PSZ 19:16 (Pind. 1/07)

UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS / U	UNDERGRADUATE PROJECT PAPER AND COPYRIGHT
Author's full name : <u>SAHAZATI B</u>	BINTI MD. ROZALI
Date of birth : <u>19th FEBRUA</u>	ARY 1981
Title : <u>OPTIMIZED</u> <u>ELECTRO-H</u>	BACK-STEPPING CONTROLLER FOR POSITION TRACKING OF YDRAULIC ACTUATORS
Academic Session: 2013/2014	<u>H</u>
I declare that this thesis is classifi	ied as :
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
✓ OPEN ACCESS	I agree that my thesis to be published as online open access (full text)
I acknowledged that Universiti 1	eknologi Malaysia reserves the right as follows :
 The thesis is the property The Library of Universiti To of research only. The Library has the right 	of Universiti Teknologi Malaysia. eknologi Malaysia has the right to make copies for the purpose to make copies of the thesis for academic exchange.
1.	Centiled by :
facti	
SIGNATURE	SIGNATURE OF SUPERVISOR
810219-04-5006 (NEW IC NO. /PASSPORT NO.)	Prof. Dr. Hj Mohd Fuaa'd bin Rahmat NAME OF SUPERVISOR
Date : 19 /5 /2014	Date: 19/5/2014
OTES : * If the thesis is the organiza	CONFIDENTAL or RESTRICTED, please attach with the letter from tion with period and reasons for confidentiality or restriction.

-

"We hereby declare that we have read this thesis and in our opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Doctor of Philosophy (Electrical Engineering)"

:

•

Signature

U

Name

Date

Signature

Dr Abdul Rashid bin Husain

Date

Name

19/5/2014

	lean tasis ini talah dilaksanakan melalui keriasama
Adalah disahkan bahawa projek penyenun	
antara denga	
Disahkan olen:	Tarikh ·
landatangan :	
Nama :	
Jawatan : (Cop rasmi)	
* Jika penyediaan tesis/projek melibatka	n kerjasama.
BAHAGIAN B – Untuk Kegunaan Pej	abat Sekolah Pengajian Siswazah
Tesis ini telah diperiksa dan diakui oleh:	
Nama dan Alamat Pemeriksa Luar :	Prof. Ir. Dr. Mohd Marzuki Mustafa
	Jabatan Kejuruteraan Elektrik, Elektronik dan
	Sistem,
	Fakulti Kejuruteraan dan Alam Bina,
	Universiti Kebangsaan Malaysia,
	43600 UKM Bangi, Selangor.
Nama dan Alamat Pemeriksa Dalam :	Prof. Madya Dr. Mohamad Noh bin Ahmad @
	Mohd Sanif
	Fakulti Kejuruteraan Elektrik,
:•	<u>UTM Johor Bahru.</u>
	Lab Densition Signarch:
Disahkan oleh Timbalan Pendattar di Se	kolan rengajian Siswazan.
Tandatangan :	Tarikh :

C Universiti Teknikal Malaysia Melaka

OPTIMIZED BACK-STEPPING CONTROLLER FOR POSITION TRACKING OF ELECTRO-HYDRAULIC ACTUATORS

SAHAZATI MD ROZALI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > May 2014

C Universiti Teknikal Malaysia Melaka

I declare that this thesis entitled "Optimized Back-Stepping Controller for Position Tracking of Electro-Hydraulic Actuators" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

:

Signature

Jato

Sahazati Md. Rozali

Name

Date

19/5/2014

ii

For my beloved family...

Muhammad Nizam Kamarudin, Huwaida Muhammad Nizam, Asiah Hassan, Allahyarham Md Rozali Md Sanam, Shahrul Aszad Md Rozali and Norsafwanah Md Rozali...

ACKNOWLEDGEMENT

"In the name of Allah, The Most Gracious, The Most Merciful"

Alhamdulillah, praise to Allah, the Almighty for giving me the guidance, strength, motivation and chances in order to complete this thesis.

Special thanks to my research supervisor, Prof Dr Hj Mohd Fuaa'd bin Rahmat for his guidance, supervision and supports in carrying out this research. My sincere appreciation is also goes to my second supervisor, Dr Abdul Rashid Husain for his advice, assistance and comments in order to finish this work.

I would like to express my deepest gratitude to Dr Kumeresan A. Danapalasingam for lending a hand, time and patience to sit down with me solving the derivation of controller's algorithm. Special thanks also to Mr Amar Faiz bin Zainal Abidin for helping me in developing the optimisation algorithm. In addition, thanks to my fellow members of Control Lab, Mr Zulfatman, Mr Ling Tiew Gine, Dr Rozaimi bin Ghazali, Mr Syed Najib bin Syed Salim, Mrs Sharatul Izah binti Samsudin, Ms Norhazimi binti Hamzah and Mrs Irma Wani binti Jamaludin for your cooperation and lending your ears and shoulders along the journey of my research.

My acknowledgement also goes to Ministry of Higher Education and Universiti Teknikal Malaysia Melaka (UTeM) for allowed and supporting my research study.

My highly appreciation for my husband, Mr Muhammad Nizam bin Kamarudin, my daughter, Huwaida binti Muhammad Nizam, my mother, Hjh Asiah binti Hj Hassan and my siblings for your understanding, sacrifice, supports and love for me towards the success of this research. Lastly, for my late father, Allahyarham Hj Md Rozali bin Hj Md Sanam, actually this work is for you since you are the best motivator and supporter for me since I was in my primary school until my higher education although you do not have the opportunity to be in the end of my PhD journey.

For any errors or inadequacies that may remain in this work, the responsibility is entirely on my own. May Allah reward all of your kindness.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Electro-hydraulic actuator servo system is commonly found in various types of force and position tracking applications. Nonlinearities of the system come from either the system itself or external disturbance signals. These dynamic characteristics make the controller design for the system to be quite challenging. In order to provide satisfactory system performance for high accuracy trajectory tracking, this thesis presents a model of electro-hydraulic actuator servo system with external disturbance included to the actuator of the system. Backstepping controller is proposed in formulating position tracking control algorithm for this system. The designed controller is integrated with Particle Swarm Optimisation (PSO) and Gravitational Search Algorithm (GSA) techniques as an adaptation method such that the controller adjusts its performance automatically based on the dynamic requirement of the system. The combination of the designed controller with these optimisation techniques is verified by giving different types of known perturbation signals to the system's actuator. Then, the performance of the system with this controller is compared in terms of its tracking output, tracking error and Sum of Squared Error (SSE) as performance indices for each algorithm. The simulation results show that the output of the system tracked the reference input given with both integration of backstepping with PSO and GSA. However, backstepping-PSO produces smaller value of SSE which is around 0.5 as compared to SSE generated by backstepping-GSA.

ABSTRAK

Penggerak sistem servo elektro hidrolik biasa ditemui dalam pelbagai jenis aplikasi pengesanan daya dan kedudukan. Ketidaklinearan sistem berpunca daripada sistem itu atau isyarat gangguan luar. Ciri dinamik ini menyukarkan rekabentuk pengawal sistem. Untuk menghasilkan sistem yang dapat mengesan kedudukan dengan jitu, tesis ini menerangkan model penggerak sistem servo elektro hidrolik dengan gangguan luar diberikan kepada penggerak sistem. Pengawal langkah belakang dicadangkan sebagai algoritma pengesanan kedudukan sistem ini. Pengawal yang direkabentuk ini digabungkan dengan teknik zarah kerumunan pengoptiman (PSO) dan algoritma carian graviti (GSA) sebagai langkah penyesuaian supaya pengawal tersebut mengawal prestasinya secara automatik berdasarkan keperluan dinamik sistem. Setiap kombinasi pengawal yang direkabentuk dengan teknik pengoptiman ini dinilai dengan memberi isyarat gangguan yang diketahui dan berbeza kepada penggerak sistem. Seterusnya, prestasi sistem dengan menggunakan dua kombinasi pengawal ini dibandingkan dari aspek keluaran sistem, ralat kedudukan dan jumlah ralat selaras sebagai indeks prestasi untuk setiap algoritma. Keputusan simulasi menunjukkan keluaran sistem berjaya mengesan kedudukan isyarat masukan rujukan yang diberi dengan menggunakan integrasi pengawal langkah belakang dengan teknik PSO dan GSA. Walaubagaimanapun, pengawal langkah belakang-zarah kerumunan pengoptiman menghasilkan jumlah ralat selaras (SSE) yang lebih kecil pada nilai lebih kurang 0.5 berbanding dengan SSE yang dihasilkan oleh pengawal langkah belakang-algoritma carian graviti.

TABLE OF CONTENTS

TITLE

CHAPTER

1

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xix
LIST OF SYMBOLS	XX
LIST OF APPENDICES	xxii

INTR	ODUCTION	1
1.1	Introduction to Electro-hydraulic	
	Actuator Servo System	1
1.2	Configuration of Electro Hydraulic Actuator	
	Servo System	3
1.3	Problem Statement and Significant of the	
	Research	7
1.4	Research Objectives	9
1.5	Research Scopes	9
1.6	Contributions of the Research Work	10
1.7	Organization of the Thesis	10

PAGE

LITER	ATURE	REVIEW	12
2.1	Introdu	action	12
2.2	Contro	l Strategies of Electro-hydraulic	
	Actuat	or Servo System	13
	2.2.1	Control Strategies for Force	
		Tracking of Electro-hydraulic	
		Actuator Servo System	13
	2.2.2	Control Strategies for Position	
		Tracking of Electro-hydraulic	
		Actuator Servo System	14
	2.2.3	Summary of the Existing Control	
		Strategies for Electro-hydraulic	
		Actuator Servo System	22
2.3	Backst	epping Control Strategies	25
2.4	Optimi	isation	28
	2.4.1	Particle Swarm Optimisation (PSO)	30
	2.4.2	Gravitational Search Algorithm (GSA)	34
2.5	Summa	ary	36

ROBUST CONTROL WITH BACKSTEPPING APPROACH

2

3

4

-	-	-
3.1	Introduction	37
3.2	Mathematical Model of Electro Hydraulic	
	Actuator Servo System	38
3.3	Backstepping Control Strategy	42
3.4	Robust Controller Design for Electro	
	Hydraulic Actuator Servo System	45
	3.4.1 Results : Proposition 1	46
3.5	Algorithm of Parameter Optimisation	50
	3.5.1 Particle Swarm Optimisation (PSO)	51
	3.5.2 Gravitational Search Algorithm (GSA)	56
3.6	Summary	62
RESULT	TS AND DISCUSSION	64
4.1	Introduction	64
4.2	Reference Trajectory	66
4.3	Existing Controller for Electro Hydraulic	
	Actuator System	67
4.4	Case 1 : Constant Disturbance	71
4.5	Case 2 : Step Disturbance	87
4.6	Case 3 : Time-varying Disturbance	102
4.7	Case 4 : Without Disturbance	117
4.8	Summary	132

ix

37

5	CONCLUSION AND FUTURE WORKS	135
REFERENC	ES	138
Appendices A	D	158-165

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Parameter of electro hydraulic actuator servo system	41
3.2	Pseudo-code for backstepping-PSO for the system	54
3.3	Pseudo-code for backstepping-GSA for the system	60
4.1	Parameters of Backstepping Controller obtained from PSO technique for each combination of number of particles/agents and iterations	83
4.2	Parameters of Backstepping Controller obtained from GSA technique for each combination of number of particles/agents and iterations	84
4.3	<i>SSE</i> obtained from backstepping-PSO with different combination of number of particles, i and number of iteration, t for system with constant disturbance	84
4.4	SSE obtained from backstepping-GSA with different combination of number of agents, i and number of iteration, t for system with constant disturbance	86
4.5	Parameters of Backstepping Controller obtained from PSO technique for each combination of number of particles/agents and iterations	98
4.6	Parameters of Backstepping Controller obtained from GSA technique for each combination of number of particles/agents and iterations	98
4.7	<i>SSE</i> obtained from backstepping-PSO with different combination of number of particles, i and number of iteration, t for system with constant disturbance	99
4.8	SSE obtained from backstepping-GSA with different combination of number of agents, i and number of	

	iteration, t for system with constant disturbance	100
4.9	Parameters of Backstepping Controller obtained from PSO technique for each combination of number of particles/agents and iterations	113
4.10	Parameters of Backstepping Controller obtained from GSA technique for each combination of number of particles/agents and iterations	113
4.11	<i>SSE</i> obtained from backstepping-PSO with different combination of number of particles, i and number of iteration, t for system with constant disturbance	113
4.12	<i>SSE</i> obtained from backstepping-GSA with different combination of number of agents, i and number of iteration, t for system with constant disturbance	115
4.13	Parameters of Backstepping Controller obtained from PSO technique for each combination of number of particles/agents and iterations	127
4.14	Parameters of Backstepping Controller obtained from GSA technique for each combination of number of particles/agents and iterations	127
4.15	<i>SSE</i> obtained from backstepping-PSO with different combination of number of particles, i and number of iteration, t for system with constant disturbance	128
4.16	<i>SSE</i> obtained from backstepping-GSA with different combination of number of agents, i and number of iteration, t for system with constant disturbance	129
4.17	Optimum combination of particles/agents and iterations number which produced the lowest <i>SSE</i> for each case with backstepping-PSO	131
4.18	Optimum combination of particles/agents and iterations number which produced the lowest <i>SSE</i> foreach case with backstepping-GSA	131

LIST OF FIGURES

TITLE

FIGURE NO.

1.1	Application of electro hydraulic actuator system in aircraft, operation table in for medical application, forklift truck and material testing system in industrial application	2
1.2	General structure of electro hydraulic actuator servo system	4
1.3	Block diagram of a position controlled hydraulic servo system	5
2.1	Controller for Electro Hydraulic Actuator Servo System	24
2.2	Combination of backstepping control technique with other control method in order to control electro hydraulic actuator servo system	27
2.3	Tuning method for control parameters of backstepping controller for various of applications	28
2.4	General procedure of PSO algorithm	32
2.5	The principle of GSA	35
3.1	Block diagram of the proposed backstepping controller with PSO/GSA algorithm	50
3.2	Procedure of PSO algorithm on backstepping controller for the chosen system	53
3.3	Procedure of GSA algorithm on backstepping controller for the chosen system	59
4.1	Reference trajectory	66
4.2	The output of the system produced by SMC-PSO and SMC-GSA	68

PAGE

4.3	The tracking error produced by SMC-PSO and SMC-GSA	69
4.4	Sliding surface, <i>s</i> of SMC-PSO and SMC-GSA	69
4.5	Disturbance signals given to the system's actuator in each case	70
4.6	Position output obtained from backstepping-PSO and backstepping-GSA with 5 particles/ agents within 10 iterations	72
4.7	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 5 particles/ agents within 10 iterations	72
4.8	The closed view of position tracking error obtained from back-stepping-PSO	73
4.9	The closed view of position tracking error obtained from back-stepping-GSA	74
4.10	SSE obtained from backstepping-PSO and backstepping-GSA with 5 particles/ agents within 10 iterations	75
4.11	Position output obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within 30 iterations	76
4.12	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within 30 iterations	77
4.13	SSE obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within30 iterations	78
4.14	Position output obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	79
4.15	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	80
4.16	SSE obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	81
4.17	<i>u</i> produced by back-stepping-PSO for system with constant disturbance	82

4.18	<i>u</i> produced by back-stepping-GSA for system with constant disturbance	82
4.19	SSE with respect to number of particles, N_p and number of iteration, N_i for system with constant disturbance with backstepping-PSO	85
4.20	SSE with respect to number of agent and number of iteration for system with constant disturbance with Backstepping-GSA	86
4.21	Position output obtained from backstepping-PSO and backstepping-GSA with 5 particles/ agents within 10 iterations	88
4.22	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 10 particles/ agents within 20 iterations	89
4.23	SSE obtained from backstepping-PSO and backstepping-GSA with 5 particles/ agents within 10 iterations	90
4.24	Position output obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within 30 iterations	91
4.25	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within 30 iterations	92
4.26	SSE obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within 30 iterations	93
4.27	Position output obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	94
4.28	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	95
4.29	SSE obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	96
4.30	u produced by back-stepping-PSO for system with step disturbance	97
4.31	<i>u</i> produced by back-stepping-GSA for system with step disturbance	97

4.32	SSE with respect to number of particles and number of iteration for system with step disturbance with Backstepping-PSO	99
4.33	SSE with respect to number of agent and number of iteration for system with step disturbance with Backstepping-GSA	101
4.34	Position output obtained from backstepping-PSO and backstepping-GSA with 5 particles/ agents within 10 iterations	102
4.35	The closed view of system's output produced by back- stepping-PSO	103
4.36	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 5 particles/ agents within 10 iterations	104
4.37	SSE obtained from backstepping-PSO and backstepping-GSA with 5 particles/ agents within 10 iterations	105
4.38	Position output obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within 30 iterations	106
4.39	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within 30 iterations	107
4.40	SSE obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within 30 iterations	108
4.41	Position output obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	109
4.42	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	110
4.43	SSE obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	111
4.44	<i>u</i> produced by back-stepping-PSO for system with time- varying disturbance	112
4.45	<i>u</i> produced by back-stepping-GSA for system with time- varying disturbance	112

4.46	SSE with respect to number of agent and number of iteration for system with time-varying disturbance with Backstepping-PSO	114
4.47	SSE with respect to number of agent and number of iteration for system with time-varying disturbance with Backstepping-GSA	116
4.48	Position output obtained from backstepping-PSO and backstepping-GSA with 5 particles/ agents within 10 iterations	117
4.49	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 5 particles/ agents within 10 iterations	118
4.50	SSE obtained from backstepping-PSO and backstepping-GSA with 5 particles/ agents within 10 iterations	119
4.51	Position output obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within 30 iterations	120
4.52	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within 30 iterations	121
4.53	SSE obtained from backstepping-PSO and backstepping-GSA with 15 particles/ agents within 30 iterations	122
4.54	Position output obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	123
4.55	Position tracking error obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	124
4.56	SSE obtained from backstepping-PSO and backstepping-GSA with 25 particles/ agents within 50 iterations	125
4.57	<i>u</i> produced by back-stepping-PSO for system without disturbance	126
4.58	<i>u</i> produced by back-stepping-GSA for system without disturbance	126
4.59	<i>SSE</i> with respect to number of agent and number of iteration for system without disturbance with	

	Backstepping-PSO	128
4.60	<i>SSE</i> with respect to number of agent and number of iteration for system without disturbance with	
	Backstepping-GSA	130

LIST OF ABBREVIATIONS

3D	-	three dimensional
ARC	-	adaptive robust controller
ARX	-	autoregressive with exogenous
CAD	-	computer aided design
CLF	-	control Lyapunov function
EHA	-	electro hydraulic actuator
GA	-	genetic algorithm
GSA	-	gravitational search algorithm
IATE	-	integral absolute time error
ILC	-	iterative learning control
MIMO	-	multi input multi output
PI	-	proportional integral
PID	-	proportional integral derivative
PSO	-	particle swarm optimisation
QFT	-	quantitative feedback theory
RMSE	-	root mean square error
SISO	-	single input single output
SVC	-	static var compensator

LIST OF SYMBOLS

- area of chamber 1 A_1 -- area of chamber 2 A_2 B_{s} - viscous damper external disturbance F_L - F_f - friction dynamics equation of spring K_{s} - L_c - coil inductance moving mass M_p - P_1 pressure from chamber 1 - P_2 - pressure from chamber 2 Q_L - volume flow rate constant volume flow rate Q_{pump} -- coil resistance R_c V_1 volume of chamber 1 - V_2 volume of chamber 2 -V_{line} volume of the pipeline volume in the piping between servo valve V_t coefficient of volumetric flow of the valve port C_d
 - k_c coefficient involving bulk modulus and EHA volume

k_l	-	coefficient of servo valve
q_1, q_2	-	external leakages in the hydraulic actuator
q_{12}, q_{21}	-	internal leakages in the hydraulic actuator
x_p	-	current position of the hydraulic cylinder
x _s	-	total stroke of the hydraulic cylinder
x_v	-	spool valve position
β_e	-	effective bulk modulus
ζ_v	-	servo valve damping ratio
ω_v	-	servo valve natural frequency
Pa	-	supply pressure
P_o	-	return pressure
S	-	piston area
fit	-	fitness
G	-	global best
i	-	number of agents
SSE	-	sum of squared error
t	-	number of iteration
С	-	cognitive coefficient
f	-	coefficient of viscous friction
k	-	coefficient of aerodynamic elastic force
m	-	load at the EHS rod
S	-	social coefficient
W	-	valve port width
ρ	-	oil density