HARMONIC IMPACT OF INVERTER BASED DISTRIBUTED GENERATION AND OPTIMAL HARMONIC CONTROL USING IMPROVED GRAVITATIONAL SEARCH ALGORITHM

AIDA FAZLIANA ABDUL KADIR

THESIS SUBMITTED IN FULFILMENT OF THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING AND BUILT ENVIRONMENT UNIVERSITI KEBANGSAAN MALAYSIA BANGI

2014

KESAN HARMONIK BAGI PENJANA TERAGIH BERASASKAN PENYONGSANG DAN KAWALAN OPTIMA HARMONIK MENGGUNAKAN ALGORITMA CARIAN GRAVITI DIPERBAIKI

AIDA FAZLIANA ABDUL KADIR

TESIS YANG DIKEMUKAKAN UNTUK MEMPEROLEH IJAZAH DOKTOR FALSAFAH

FAKULTI KEJURUTERAAN DAN ALAM BINA UNIVERSITI KEBANGSAAN MALAYSIA BANGI

2014

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

13 February 2014

AIDA FAZLIANA ABDUL KADIR P48970

ACKNOWLEDGMENTS

First and foremost praise be to Almighty Allah for all His blessings for giving me patience and good health throughout the duration of this PhD research.

I am very fortunate to have Professor Dr. Azah Mohamed as a research supervisor. I am greatly indebted to her ideas, encouragement, assistance, support, solid guidance and in-depth discussions she shared with me through this research and in the preparation of the thesis. Without her tireless assistance, leadership, and confidence in my abilities, this thesis would not come to its timely completion.

Also, I would like to express my high appreciation to my co-supervisors Assoc. Prof. Dr. Hussain Shareef and Dr Mohd Zamri Che Wanik for the valued knowledge, ideas, encouragement, assistance and support received from them during my PhD program.

I would like to acknowledge the financial support from Ministry of Higher Education, Universiti Teknikal Malaysia Melaka and also Universiti Kebangsaan Malaysia for making it possible for me to pursue and complete my PhD degree.

A special thanks to all my colleagues of UKM power research group for their help, friendship, and creating a pleasant working environment throughout my years in UKM. Not to forget, my sincere thanks goes to Dean and all the members of Engineering and Built Environment Faculty of UKM and also PPS UKM for all their help and support since the start of my postgraduate work.

To my dearest husband Zulkifli Ab Rahman and my lovely children Aina and Arif, thanks for your do'as, patience, understanding and support for all the duration of doing this research. My mother, Hjh Rakiah Abd Rahaman deserve special mention for her inseparable support and prayers. I am deeply and forever indebted to my mother for her love, encouragement and understanding throughout my entire life. Last but not least, to my siblings, thank you guys for all your helps and do'as.

ABSTRACT

Presence of distributed generation (DG) in the distribution system may lead to several advantages such as voltage support, loss reduction, deferment of new transmission and distribution infrastructure and improved system reliability. However, when inverter based DG is connected to a distribution system, it may contribute to power quality problem such as harmonic distortion and resonance. The effect of harmonic not only presents a severe power quality problem but it can also trip protection devices and cause damage to sensitive equipment. In this research, the first objective is to investigate the harmonic impact of different types of DG. For this purpose, a comprehensive study is made to compare the harmonic distortion produced by the different types and number of DG units in a low voltage distribution system. Here, three types of DG units are considered, namely, a mini hydro power, wind turbine doubly fed induction generator and photovoltaic system. The second objective is to determine the maximum allowable penetration level of inverter based DG by considering the harmonic resonance phenomena and harmonic distortion limits. Simulations were carried using the MATLAB/SimPowerSystems software to investigate the impact of DG at different penetration depths. To control harmonic propagation in a distribution system with DG units, an appropriate planning of DG units is considered by determining optimal placement, sizing and voltage control of DG units. Thus, the third objective of this research is to develop an effective heuristic optimisation technique such as improved gravitational search algorithm (IGSA) technique for determining the optimal placement, sizing and voltage control of DG units in a radial distribution system. A multi-objective function is formulated to minimise total power losses, voltage total harmonic distortion (THD_v) and voltage deviation in a distribution system. The loadflow algorithm from MATPOWER and harmonic loadflow are integrated in the MATLAB environment to solve the multiobjective optimisation problem. The proposed IGSA technique is compared with other optimisation techniques, namely, particle swarm optimisation (PSO) and gravitational search algorithm (GSA). Test results on the harmonic impact of inverter based DG show the presence of resonance phenomena and harmonic distortion due to the interaction of the inverter based DG and grid impedance. Moreover, the results also indicate that the maximum permissible penetration level of inverter based DG in the test distribution system is found as 50% of total connected load. Four case studies on an IEEE 13 bus and 69 bus distribution system have been conducted to validate the effectiveness of IGSA. The optimisation results shown that IGSA gives the best fitness value and the fastest average elapsed time compared to PSO and GSA.

ABSTRAK

Kewujudan penjana teragih (PT) dalam sistem pengagihan kuasa mungkin menyumbangkan beberapa kebaikan seperti sokongan voltan, pengurangan kehilangan kuasa, penangguhan pembinaan infrastruktur baru bagi sistem penghantaran dan pengagihan serta peningkatan keboleharapan sistem. Walaubagaimanapun, apabila PT berasaskan penyongsang disambungkan ke sistem pengagihan, ia mungkin menyumbangkan kepada masalah kualiti kuasa seperti herotan harmonik dan salunan. Kesan harmonik bukan sahaja menyebabkan masalah kualiti kuasa yang teruk, bahkan ia juga menyebabkan peranti perlindungan dan memusnahkan peralatan yang peka. Di dalam penyelidikan ini, objektif pertama ialah untuk mengkaji kesan harmonik daripada pelbagai jenis PT berasaskan penyongsang. Bagi tujuan ini, kajian menyeluruh telah dilakukan untuk membandingkan herotan harmonik yang dihasilkan oleh pelbagai jenis dan bilangan unit PT di dalam sistem pengagihan voltan rendah. Dengan ini, tiga jenis unit PT dipertimbangkan, iaitu, penjana kuasa mini hidro, turbin angin penjana aruhan dua suapan dan sistem fotovolta. Objektif kedua ialah menentukan aras penembusan maksima yang dibenarkan bagi PT berasaskan penyongsang dengan mengambilkira fenomena harmonik salunan dan had herotan harmonik. Simulasi menggunakan perisian MATLAB/SimPowerSystems dilaksanakan bagi mengkaji kesan kedalaman penembusan PT. Untuk mengawal perambatan harmonik di dalam sistem pengagihan, perancangan yang sesuai bagi unit PT perlu dipertimbangkan dengan menentukan kedudukan, saiz dan kawalan voltan optima bagi PT. Justeru, objektif ketiga penyelidikan adalah untuk membangunkan teknik pengoptimuman heuristik yang berkesan seperti teknik algoritma carian graviti diperbaiki (ACGD) untuk menentukan kedudukan, saiz dan kawalan voltan yang optimum bagi PT di dalam sistem jejari pengagihan kuasa. Satu fungsi pelbagai-objektif dirumuskan untuk meminimumkan jumlah kehilangan kuasa, purata jumlah herotan harmonik voltan (JHH_v) dan sisihan voltan di dalam sistem pengagihan. Algoritma aliran beban dari MATPOWER dan aliran beban harmonik telah disepadukan di dalam persekitaran MATLAB bagi menyelesaikan masalah pengoptimuman pelbagai-objektif. Teknik ACGD yang dicadangkan telah dibandingkan dengan teknik pengoptimuman yang lain seperti pengoptimuman kuruman zarah (PKZ) dan algoritma carian graviti (ACG). Hasil ujian ke atas kesan harmonik bagi PT berasaskan penyongsang menunjukkan kewujudan fenomena salunan dan herotan harmonik disebabkan interaksi di antara PT berasaskan penyongsang dengan galangan grid. Selain itu, hasil kajian turut menunjukkan bahawa aras maksimum penembusan yang dibenarkan bagi PT berasaskan penyongsang di dalam sistem ujian pengagihan adalah 50% daripada jumlah keseluruhan beban tersambung. Empat kajian kes telah dilakukan ke atas sistem pengagihan Institut Elektrik dan Elektronik Antarabangsa (IEEA) 13 bas dan 69 bas untuk mengesahkan keberkesanan ACGD. Hasil kajian pengoptimuman menunjukkan bahawa ACGD memberikan nilai fungsi objektif terbaik dan purata masa berlalu terpantas berbanding dengan PKZ dan ACG.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ABSTRACT ABSTRAK CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS X	iii
ABSTRACT ABSTRAK CONTENTS T LIST OF TABLES LIST OF FIGURES T LIST OF SYMBOLS T LIST OF ABBREVATIONS T	iv
ABSTRAK CONTENTS CONTENTS CONT	v
CONTENTSTLIST OF TABLES1LIST OF FIGURES2LIST OF SYMBOLS3LIST OF ABBREVATIONS3	vi
LIST OF TABLES LIST OF FIGURES 2 LIST OF SYMBOLS 3 LIST OF ABBREVATIONS 3	vii
LIST OF FIGURES 22 LIST OF SYMBOLS 28 LIST OF ABBREVATIONS 28	xi
LIST OF SYMBOLS x	xiv
LIST OF ABBREVATIONS x	xvii
	xxiii

CHAPTER I INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	3
1.3	Research Objective and Scope of the Study	6
1.4	Thesis Organisation	7
CHAPTER II	LITERATURE REVIEW	
2.1	 Distributed Generation 2.1.1 Mini Hydro Power 2.1.2 Wind Turbine Doubly Fed Induction Generator 2.1.3 Photovoltaic System 	9 10 11 13
2.2	 Power Quality Impact of Distributed Generation 2.2.1 Harmonic Impact of Distributed Generation 2.2.2 Harmonic Resonance in Power System with Distributed Generation 2.2.3 Effect of Distributed Generation on Voltage Variation 	15 15 16 17
2.3	Maximum Allowable Penetration Level of Distributed Generation	19
2.4	Optimal Placement and Sizing of DG for Mitigating Voltage Variation and Harmonic Distortion	20

2.5	Chapter Summary		24
CHAPTER III	HARMON GENERA	NIC SIMULATION OF DISTRIBUTED FION IN DISTRIBUTION SYSTEMS	
3.1	Introductio	n	25
3.2	Modelling in a Distrib 3.2.1	of Different Types of Distributed Generation ution System Mini Hydro Power Model	25 26
	3.2.2 3.2.3	Wind Turbine DFIG Model PV System Model	33 36
3.3	Test Syster Simulation	n Description and Harmonic Impact	40
	3.3.1	IEEE 13 Bus Industrial Distribution Test System	41
	3.3.2	Simulation Scenarios for Harmonic Impact Study	41
3.4	Modelling Resonance	of Inverter Based DG for Harmonic Study	46
	3.4.1	Simplified Inverter Based DG Model	47
	3.4.2	LCL Passive Filter Design	52
	3.4.3	Study	53
	3.4.4	Simulation Scenarios for Harmonic Resonance Study	55
3.5	Chapter Su	mmary	56
CHAPTER IV	OPTIMAI DISTRIBI DISTRIBI	L PLACEMENT AND SIZING OF UTED GENERATION IN A UTION SYSTEM	
4.1	Introductio	n	57
4.2	Heuristic C 4.2.1 4.2.2	Optimisation Techniques Particle Swarm Optimisation Gravitational Search Algorithm	57 58 60
4.3	Improved (Gravitational Search Algorithm	63
4.4	Problem Fo of DG in a	ormulation for Optimal Placement and Sizing Distribution System	67
4.5	Harmonic	Distribution Loadflow	68

4.6	Application Optimal Pl System	n of PSO, GSA and IGSA for Determining acement and Sizing of DG in a Distribution	71
	4.6.1	Application of PSO for Determining	71
	4.6.2	Application of GSA for Determining	74
	4.6.3	Application of IGSA for Determining Optimal Placement and Sizing of DG	76
4.7	Chapter Su	immary	78
CHAPTER V	RESULTS	S AND DISCUSSION	
5.1	Introductio	n	79
5.2	Results on	Harmonic Impact of Different Types of DG	79
	5.2.1	Harmonic Impact of Individual DG Type in a Distribution System	80
	5.2.2	Harmonic Impact of Multiple DG Units in a	82
	5.2.3	Harmonic Impact of Combination DG Types in a Distribution System	84
5.3	Results on Based DG	Harmonic Resonance Effect of Inverter	86
	5.3.1	Harmonic Resonance Study on the IEEE 13 Bus Industrial Distribution Test System	87
	5.3.2	Harmonic Resonance Study on the 69 Bus Radial Distribution Test System	92
5.4	Results on	Optimal Placement and Sizing of DG in	97
	5.4.1	Optimisation Results of the IEEE 13 Bus Industrial Distribution Test System	99
	5.4.2	Optimisation Results for 69 Bus Radial Distribution Test System	107
5.5	Chapter Su	immary	115
CHAPTER VI	CONCLU FUTURE	SION AND SUGGESTIONS FOR WORKS	
6.1	Conclusion	1	117
6.2	Significant	Contributions of the Research	119
6.3	Suggestion	as for Future Works	119

REFERENCES

APPENDICES

A	IEEE 13 Bus Industrial Distribution Test System Data	134
В	69 Bus Radial Distribution Test System Data	135
С	Simulation Results From Chapter 5 (Part 5.2.1)	138
D	Simulation Results From Chapter 5 (Part 5.2.2)	142
E	Simulation Results From Chapter 5 (Part 5.2.3)	146
F	Simulation Results From Chapter 5 (Part 5.3.1)	150
G	Simulation Results From Chapter 5 (Part 5.3.2)	156
Н	List of Publications	162

121

LIST OF TABLES

Table Number

3.1 Synchronous machine data 31 3.2 Generator data 31 3.3 Mini hydro governor parameters 32 3.4 Hydro turbine parameters 32 3.5 Exciter data 32 3.6 35 Wind turbine and rotor parameters 3.7 36 Generator and grid converters parameters 3.8 PV cell parameters 40 39 PV array parameters 40 3.10 PV side inverter 40 80 5.1 Harmonic impact of individual DG type in the IEEE 13 bus system 5.2 Current distortion limits recommended in the IEEE Std 81 519-1992(1992) 82 5.3 Maximum individual magnitude of voltage harmonic for each DG types 5.4 Harmonic impact of two DG units in the IEEE 13 bus 83 industrial distribution test system 5.5 83 Harmonic impact of three DG units in the IEEE 13 bus industrial distribution test system 5.6 85 Multiple DG units installed at various bus locations 5.7 THD_v produced by various combinations of DG types 85 5.8 THD_i produced by various combinations of DG types 85 5.9 Resonant frequencies due to parallel resonance at PCC in 89 the 13 bus system 5.10 Resonant frequencies due to series resonance at PCC in the 89 13 bus system

Page

5.11	Harmonic frequencies at PCC in the 13 bus industrial distribution test system	89
5.12	THD _v and THD _i measured at PCC and bus 6 in the 13 bus industrial distribution test system	90
5.13	Resonant frequencies due to parallel resonance at PCC in the 69 bus industrial distribution test system	94
5.14	Resonant frequencies due to series resonance at PCC in the 69 bus industrial distribution test system	94
5.15	Harmonic frequencies at PCC in the 69 bus industrial	94
5.16	THD _v and THD _i measured at PCC and bus 60 in the 69 bus industrial distribution test system	95
5.17	Parameters for GSA, PSO and IGSA	97
5.18	Performance of GSA, PSO and IGSA for one DG in the 13 bus industrial distribution test system	101
5.19	Performance of GSA, PSO and IGSA for two DGs in the 13 bus s industrial distribution test system	101
5.20	Performance of GSA, PSO and IGSA for three DGs in the 13 bus industrial distribution test system	101
5.21	Optimisation results of GSA, PSO and IGSA for one DG in the 13 bus industrial distribution test system	101
5.22	Optimisation results of GSA, PSO and IGSA for two DGs in the 13 bus industrial distribution test system	101
5.23	Optimisation results of GSA, PSO and IGSA for three DGs in the 13 bus industrial distribution test system	102
5.24	DG overall impact on power loss, voltage deviation, THD_v and fitness function for four cases in the 13 bus industrial distribution test system	102
5.25	Performance of GSA, PSO and IGSA for one DG in the 69 bus radial distribution test system	109
5.26	Performance of GSA, PSO and IGSA for two DGs in the 69 bus radial distribution test system	109
5.27	Performance of GSA, PSO and IGSA for three DGs in the 69 bus radial distribution test system	109
5.28	Optimisation results of GSA, PSO and IGSA for one DG in the 69 bus radial distribution test system	110

5.29	Optimisation results of GSA, PSO and IGSA for two DGs in the 69 bus radial distribution test system	110
5.30	Optimisation results of GSA, PSO and IGSA for three DGs in the 69 bus radial distribution test system	110
5.31	DG overall impact on power loss, voltage deviation, THD_v and fitness function for four cases in the 69 bus radial distribution test system	111

xiii

LIST OF FIGURES

Figur	e Number	Page
2.1	Schematic diagram of MHP for grid connected operation	11
2.2	Schematic diagram of a wind turbine system with DFIG for grid connected operation	13
2.3	Schematic diagram of a grid connected PV system	14
3.1	Block diagram of a hydro turbine	27
3.2	Block diagram of a mechanical-hydraulic control governor	28
3.3	Block diagram of IEEE alternator rectifier excitation system	29
3.4	MHP model in PSCAD/EMTDC program	30
3.5	Equivalent circuit of wind turbine DFIG	33
3.6	Wind turbine components	34
3.7	Wind turbine DFIG model in PSCAD/EMTDC program	35
3.8	Equivalent circuit of a solar cell	36
3.9	Block diagram of PV model	38
3.10	PV system model in PSCAD/EMTDC program	39
3.11	IEEE 13 bus industrial distribution test system	41
3.12	MHP model installed at bus 6 in PSCAD/EMTDC program	43
3.13	Two DG units installed at bus 5 and 6 in PSCAD/EMTDC program	44
3.14	Various DG units installed in 13 bus system in PSCAD/EMTDC program	46
3.15	Simplified inverter based DG model	47
3.16	VSI connected to grid through LCL filter	48

xiv

3.17	Inverter inner control loop	50
3.18	Inverter outer control loop	51
3.19	Modelling of inverter based DG in MATLAB/ SimPowerSystems	52
3.20	Current ripple attenuation as a function of the inductance ratio	53
3.21	69 bus radial distribution system	54
4.1	Basic idea of PSO	59
4.2	Flowchart of PSO algorithm	59
4.3	Flowchart of GSA	61
4.4	Chaotic value using the logistic map 300 iteration	64
4.5	Comparison of the conventional and chaotic gravitational constant	65
4.6	Flow chart of IGSA algorithm	66
4.7	Flow chart of harmonic loadflow algorithm	69
4.8	Flowchart of the PSO algorithm for determining optimal placement and sizing of DG in a distribution system	73
4.9	Flowchart of the GSA algorithm for determining optimal placement and sizing of DG in a distribution system	75
4.10	Flowchart of the IGSA algorithm for determining optimal placement and sizing of DG in a distribution system	77
5.1	Harmonic current magnitude of various DG types and the harmonic limit of IEEE Std 519-1992(1992)	82
5.2	Frequency scans for the IEEE 13 bus industrial	88
5.3	Frequency scans for the 69 bus radial distribution	93
5.4	test system at the PCC Convergence characteristics of GSA, PSO and IGSA with one DG in the 13 bus industrial distribution test system	99
5.5	Convergence characteristics of GSA, PSO and IGSA with two DGs in the 13 bus industrial	99

distribution test system

5.6	Convergence characteristic of GSA, PSO and IGSA with three DGs in the 13 bus industrial distribution test system	100
5.7	Voltage magnitudes of the 13 bus industrial distribution test system with one optimal DG unit	105
5.8	Voltage magnitudes of the 13 bus industrial distribution test system with optimal two DG units	105
5.9	Voltage magnitudes of the 13 bus industrial distribution test system with three optimal DG units	106
5.10	Voltage magnitudes of the 13 bus industrial distribution test system with different numbers of DG units using IGSA	106
5.11	Convergence characteristics of GSA, PSO and IGSA for one DG in the 69 bus radial distribution test system	107
5.12	Convergence characteristics of GSA, PSO and IGSA for two DGs in the 69 bus radial distribution test system	108
5.13	Convergence characteristics of GSA, PSO and IGSA for three DGs in the 69 bus radial distribution test system	108
5.14	Voltage magnitudes in the 69 bus radial distribution test system with one DG unit	113
5.15	Voltage magnitudes in the 69 bus radial distribution test system with two DG units	113
5.16	Voltage magnitudes in the 69 bus radial distribution test system with three DG units	114
5.17	Voltage magnitudes in the 69 bus radial distribution test system with different numbers of DG units using the IGSA technique	114

LIST OF SYMBOLS

ω	Turbine speed
Ψ	Flux linkage
ρ	The air density
ϕ	The chaotic value
ρ	A control parameter with a real value in the range of 0 and 4
ω_o	Base Angular Frequency
ω_{ref}	The reference speed
$ V_i $	The root mean square (RMS) value of the i^{th} bus voltage
$\Delta I_{ m L}$	Maximum ripple current
A	Swept area
A_t	Turbine gain
B(h)	The ratio of the h^{th} harmonic to the fundamental current
best(t)	Minimum fitness
c_1, c_2	The acceleration constants
C_f	The filter capacitance
C_p	The aerodynamic efficiency of the turbine blade
D	Air density
D_m	Mechanical Friction and Windage
d^{th}	The dimension
E_d	The real part of grid side voltage
E_f	The output field voltage
E_{f0}	The output field voltage to the machine during the initialisation
	period
e_g	The band-gap energy of solar cell material
e_g	Band gap energy
E_q	The imaginary part of grid side voltage
F	The total force
fbase	Base Frequency
fitness _i (t)	The fitness value of the agent <i>i</i> at time <i>t</i>
fline	Line frequency

F_{min}	The fitness function
f_p	Penstock Head Loss Coefficient
f_s	Switching frequency
G	Solar radiation
G(t)	The value of the gravitational constant at time t
$G_{ heta}$	The value of the gravitational constant at the first cosmic quantum-
	interval of time t_0
<i>Gbest^k</i>	The global best position in the entire swarm
G_{max}	Maximum Gate Position
G_{min}	Minimum Gate Position
G_R	Reference solar radiation
H_e	Effective head
Н	Inertia Constant
h	The harmonic order
<i>ith</i>	The particle
I_c	Capacitive current
I_d	Diode current
I_d	The real part of output inverter current
I_d^*	The reference current of I_d
I_{dc}	DC current
I_g	Grid current
I_{gd}	The real part of grid current
I_i	Inverter output current
I_i^{1}	The fundamental current at bus <i>i</i>
I _{id}	The real part of inverter output current
I_i^{h}	The h^{th} harmonic current at bus <i>i</i>
I_{iq}	The imaginary part of inverter output current
I_L	Rated RMS Line Current
I_o	Dark current
I_{oR}	The dark current at the reference temperature
I_p	Parallel current
I_q	The imaginary part of output inverter current

I_q^*	The reference current of I_q
IsatR	Sat. current at ref. conditions / cell
Isc	Photo current
I _{scR}	The short circuit current at the G_R
ISCR	Short circuit current at ref. conditions / cell
k	Boltzman constant
K_A	Regulator Gain
K_D	Demagnetizing term
K_i	The integral gains of the PI controller
K_p	The proportional gains of the PI controller
L_g	The grid side inductance
L_i	The inverter side inductance
Loc	The location of the DG
M	Mass
т	The number of buses
MX_{GTCR}	Maximum Gate Closing Rate
MX_{GTOR}	Maximum Gate Opening Rate
n	Diode ideality factor
N_{1}/N_{2}	The ratio of inductance filter
$Pbest_i^k$	The best position ever visited by a particle i at the k^{th} iteration
Ploss	The total power loss
$P_{loss_basecase}$	The base case power loss
$P_{loss_optimisation}$	The power loss after DG placement
$P_{loss_reduction}$	The reduction in power loss
P_m	Turbine power
P_r	Turbine's power rating
Q	Servo gain
q	Electron charge
R	Resistance
r	The radius of turbine blade
r_1, r_2	Two random numbers in the range of 0 and 1

R_c	Load compensating resistance
R_g	The generator resistance
Rij	Distance between other agents to the particular agents
R_l	The line resistance
R _{loss}	Iron Loss Resistance
Rp	The permanent droop
R _s	Neutral Series Resistance
Rt	Transient droop
Size	The DG size
t th	The iteration number
T_a	Armature Time Constant
T_A	Regulator Time Constant
T_B	Lag time constant
T_C	Lead time constant
T_c	Cell temperature
T_{CR}	Reference cell temperature
T_{do}	Unsaturated Transient Time
T_{do}''	Unsaturated Sub-Trans Time
Tg	Main servo time constant
THD_i	The current total harmonic distortion
THD_{v}	The voltage total harmonic distortion
THD_{vmax}	The maximum allowable level at each bus
T_m	Turbine torque
Тр	The pilot valve and servo motor time constant
T_{qo}''	Sub-Trans Time
T_R	Reset time or dashpot time constant
T_W	Water starting time
U	Velocity of water in a penstock
u_d	The real part of PI controller's control rules
U_{NL}	Velocity of water at no load
u_q	The imaginary part of PI controller's control rules
V ctrl	The controlling voltage

V_{AMAX}	Max. reg. internal voltage
V _{AMIN}	Min. reg. internal voltage
V _c	Capacitive voltage
V_d	The real part of inverter side voltage
VD _{basecase}	The base case voltage deviation
V _{dc}	DC voltage
V _{dev}	The voltage deviation
VD _{improvement}	The improved voltage deviation
VD _{optimisation}	The voltage deviation after DG placement
V_E	Exciter output voltage
V_g	Grid voltage
V_{gd}	The real part of grid voltage
V_{gq}	The imaginary part of grid voltage
V_i	Inverter output voltage
V _{id}	The real part of inverter output voltage
v_i^k	Velocity
V_{iq}	The imaginary part of inverter output voltage
Viref	Reference voltage at bus <i>i</i> and
V_{LN}	Rated RMS Line-to-Neutral Voltage
V_m	Rated wind speed
V _{max}	The upper bound of the voltage limits
V_{\min}	The lower bound of bus voltage limits
V_q	The imaginary part of inverter side voltage
Vrated	Rated voltage
V _{ref}	The voltage reference
V _{ref0}	The initialised value of the reference voltage V_{ref}
V _{RMAX}	Max regulator output
V _{RMIN}	Min. regulator output
\mathcal{V}_{W}	The wind speed
W	The inertia weight
worst(t)	Maximum fitness
X	Reactance

X_c	The capacitive reactance
X_d	Unsaturated reactance
X_d'	Unsaturated transient reactance
X_d "	The generator subtransient reantance
x_i^d	The position of i^{th} agent
X_l	The line inductive reactance
X_p	Potier reactance
X_q	Unsaturated reactance
X_q "	Unsaturated sub-trans. reactance
X_s	Neutral series reactance
Y_h	Admittance matrix at each harmonic
Z	The real gate
Z_{FL}	The gate at full load
Z_g	The generator impedance
Z_i	The initial gate
Z_{l} ,	The line impedance
Z_{NL}	The gate at no load
Z_t	The transformer impedance
α	Acceleration factor
α_T	Temperature coefficient of photo current
γ	A decision parameter

xxii

LIST OF ABBREVIATIONS

AC	Alternating current
ACO	Ant colony optimization
AGC	Automatic generation control
ASD	Adjustable speed drives
DC	Direct current
DFIG	Doubly fed induction generator
DG	Distributed generation
FFT	Fast Fourier transform
GA	Genetic algorithm
GSA	gravitation search algorithm
IEEE	Institute of Electrical Electronics Engineers
IGSA	Improved gravitational search algorithm
LCL	Inductance, capacitance and inductance passive filter
MHP	Mini hydro power
p.u	Per unit
PCC	Point of common coupling
PFCC	Power factor correction capacitor
PSO	Particle swarm optimization
PV	Photovoltaic
PWM	Pulse width modulation
RMS	Root mean square
THDi	Current total harmonic distortion
THDv	Voltage total harmonic distortion
VSI	Voltage source inverter
WTG	Wind turbine generation

CHAPTER I

INTRODUCTION

1.1 RESEARCH BACKGROUND

Recently, renewable energy generation technologies are increasingly utilised in power distribution networks. The drive for green energy sources, financial opportunities presented for investors, potential benefits for utilities like peak-shaving, congestion alleviation, reduction of losses and better asset utilization are contributing factors to renewable energy development (El-Khattam & Salama 2004). Renewable energy based distributed generation (DG) is seen as a resolution for solving environmental concerns and security of electricity supply to support sustainable growth. From the interfacing approach used to connect to the grid, there are two types of DG units, namely, inverter based DG and non-inverter based DG (Dugan et al. 2000). Examples of inverter based DG include photovoltaic (PV) systems, wind turbine generators, fuel cells, and micro turbines which use power converters as interfacing devices to the grid. The mini hydro power (MHP) and induction generator are considered as non-inverter based DG units.

The integration of DG into a distribution system will have either positive or negative impact depending on the distribution system operating features and the DG characteristics. DG can be valuable if it meets at least the basic requirements of the system operating perspective and feeder design (Begovic 2001). According to Daly & Morrison (2001), the effect of DG on power quality depends on the type of DG, its interface with the utility system, the size of DG unit, the total capacity of the DG