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ABSTRACT 

 

Presence of distributed generation (DG) in the distribution system may lead to 
several advantages such as voltage support, loss reduction, deferment of new 
transmission and distribution infrastructure and improved system reliability. 
However, when  inverter based DG is connected to a distribution system, it may 
contribute to power quality problem such as harmonic distortion and resonance. The 
effect of harmonic not only presents a severe power quality problem but it can also 
trip protection devices and cause damage to sensitive equipment. In this research, the 
first objective is to investigate the harmonic impact of different types of DG. For this 
purpose, a comprehensive study is made to compare the harmonic distortion 
produced by the different types and number of DG units in a low voltage distribution 
system. Here, three types of DG units are considered, namely, a mini hydro power, 
wind turbine doubly fed induction generator and photovoltaic system. The second 
objective is to determine the maximum allowable penetration level of inverter based 
DG by considering the harmonic resonance phenomena and harmonic distortion 
limits.  Simulations were carried using the MATLAB/SimPowerSystems software to 
investigate the  impact of DG at different penetration depths.  To control harmonic 
propagation in a distribution system with DG units, an appropriate planning of DG 
units is considered by determining optimal placement, sizing and voltage control of 
DG units. Thus, the third objective of this research is to develop an effective 
heuristic optimisation technique such as improved gravitational search algorithm 
(IGSA) technique for determining the optimal placement, sizing and  voltage control 
of DG units in a radial distribution system. A multi-objective function is formulated 
to minimise total power losses, voltage total harmonic distortion (THDv) and voltage 
deviation in a distribution system. The loadflow algorithm from MATPOWER and 
harmonic loadflow are integrated in the MATLAB environment to solve the multi-
objective optimisation problem. The proposed IGSA technique is compared with 
other optimisation techniques, namely, particle swarm optimisation (PSO) and 
gravitational search algorithm (GSA). Test results on the harmonic impact of inverter 
based DG show the presence of resonance phenomena and harmonic distortion due 
to the interaction of the inverter based DG and grid impedance. Moreover, the results 
also indicate that the maximum permissible penetration level of inverter based DG in 
the test distribution system is found as 50% of total connected load. Four case 
studies on an IEEE 13 bus and 69 bus distribution system have been conducted to 
validate the effectiveness of IGSA. The optimisation results shown that IGSA gives 
the best fitness value and the fastest average elapsed time compared to PSO and 
GSA. 
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ABSTRAK 

 

Kewujudan penjana teragih (PT) dalam sistem pengagihan kuasa mungkin 
menyumbangkan beberapa kebaikan seperti sokongan voltan, pengurangan 
kehilangan kuasa, penangguhan  pembinaan infrastruktur baru bagi sistem 
penghantaran dan pengagihan serta peningkatan keboleharapan sistem. 
Walaubagaimanapun, apabila PT berasaskan penyongsang disambungkan ke sistem 
pengagihan, ia mungkin menyumbangkan kepada masalah kualiti kuasa seperti 
herotan harmonik dan salunan. Kesan harmonik bukan sahaja menyebabkan masalah 
kualiti kuasa yang teruk, bahkan ia  juga menyebabkan  peranti perlindungan    dan 
memusnahkan peralatan yang peka. Di dalam penyelidikan ini, objektif pertama 
ialah untuk mengkaji kesan harmonik daripada pelbagai jenis PT berasaskan 
penyongsang. Bagi tujuan ini, kajian menyeluruh telah dilakukan untuk 
membandingkan herotan harmonik yang dihasilkan oleh pelbagai jenis dan bilangan 
unit PT di dalam sistem pengagihan voltan rendah. Dengan ini, tiga jenis unit PT 
dipertimbangkan, iaitu, penjana kuasa mini hidro, turbin angin penjana aruhan dua 
suapan dan sistem fotovolta. Objektif kedua ialah menentukan aras penembusan 
maksima yang dibenarkan bagi PT berasaskan penyongsang dengan mengambilkira 
fenomena harmonik salunan dan had herotan harmonik. Simulasi menggunakan 
perisian MATLAB/SimPowerSystems dilaksanakan bagi mengkaji kesan kedalaman 
penembusan PT. Untuk  mengawal perambatan harmonik di dalam sistem 
pengagihan, perancangan yang sesuai bagi unit PT perlu dipertimbangkan dengan 
menentukan kedudukan, saiz dan kawalan voltan optima bagi PT. Justeru, objektif 
ketiga penyelidikan adalah untuk membangunkan teknik pengoptimuman heuristik 
yang berkesan seperti teknik algoritma carian graviti diperbaiki (ACGD) untuk 
menentukan kedudukan, saiz dan kawalan voltan yang optimum bagi PT di dalam 
sistem jejari pengagihan kuasa. Satu fungsi pelbagai-objektif dirumuskan untuk  
meminimumkan jumlah kehilangan kuasa, purata jumlah herotan harmonik voltan 
(JHHv) dan sisihan voltan di dalam sistem pengagihan. Algoritma aliran beban dari 
MATPOWER dan aliran beban harmonik telah disepadukan di dalam persekitaran 
MATLAB bagi menyelesaikan masalah pengoptimuman pelbagai-objektif. Teknik 
ACGD yang dicadangkan telah dibandingkan dengan teknik pengoptimuman yang 
lain seperti pengoptimuman kuruman zarah (PKZ) dan algoritma carian graviti 
(ACG). Hasil ujian ke atas kesan harmonik bagi PT berasaskan penyongsang 
menunjukkan kewujudan fenomena salunan dan herotan harmonik  disebabkan 
interaksi di antara PT berasaskan penyongsang dengan galangan grid. Selain itu, 
hasil kajian turut menunjukkan bahawa aras maksimum penembusan yang 
dibenarkan bagi PT berasaskan penyongsang di dalam sistem ujian pengagihan 
adalah 50% daripada jumlah keseluruhan beban tersambung. Empat kajian kes telah 
dilakukan ke atas sistem pengagihan Institut Elektrik dan Elektronik Antarabangsa 
(IEEA) 13 bas dan 69 bas untuk mengesahkan keberkesanan ACGD. Hasil kajian 
pengoptimuman menunjukkan bahawa ACGD memberikan nilai fungsi objektif  
terbaik dan purata masa berlalu terpantas berbanding dengan PKZ dan ACG. 
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DFIG Doubly fed induction generator  

DG Distributed generation  

FFT Fast Fourier transform  

GA Genetic algorithm  

GSA gravitation search algorithm  

IEEE Institute of Electrical Electronics Engineers 

IGSA Improved gravitational search algorithm  

LCL Inductance, capacitance and inductance passive filter 

MHP Mini hydro power 

p.u Per unit 

PCC Point of common coupling  

PFCC Power factor correction capacitor  

PSO Particle swarm optimization  

PV Photovoltaic  

PWM Pulse width modulation  

RMS Root mean square  

THDi Current total harmonic distortion 

THDv Voltage total harmonic distortion  

VSI Voltage source inverter  

WTG Wind turbine generation  

 



 

 

 

 

 

CHAPTER I 

 

 

INTRODUCTION 

 

 

1.1 RESEARCH BACKGROUND 

 

Recently, renewable energy generation technologies are increasingly utilised in power 

distribution networks. The drive for green energy sources, financial opportunities 

presented for investors, potential benefits for utilities like peak-shaving, congestion 

alleviation, reduction of losses and better asset utilization are contributing factors to 

renewable energy development (El-Khattam & Salama 2004). Renewable energy 

based distributed generation (DG) is seen as a resolution for solving environmental 

concerns and security of electricity supply to support sustainable growth. From the 

interfacing approach used to connect to the grid, there are two types of DG units, 

namely, inverter based DG and non-inverter based DG (Dugan et al. 2000). Examples 

of inverter based DG include photovoltaic (PV) systems, wind turbine generators, fuel 

cells, and micro turbines which use power converters as interfacing devices to the 

grid. The mini hydro power (MHP) and induction generator are considered as non-

inverter based DG units. 

 

The integration of DG into a distribution system will have either positive or 

negative impact depending on the distribution system operating features and the DG 

characteristics. DG can be valuable if it meets at least the basic requirements of the 

system operating perspective and feeder design (Begovic 2001). According to Daly & 

Morrison (2001), the effect of DG on power quality depends on the type of DG, its 

interface with the utility system, the size of DG unit, the total capacity of the DG 


