    | 62  | 4.3 | 92.6 | MALE   | RIGHT |
| 357393F    | 61  | 6   | 90.7 | FEMALE | LEFT  |
| 078403F    | 61  | 6.4 | 90.4 | FEMALE | RIGHT |
| 839742F    | 60  | 5.3 | 90.1 | MALE   | RIGHT |
| 695169D    | 59  | 4.5 | 94.1 | MALE   | RIGHT |
| 260300A    | 59  | 6   | 92.7 | MALE   | RIGHT |
| 980711D    | 59  | 6.6 | 90.4 | FEMALE | RIGHT |
| 522711     | 58  | 5.7 | 91.7 | MALE   | LEFT  |
| 1037       | 57  | 4.9 | 90.6 | FEMALE | LEFT  |
| 667390A    | 57  | 3.9 | 90.2 | FEMALE | RIGHT |
| 624790D    | 56  | 5.2 | 90.6 | MALE   | RIGHT |
| 692374D    | 56  | 4.1 | 94   | FEMALE | LEFT  |
| 073802G    | 56  | 7.6 | 91.9 | MALE   | LEFT  |
| 487540F    | 56  | 5   | 90   | FEMALE | RIGHT |
| 132193A    | 52  | 5.7 | 90.7 | MALE   | RIGHT |
| 294766C    | 56  | 7.7 | 90.9 | MALE   | RIGHT |
| 675113B    | 55  | 7.3 | 94.3 | MALE   | LEFT  |
| 029802A    | 55  | 8.5 | 95.3 | MALE   | RIGHT |
| 443342B    | 55  | 2.6 | 93.9 | MALE   | LEFT  |
| 451607D    | 55  | 2.5 | 92.9 | FEMALE | LEFT  |
| 551105A    | 55  | 2.6 | 90   | MALE   | RIGHT |
|            |     |     |      |        |       |

| 364488D | 55 | 7.9 | 91.4 | FEMALE | RIGHT |
|---------|----|-----|------|--------|-------|
| 721411  | 54 | 7.7 | 91.3 | FEMALE | LEFT  |
| 893889F | 54 | 5.5 | 92.9 | FEMALE | LEFT  |
| 074822G | 54 | 5.1 | 92.6 | MALE   | RIGHT |
| 084217F | 54 | 6.5 | 90   | MALE   | RIGHT |
| 198423D | 53 | 6.8 | 92.2 | FEMALE | RIGHT |
| 331315D | 53 | 5.4 | 92.1 | MALE   | LEFT  |
| 822037B | 53 | 7.1 | 92.3 | MALE   | RIGHT |
| 478942C | 53 | 5.6 | 91   | FEMALE | RIGHT |
| 478942C | 53 | 3.5 | 93.4 | FEMALE | LEFT  |
| 238256A | 53 | 5.1 | 91.1 | FEMALE | RIGHT |
| 551105A | 53 | 4.2 | 93.4 | MALE   | LEFT  |
| 822251C | 53 | 6.6 | 90.5 | FEMALE | LEFT  |
| 697234D | 53 | 4   | 92   | MALE   | RIGHT |
| 538250D | 52 | 5.4 | 91.3 | FEMALE | RIGHT |
| 204507D | 52 | 6.1 | 90.6 | MALE   | LEFT  |
| 229041D | 52 | 6.2 | 93.1 | MALE   | LEFT  |
| 623205D | 52 | 4.9 | 93.7 | FEMALE | LEFT  |
| 558372A | 52 | 5   | 91.6 | MALE   | RIGHT |
| 558372A | 52 | 3.6 | 90.1 | MALE   | LEFT  |
| 389354C | 52 | 5.2 | 91.1 | MALE   | LEFT  |
| 080052D | 52 | 6.5 | 90.4 | MALE   | RIGHT |
| 186745D | 52 | 6.8 | 91.6 | FEMALE | RIGHT |
| 186745D | 52 | 3.6 | 92.1 | FEMALE | LEFT  |
| 563065D | 52 | 4.5 | 92.1 | MALE   | RIGHT |
| 701002A | 52 | 6.9 | 91.6 | MALE   | RIGHT |
| 317927D | 52 | 3.7 | 92.3 | FEMALE | LEFT  |
| 831978D | 52 | 8.3 | 91.8 | FEMALE | RIGHT |
| 736456C | 52 | 4.1 | 91.4 | FEMALE | LEFT  |
| 919936  | 51 | 7.5 | 90.8 | FEMALE | RIGHT |
| 302799A | 51 | 7.6 | 91.8 | MALE   | LEFT  |
| 324961D | 51 | 7.6 | 91.6 | MALE   | LEFT  |
| 030963D | 51 | 6.8 | 91.2 | FEMALE | RIGHT |
| 833019C | 51 | 3.2 | 98.2 | FEMALE | LEFT  |
| 821771F | 51 | 4.2 | 92.2 | MALE   | RIGHT |
| 821771F | 51 | 4.7 | 90.8 | MALE   | LEFT  |
| 900114A | 51 | 6.5 | 96   | MALE   | RIGHT |
| 900114A | 51 | 8.1 | 92.3 | MALE   | LEFT  |
| 363822F | 51 | 8.6 | 90.2 | MALE   | RIGHT |
| 048097F | 51 | 4   | 92.9 | MALE   | RIGHT |
| 262891A | 51 | 6   | 90.7 | FEMALE | LEFT  |
| 066875B | 50 | 6.6 | 91.7 | FEMALE | RIGHT |
| 796299C | 50 | 6   | 90.2 | FEMALE | LEFT  |
|         |    |     |      |        |       |

| 375458C | 50 | 6   | 94.5 | MALE   | LEFT  |
|---------|----|-----|------|--------|-------|
| 387161C | 50 | 6.3 | 94.2 | MALE   | LEFT  |
| 666983C | 50 | 6   | 92.4 | MALE   | LEFT  |
| 636349C | 50 | 6.3 | 91.6 | MALE   | RIGHT |
| 267849D | 50 | 7.2 | 93.5 | FEMALE | RIGHT |
| 227866G | 50 | 2.2 | 96.5 | FEMALE | RIGHT |
| 080374G | 50 | 4.5 | 92.1 | MALE   | RIGHT |
| 700929A | 50 | 4.6 | 95.3 | FEMALE | LEFT  |
| 307722F | 50 | 3.6 | 95.9 | FEMALE | LEFT  |
| 474674D | 50 | 5.2 | 91.9 | FEMALE | RIGHT |
| 086575F | 50 | 4.9 | 91.7 | MALE   | LEFT  |
| 922192D | 75 | 2.5 | 94.2 | FEMALE | LEFT  |
| 220800F | 75 | 4.9 | 92.2 | FEMALE | LEFT  |
| 399384C | 71 | 5.5 | 91.9 | MALE   | LEFT  |
| 477346  | 70 | 5.4 | 91.1 | FEMALE | LEFT  |
| 257320D | 67 | 4.4 | 91.2 | FEMALE | LEFT  |
| 535199B | 66 | 5.6 | 92.2 | FEMALE | LEFT  |
| 376494  | 66 | 7.5 | 91.7 | FEMALE | LEFT  |
| 573400D | 66 | 6.1 | 92.4 | MALE   | LEFT  |
| 894222B | 66 | 3.3 | 92.1 | FEMALE | LEFT  |
| 162219A | 66 | 5.8 | 93.3 | MALE   | LEFT  |
| 421831  | 65 | 7.7 | 91.5 | FEMALE | LEFT  |
| 421831  | 65 | 7.4 | 91.5 | FEMALE | LEFT  |
| 686012C | 65 | 4.6 | 91.7 | MALE   | LEFT  |
| 599645C | 63 | 7.7 | 93.8 | FEMALE | LEFT  |
| 302888D | 63 | 4.4 | 93.6 | MALE   | LEFT  |
| 137604F | 63 | 5.1 | 91.6 | MALE   | LEFT  |
| 815638D | 63 | 7.4 | 93.8 | MALE   | LEFT  |
| 133890C | 63 | 4.2 | 91.4 | FEMALE | LEFT  |
| 034622A | 62 | 4.8 | 90.2 | MALE   | LEFT  |
| 782493B | 62 | 4.2 | 96.4 | FEMALE | LEFT  |
| 122007F | 62 | 5.5 | 90.9 | FEMALE | LEFT  |
| 726626C | 61 | 4.6 | 95.3 | MALE   | LEFT  |
| 476125  | 61 | 3.4 | 96.1 | MALE   | LEFT  |
| 192730C | 61 | 4.8 | 90.2 | FEMALE | LEFT  |
| 476022A | 61 | 6.9 | 91.8 | MALE   | LEFT  |
| 725302  | 60 | 5.8 | 90   | FEMALE | LEFT  |
| 119835C | 60 | 6.7 | 90.9 | MALE   | LEFT  |
| 310486A | 60 | 6   | 92.2 | FEMALE | LEFT  |
| 585197D | 60 | 7.1 | 91.7 | FEMALE | LEFT  |
| 122071C | 59 | 3.4 | 92.5 | MALE   | LEFT  |
| 892997D | 59 | 4.8 | 96.5 | FEMALE | LEFT  |
| 795701A | 59 | 6.4 | 96.8 | FEMALE | LEFT  |
|         |    |     |      |        |       |

| 700592A | 58 | 5.3 | 97.5 | MALE   | LEFT |
|---------|----|-----|------|--------|------|
| 895243B | 58 | 5.2 | 96.2 | FEMALE | LEFT |
| 388038B | 58 | 4.5 | 90.9 | MALE   | LEFT |
| 876241  | 58 | 4.5 | 93.7 | FEMALE | LEFT |
| 716734F | 58 | 5.3 | 91.4 | MALE   | LEFT |
| 863616F | 58 | 5.4 | 93.4 | MALE   | LEFT |
| 494342C | 57 | 4.6 | 92.2 | FEMALE | LEFT |
| 489379D | 57 | 5.8 | 91   | FEMALE | LEFT |
| 652175D | 57 | 5   | 92.8 | FEMALE | LEFT |
| 011120G | 57 | 5.4 | 93.3 | MALE   | LEFT |
| 297585D | 56 | 4   | 90.9 | FEMALE | LEFT |
| 055641B | 56 | 5.4 | 93.8 | FEMALE | LEFT |
| 805705  | 56 | 7.6 | 94.1 | FEMALE | LEFT |
| 523797B | 56 | 5.1 | 97   | FEMALE | LEFT |
| 876241  | 56 | 4.6 | 93.3 | FEMALE | LEFT |
| 756121D | 55 | 4.4 | 98.7 | FEMALE | LEFT |
| 637390C | 55 | 4.7 | 94.4 | FEMALE | LEFT |
| 508864D | 55 | 3.9 | 97.6 | MALE   | LEFT |
| 073029A | 55 | 5.5 | 92.7 | MALE   | LEFT |
| 767661F | 55 | 3.4 | 90.9 | MALE   | LEFT |
| 920488  | 55 | 5.1 | 94.7 | MALE   | LEFT |
| 036966D | 55 | 6   | 92.5 | FEMALE | LEFT |
| 446867F | 55 | 4.8 | 90.5 | MALE   | LEFT |
| 887907  | 55 | 5.8 | 91.8 | MALE   | LEFT |
| 262938G | 55 | 5.7 | 91.4 | MALE   | LEFT |
| 383171D | 54 | 6.2 | 96.2 | FEMALE | LEFT |
| 726515C | 54 | 6.1 | 90.5 | MALE   | LEFT |
| 260559A | 54 | 6.5 | 90.5 | FEMALE | LEFT |
| 239824C | 54 | 5   | 90.1 | MALE   | LEFT |
| 470302D | 54 | 6.5 | 92.9 | FEMALE | LEFT |
| 644964D | 56 | 5.8 | 94.3 | FEMALE | LEFT |
| 730193D | 54 | 5.1 | 93.6 | FEMALE | LEFT |
| 969470D | 54 | 5   | 94.8 | MALE   | LEFT |
| 568662C | 53 | 5.1 | 95.1 | FEMALE | LEFT |
| 971673D | 53 | 6   | 91.8 | FEMALE | LEFT |
| 000398F | 53 | 5.7 | 91.1 | FEMALE | LEFT |
| 659595B | 53 | 5.8 | 90.8 | MALE   | LEFT |
| 223457F | 53 | 4.8 | 93.9 | FEMALE | LEFT |
| 726719A | 53 | 5.6 | 91.7 | MALE   | LEFT |
| 087533B | 53 | 6.2 | 93   | MALE   | LEFT |
| 319079A | 53 | 5.9 | 97.6 | FEMALE | LEFT |
| 885174F | 53 | 5   | 95   | MALE   | LEFT |
| 757424A | 52 | 6.8 | 91.3 | MALE   | LEFT |
|         |    |     |      |        |      |

| 570084C | 52 | 4.2 | 97.8 | MALE   | LEFT  |
|---------|----|-----|------|--------|-------|
| 724224  | 52 | 6.2 | 93.7 | MALE   | LEFT  |
| 130281D | 52 | 4.5 | 95.2 | MALE   | LEFT  |
| 875968C | 52 | 4.1 | 92.7 | FEMALE | LEFT  |
| 110785G | 52 | 6.4 | 95.6 | FEMALE | LEFT  |
| 174328G | 52 | 5.5 | 94.4 | FEMALE | LEFT  |
| 574241C | 51 | 6   | 93   | FEMALE | LEFT  |
| 277958D | 51 | 6.5 | 92.6 | FEMALE | LEFT  |
| 030967F | 51 | 6.3 | 91.4 | FEMALE | LEFT  |
| 917361D | 51 | 4.9 | 90.5 | FEMALE | LEFT  |
| 067001F | 51 | 6.3 | 90.3 | MALE   | LEFT  |
| 105571C | 51 | 5.6 | 97.6 | MALE   | LEFT  |
| 860818F | 51 | 4.1 | 91.7 | FEMALE | LEFT  |
| 277162G | 51 | 3   | 99   | MALE   | LEFT  |
| 311460D | 50 | 6.6 | 92.2 | MALE   | LEFT  |
| 554283B | 50 | 5.7 | 90.1 | MALE   | LEFT  |
| 154803D | 50 | 4.5 | 91.2 | MALE   | LEFT  |
| 720922D | 50 | 5.5 | 92.9 | MALE   | LEFT  |
| 307421A | 50 | 6.4 | 93.5 | FEMALE | LEFT  |
| 124421F | 50 | 5   | 92.4 | MALE   | LEFT  |
| 712156F | 50 | 5.1 | 94.2 | FEMALE | LEFT  |
| 995528D | 50 | 5.2 | 92   | FEMALE | LEFT  |
| 018262G | 50 | 5.7 | 92.9 | MALE   | LEFT  |
| 688274C | 50 | 5.9 | 93.3 | FEMALE | LEFT  |
| 435096D | 50 | 5.6 | 91.1 | FEMALE | LEFT  |
| 305219G | 50 | 5.6 | 90.9 | FEMALE | LEFT  |
| 504924D | 50 | 6.7 | 90.6 | MALE   | LEFT  |
| 657965D | 50 | 4.2 | 92.3 | FEMALE | LEFT  |
| 889413D | 75 | 5.1 | 91.8 | MALE   | RIGHT |
| 602407D | 75 | 7.5 | 93.2 | MALE   | RIGHT |
| 477346  | 74 | 6   | 91.2 | FEMALE | RIGHT |
| 965122C | 73 | 3.4 | 96.1 | MALE   | RIGHT |
| 892671D | 72 | 5.7 | 92.9 | FEMALE | RIGHT |
| 619956  | 70 | 6   | 90.2 | FEMALE | RIGHT |
| 015204D | 69 | 7.2 | 92.1 | FEMALE | RIGHT |
| 236691D | 68 | 7.5 | 90.9 | FEMALE | RIGHT |
| 701256A | 68 | 7.1 | 92.9 | MALE   | RIGHT |
| 261441D | 67 | 5.5 | 92.1 | FEMALE | RIGHT |
| 640286A | 67 | 6.9 | 91.5 | FEMALE | RIGHT |
| 258869F | 67 | 6.1 | 93.6 | FEMALE | RIGHT |
| 039974G | 67 | 6.6 | 91.9 | MALE   | RIGHT |
| 111302F | 65 | 4.9 | 91   | MALE   | RIGHT |
| 809395D | 65 | 4.8 | 92.7 | FEMALE | RIGHT |
|         |    |     |      |        |       |

| 790322  | 64 | 5.8 | 96.9 | FEMALE | RIGHT |
|---------|----|-----|------|--------|-------|
| 495575F | 64 | 5   | 95   | FEMALE | RIGHT |
| 782493B | 62 | 5.1 | 91.3 | FEMALE | RIGHT |
| 370316B | 63 | 6.1 | 90.9 | MALE   | RIGHT |
| 774803A | 63 | 3.4 | 91.6 | MALE   | RIGHT |
| 809799B | 62 | 4.6 | 90.4 | MALE   | RIGHT |
| 373268D | 62 | 4.2 | 90.2 | FEMALE | RIGHT |
| 782493B | 62 | 6.5 | 90.1 | FEMALE | RIGHT |
| 876359D | 62 | 5   | 93.4 | FEMALE | RIGHT |
| 083041F | 62 | 5.3 | 90.6 | MALE   | RIGHT |
| 001140D | 62 | 4.9 | 92.6 | FEMALE | RIGHT |
| 273454F | 62 | 4.3 | 90.6 | FEMALE | RIGHT |
| 079559G | 62 | 7.7 | 90.2 | FEMALE | RIGHT |
| 855818A | 61 | 4.3 | 90.4 | MALE   | RIGHT |
| 088129D | 61 | 5.8 | 90.7 | MALE   | RIGHT |
| 550156  | 61 | 4.5 | 91   | FEMALE | RIGHT |
| 273690G | 61 | 3.6 | 90.4 | MALE   | RIGHT |
| 180365D | 60 | 4.5 | 91.7 | MALE   | RIGHT |
| 725302  | 60 | 7.1 | 91.9 | FEMALE | RIGHT |
| 058370D | 60 | 5.2 | 94.6 | MALE   | RIGHT |
| 369223B | 60 | 6.7 | 90.4 | MALE   | RIGHT |
| 257030D | 60 | 5   | 93.3 | MALE   | RIGHT |
| 310486A | 60 | 7   | 91   | FEMALE | RIGHT |
| 196815D | 59 | 5.4 | 90.1 | MALE   | RIGHT |
| 164297D | 59 | 5.5 | 93.2 | MALE   | RIGHT |
| 100737F | 59 | 5   | 90.9 | MALE   | RIGHT |
| 908938C | 58 | 4   | 95   | FEMALE | RIGHT |
| 879390D | 58 | 4.5 | 94.8 | FEMALE | RIGHT |
| 001943G | 58 | 4.3 | 93.2 | MALE   | RIGHT |
| 153339B | 58 | 5.6 | 94.4 | FEMALE | RIGHT |
| 990335C | 57 | 4.3 | 91.4 | MALE   | RIGHT |
| 489379D | 57 | 6.1 | 93.9 | FEMALE | RIGHT |
| 989771D | 57 | 4.9 | 92.7 | FEMALE | RIGHT |
| 970355C | 57 | 5.4 | 94.3 | FEMALE | RIGHT |
| 710577F | 57 | 5.1 | 95.7 | MALE   | RIGHT |
| 87127   | 56 | 5.2 | 91.2 | MALE   | RIGHT |
| 644964D | 56 | 7.7 | 91.2 | FEMALE | RIGHT |
| 985806D | 56 | 6.4 | 92.5 | MALE   | RIGHT |
| 022832F | 56 | 4.1 | 93.2 | MALE   | RIGHT |
| 716197F | 56 | 4.3 | 90.3 | MALE   | RIGHT |
| 701686A | 56 | 5.3 | 95.1 | MALE   | RIGHT |
| 517009B | 56 | 5.2 | 95   | FEMALE | RIGHT |
| 863297C | 55 | 6.1 | 91.4 | MALE   | RIGHT |
|         |    |     |      |        |       |

| 264614F | 55 | 5.1 | 92.5 | MALE   | RIGHT |
|---------|----|-----|------|--------|-------|
| 340036F | 55 | 3.8 | 90.2 | FEMALE | RIGHT |
| 568666A | 55 | 6.7 | 94   | FEMALE | RIGHT |
| 067001F | 51 | 6.8 | 91.4 | MALE   | RIGHT |
| 917131B | 55 | 6   | 91.3 | FEMALE | RIGHT |
| 036966D | 55 | 6   | 95.3 | FEMALE | RIGHT |
| 240482G | 55 | 4.1 | 99.4 | MALE   | RIGHT |
| 199296F | 54 | 5.6 | 92.1 | MALE   | RIGHT |
| 138081C | 54 | 6.5 | 91.4 | FEMALE | RIGHT |
| 761584F | 54 | 6.8 | 90.1 | FEMALE | RIGHT |
| 046210G | 54 | 6.6 | 94   | FEMALE | RIGHT |
| 791510C | 53 | 4.5 | 90.2 | MALE   | RIGHT |
| 268438B | 53 | 6.9 | 92.9 | FEMALE | RIGHT |
| 959806D | 53 | 6.9 | 91   | FEMALE | RIGHT |
| 726719A | 53 | 6.3 | 94.3 | MALE   | RIGHT |
| 433374F | 53 | 6.3 | 90   | FEMALE | RIGHT |
| 800159D | 53 | 5.9 | 90.9 | MALE   | RIGHT |
| 730193D | 53 | 3.8 | 93.2 | FEMALE | RIGHT |
| 784474D | 53 | 4.9 | 94.1 | MALE   | RIGHT |
| 396288D | 52 | 4.3 | 92.7 | FEMALE | RIGHT |
| 637949D | 52 | 4.1 | 90.4 | MALE   | RIGHT |
| 106926F | 52 | 6   | 92.8 | MALE   | RIGHT |
| 101929A | 52 | 6.2 | 92   | FEMALE | RIGHT |
| 534147A | 52 | 5.9 | 92.6 | FEMALE | RIGHT |
| 852096  | 51 | 3.6 | 95.2 | MALE   | RIGHT |
| 100860D | 51 | 3.6 | 92.1 | FEMALE | RIGHT |
| 089981D | 51 | 6   | 90.7 | FEMALE | RIGHT |
| 866332D | 51 | 5.8 | 92.1 | FEMALE | RIGHT |
| 917361D | 51 | 4.1 | 92.5 | FEMALE | RIGHT |
| 214526F | 51 | 5.6 | 90.1 | FEMALE | RIGHT |
| 351035F | 51 | 4.1 | 92.4 | FEMALE | RIGHT |
| 435365F | 51 | 3.9 | 90.2 | FEMALE | RIGHT |
| 840835D | 51 | 5.4 | 94.4 | FEMALE | RIGHT |
| 542875B | 50 | 6.7 | 92.8 | MALE   | RIGHT |
| 141929D | 50 | 5.5 | 91.3 | FEMALE | RIGHT |
| 526156C | 50 | 5.7 | 91.4 | MALE   | RIGHT |
| 926709D | 50 | 3.6 | 97.7 | FEMALE | RIGHT |
| 518418A | 50 | 5.4 | 92.8 | FEMALE | RIGHT |
| 657965D | 50 | 4.2 | 91.4 | FEMALE | RIGHT |
| 684631A | 50 | 6.3 | 91.2 | FEMALE | RIGHT |
| 420675F | 50 | 5.7 | 90.1 | MALE   | RIGHT |
| 749268F | 50 | 7.1 | 90.7 | MALE   | RIGHT |
| 049369G | 50 | 6.6 | 94.1 | FEMALE | RIGHT |
|         |    |     |      |        |       |

| 688274C | 50 | 6.2 | 93.5 | FEMALE | RIGHT |
|---------|----|-----|------|--------|-------|
| 397580D | 50 | 6.3 | 91.4 | MALE   | RIGHT |
| 070974D | 50 | 6   | 90   | MALE   | RIGHT |
| 307421A | 50 | 6.1 | 91.5 | FEMALE | RIGHT |