

University of Strathclyde

Department of Electronic and Electrical Engineering

Video Processing Analysis for Non-Invasive Fatigue Detection and Quantification

By Masrullizam Mat Ibrahim

A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy

2014

C Universiti Teknikal Malaysia Melaka

Declaration

This thesis is the result of the author's original research. It has been composed by the author and has not been previously submitted for examination which has lead to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.

Signed: Name: Masrullizam Mat Ibrahim Date:

Acknowledgements

It is a pleasure to thank the many people who made this thesis possible. I would like to begin by thanking my supervisor Prof. John Soraghan and Dr. Lykourgos Petropoulakis for giving me an excellent opportunity to carry out a very innovating and challenging research on video processing analysis for non-invasive fatigue detection and quantification. Prof. Soraghan and Dr. Petropoulakis provided me endless source of ideas and encouragement. Their enthusiasm in research, systematic organization at work and optimistic attitude towards life positively influenced my study and life. Their assistance and instructions during my time at the University of Strathclyde has been invaluable.

Not forget to my entire colleague in Centre for excellence in Signal and Image Processing (CeSIP) University of Strathclyde, which gave full support in term of technical, ideas and motivation. For the team project of sleep deprivation experiment which granted by Bridge the Gap (BTG) funding (Professor John Soraghan Dr Stephen Butler Dr L Petropoulakis Dr Simon Kyle, Mel McKendrick, and Jillian Hobson) and then further continued with the Scottish Sensor System Centre (SSSC) project (Gaetano DI Caterina, Carmine Clemente, George Mermiris, and Captain Lewis), the experience working with you all very valuable.

The most important, the closest vicinity of my PhD life, I owe my loving thanks to my wife Rainah Ismail and my son Muhammad Amir Najwan Masrullizam, and my daughters Aliyah Damia Masrullizam and Asma' Raudhah Masrullizam without their invaluable understanding, endless patience and encouragement it would have been impossible for me to finish this work.

My deepest and sincere thanks are always with my parents, parent-in-laws, also, to my brothers, brother-in-laws and sister-in-laws, also, the Malaysian Glaswegian friends for their constant support and prayers. I am so lucky and so proud to have such a wonderful family and friends.

Lastly, highly appreciation to The Ministry of Higher Education Malaysia and Universiti Teknikal Malaysia Melaka (UTeM), for the whole PhD study funding.

Abstract

Fatigue is a common symptom of weakness either physically or mentally. These symptoms may led to a drop in motivation, weakened sensitivity, slowing of responsiveness and inability to give full attention. All of these problems can cause adverse effects, such as accidents, especially those that require full attention as drivers of vehicles, and rail operators, the pilot of an aircraft or ship operators. This research investigates systems to detect and quantify the signs of fatigue using non-invasive facial analytics.

There are four main algorithms that represent the major contribution from the PhD research. These algorithms encompass facial fatigue detection and quantification system as a whole. Firstly, a new technique to detect the face is introduced. This face detection algorithm is an affiliation of colour skin segmentation technique, connected component of binary image usage, and learning machine algorithm. The introduced face detection algorithm is able to reduce the false positive detection rate by a very significant margin. For the facial fatigue detection and quantification, the major fatigue signs features are from the eye activity. A new algorithm called the , Interdependence and Adaptive Scale Mean Shift (IASMS) is presented. The IASMS is able to quantify the state of eye as well as to track non-rigid eye movement. IASMS integrates the mean shift tracking algorithm with an adaptive scale scheme, which is used to track the iris and quantify the iris size. The IASMS is associated with face detection algorithm, image enhanced scheme, eye open detection technique and iris detection method in the initialisation process. This proposed method is able to quantify the eye activities that represent the blink rate and the duration of eye closure.

The third contribution is yawning analysis algorithm. Commonly yawning is detected based on a wide mouth opening. Frequently however this approach is thwarted by the common human reaction to hand-cover the mouth during yawning. In this research, a new approach to analyse yawning which takes into account the covered mouth is introduced. This algorithm combines with a new technique of mouth opening measurements, covered mouth detection, and facial distortion (wrinkles) detection. By using this proposed method, yawning is still able to detect even though the mouth is covered.

In order to have reliable results from the testing and evaluating of the developed fatigue detection algorithm, the real signs of fatigue are required. This research develops a recorded face activities database of the people that experience fatigue. This fatigue database is called as the Strathclyde Fatigue Facial (SFF). To induce the fatigue signs, ethically approved sleep deprivation experiments were carried out. In these experiments twenty participants, and four sessions were undertaken, which the participant has to deprive their sleep in 0, 3, 5, and 8 hours. The participants were subsequently requested to carry out 5 cognitive tasks that are related to the sleep loss.

The last contribution of this research is a technique to recognise the fatigue signs. The existing fatigue detection system is based on single classification. However, this work presents a new approach for fatigue recognition which the fatigue is classified into levels. The levels of fatigue are justified based on the sleep deprivation stages where the SFF database is fully used for training, testing and evaluation of the developed fatigue recognition algorithm. This fatigue recognition algorithm is then integrated into a Fatigue Monitoring Tool (FMT) platform. This FMT has been used to test the participant that carried out the tasks as ship crew in shipping bridge simulator.

vi

Contents

Declarationii
Acknowledgements iii
Abstractv
Contents vii
List of Figuresxi
List of Tablesxv
Abbreviationsxvi
List of Symbolsxix
Publicationxxiv
1. Introduction
1.1 Preface
1.2 Pagearch Motivation 2
1.3 Summary of Original Contributions
1.4Thesis Organization
2. Fatigue Detection
2.1 Introduction
2.2 Fatigue in Industrial Applications
2.2.1 Automation Industry 8
2.2.2 Aviation Industry
2.2.3 Shipping Industry11
2.2.4 Other Industries Applications
2.3 Fatigue Detection Measurement Technique Categories
2.3.1 Physiological Measurement
2.3.1.1 Eye Activities
2.3.1.2 EEG Based

	2	.3.1.3 Electrodermal Activities	16
	2.3.2	2 Physical Activities Measurement	17
	2.3.3	3 Behavioural Measurement	17
	2.3.4	4 Mathematical Model	18
	2.3.5	5 Hybrid Technique	19
	2.4	User Acceptance for Fatigue Detection Technologies	20
	2.5	Conclusion	21
2	Faci	ial Estique Apolysis	22
5.	. Facia		22
	3.1		
	3.2	Face Acquisition system	23
	3.2.1	1 Face Detection Algorithm	23
	3.2	2.1.1 Knowledge Based Method	23
	3.2	2.1.2 Features Invariant Based Method	24
	3.2	.2.1.3 Template Matching	25
	3.2	.2.1.4 Appearance Based Method	27
	3.2.2	2 Facial Features Component Detection Algorithm	30
	3.2	.2.2.1 Shape Based Method	30
	3.2	.2.2.2 Features Shape Based Method	31
	3.2	.2.2.3 Appearance Shape Based Method	32
	3.3	Facial Fatigue Feature	32
	3.3.1	1 Eye Activities	32
	3.3	.3.1.1 Template or Model Based	33
	3.5	.3.1.2 Features Based Template Method	34
	3.5	.3.1.3 Appearance Based Template method	35
	3.3.2	2 Yawning Detection	
	3.5	.3.2.1 Features Based Yawning Method	37
	3.5	.3.2.2 Appearance Based Yawn Method	
	3.5	.3.2.3 Model Based	
	3.3.3	3 Others Facial Component	40
	3.4	Facial Fatigue Recognition	41
	3.4.1	1 Single Cue Recognition	41
	3.4.2	2 Multiple Cues	43
	3.5	Conclusion	44
4.	. Data	abases	46
	4.1	Introduction	46
	4.2	Database for Face Acquisition	
	4.3	Database for Eve Activities Measurement	
	431	1 Iris Images Database	49

	4.3	3.2 Database for Blink Detection	50
	4.4	Strathclyde Facial Fatigue (SFF) Database	51
	4.5	Conclusion	53
5.	Fa	ce Acquisition and Eyes Activities Measurement	55
	5.1	Introduction	55
	5.2	Face Acquisition	56
	5.2	2.1 Face Detection	56
		5.2.1.1 Colour Skin Segmentation	57
		5.2.1.2 Rectangle Bounding Formation	58
		5.2.1.3 Bounding Rectangle Specification	60
		5.2.1.4 Bounding Rectangle Classification	61
	5.2	2.2 Facial Component Detection	62
	5.3	Iris Localisation	63
	5.4	Interdependence And Adaptive Scale Mean Shift (IASMS) Algorithm	67
	5.4	4.1 Mean Shift Tracking Algorithm	67
	5.4	4.2 Adaptive Scale Scheme	70
	5.4	4.3 Interdependence and Adaptive Scale Mean Shift Tracking	73
	5.5	Experiment Results	76
	5.5	5.1 Face Detection	76
	5.5	5.2 Blink Detection	77
	5.5	5.3 Eve's State Analysis	80
	5.5	5.4 Eyes Tracking	83
	5.6	Conclusion	84
6.	Ya	awning Analysis	86
	6.1	Introduction	86
	6.2	Region Interest Initialisation and Tracking	87
	6.2	2.1 Focused Mouth Region	87
	6.2	2.2 Focused Distortion Region	88
	6.3	Mouth Opening Measurement	89
	6.4	Mouth Covered Detection	92
	6.4	4.1 Local Binary Pattern (LBP)	93
	6.4	4.2 Distortions Detection	95
	6.5	Yawning Analysis	97
	6.6	Experiment Results	99
	66	5.1 Mouth Opening Measurement	
	6.6	5.2 Mouth Covered Detection	100

6.6.3 Yawning Analysis	104
6.7 Conclusion	107
7 Fatigue Monitoring Tool	108
	100
7.1 Introduction	108
7.2 Fatigue Recognition Algorithm	109
7.2.1 Features Vectors Extraction	109
7.2.1.1 Eyes Activities	109
7.2.1.2 Yawning Analysis	112
7.2.2 Fatigue Classification	113
7.2.2.1 Features Extraction	114
7.2.2.2 Training and Testing	115
7.2.2.3 Fatigue levels	117
7.3 Experimental Results	118
7.3.1 Validation of Measurement Accuracy	119
7.3.2 Classification	120
7.3.3 Proposed Technique Vs PERCLOS	122
7.4 Conclusion	124
8. Conclusion and Future Work	125
8.1 Conclusion	125
8.2 Future Work	127
Appendices	129
References	148

List of Figures

Figure 2.1: (a) Driver Fatigue Monitoring (DFM) devices [18] and (b) Smart Eye Pro devices [13]. (Images are permitted to be published)......9 Figure 2.2: :(a) EEG measurement technique which the device apply on head(b) ECG measurement technique which device attached on body part and (c) EOG measurement technique which device attached on region of eyes.[45-47]. (Images are permitted to be published)......16 Figure 2.3: (a) EDVTCS galvanic skin resistance sensor device (b) 'SenseWear Armband device, to measure electrical conductance of the skin. [50, 51]. (Images are permitted to be published)......17 Figure 3.1: Facial Fatigue Analysis system that consists of three main operations where the input is image and the output is the fatigue level or no fatigue indication23 Figure 3.2: (a) Face template based on 16 face component regions with 12 relations as indicated by arrows. (b) Deformable template based on edges with elliptical ring around the face . (c) Active Shape Model (ASM) based template with the manually annotated is Figure 3.3: The cascade classifier which is a series of classifiers that applied to every Figure 3.4: (a) Example of Haar-like features pattern, (b) Example of Haar-like features Figure 3.5: (a) Example of eye open used as a template [122], (b) Example of manually Figure 3.6: (a) The face is divided into interest regions in order to obtain salient points within the regions [130], (b) The position of the eyes, mouth, and nose based on Figure 3.7: (a) Lip segmentation using LaB colour space to highlight lips region [12[9], (b) Edges mouth detection method introduced in [111] to detect the boundary of mouth. Figure 3.8: (a) A marked mouth structure for Active Shape Model (ASM)[146], (b) Figure 3.9: (a) Dynamic facial images with Gabor wavelet features from sequences of frame for recognising fatigue [118], (b) Example of facial action decomposition from the Figure 3.10: Principle of PERCLOS curve over a certain period. In normal condition t_1 is in range 10 to 40 millisecond, t_2 in the range 50 to 150 milliseconds, in the range 100 to 300 milliseconds. For fatigue condition, t_1+t_2 is more than 700 milliseconds, whilst, t_1 Figure 4.1 Example of face images used for training the features of face [15, 154].

Example of face images used for evaluating the performance of face Figure 4.2 Figure 4.3 Example of iris images using for evaluating the performance of iris Figure 4.4 Example video images of ZJU database that uses for evaluating performance Figure 4.5 Example images from video footage SFF (Images are permitted to be Figure 5.1 General Block diagram of eye activity measurement system which consists of face acquisition operation, iris localization operation and IASMS algorithm. The input Figure 5.3: Segmented skin colour region process result. (a) The input image,(b) the segmented region of skin detection. (Images are permitted to be published)59 Figure 5.5: (a) segmentation skin colour results are bounded by rectangle B(x,y). (b) Figure 5.6 Example images that show the skin region bounding rectangles. (Images are Figure 5.7: (a) The remain bounding rectangles after bounding rectangle specification operation, (b) the result of classification upon bounding rectangle which only faces Figure 5.8 Face, eyes and mouth detected region. . (Images are permitted to be published)......63 Figure 5.9 A linear transform that remaps intensity level minimum Gl_{min} and intensity level maximum Gl_{max} of input image into a new intensity level between Gl'_{min} (minimum) Figure 5.10: (a) Enhanced image histogram after linear transformation is implemented. (b) Cumulative histogram of the enhanced image as computed using equation (5.6).64 Figure 5.11: (a) Three state of the eye: eye fully opened, half closed, and fully closed. (b) Binary image when applied adaptive threshold on eye region. (c) Bounding box Figure 5.12: Sequences of frames from 1st frame until frame 70th that show eye begin with normally open until the eye occluded by hand75 Figure 5.13 The normalised SAD values for a sequence of frames, which is from 1st frame until frame 70th are shown. The normalised SAD increased when FER region is occluded as indicated in between frame 65 to 70.75 Figure 5.14: Search area of iris, (a) and (c) are open eyes, (b) and (d) are closed eyes. Figure 5.15: Results of eye state analysis for (a) 2 blinks; (b) 3 blinks; (c) 4 blinks; (d) 6 Figure 5.16: Plot of iris's area in 30 seconds: (a) 0 hour sleep deprivation; (b) 3 hours sleep deprivation; (c) 5 hours sleep deprivation; (d) 8 hours sleep deprivation81

Figure 5.17: Plot of comparison between iris areas measured by the proposed algorithm
over labelled iris area for two subjects
Figure 5.18: (a) Eyes tracking for multi-poses; (b) Eye tracking stops when FER is out
of search region
Figure 6.1 Yawning Analysis method.consists of region interest tracking operation and
yawning analysis algorithm
Figure 6.2: (a) Anthropometric measurement on face. (b) Focused Mouth Region (FMR)
is empirically defined using anthropometric measurement
Figure 6.3: (a) Anthropometric measurement on face. (b) Focused Wrinkles Region
(FWR) is empirically defined using anthropometric measurement
Figure 6.4: (a) FMR image. (b) Enhanced FMR image90
Figure 6.5: (a)Enhanced FMR image (b)Segmented FMR image when apply adaptive
threshold
Figure 6.6: The measurement of high of mouth opening (a) input image (b) the
segmented mouth opening region. (1)
Figure 6.7: (a) Example of uncovered mouth images. (b) Example of covered mouth
$\frac{92}{100}$
Figure 6.8: Example of the basic LBP operator for eight neighbors
Figure 6.9: Example of extended LBP operator. (a) $(8,1)$, (b) $(16,2)$ and (c) $(32,3)$ 93
Figure 6.10: LBP histogram for not covered mouth and covered mouth regions for 3
Operator with different radiuses
Figure 6.11: (a) Focused Wrinkles Region (FWR). (b) normal condition in FWR. (c)
yawning condition in FWR
Figure 6.12: FWR with input image and edges detected image. (a) normal condition in
FWR. (b) yawning condition in FWR
Figure 6.13: Normalised value of Focused Distortion Region (FDR) during yawning.
The normalised value is dramatically increased over that 0.04 when yawn happened as 1.55^{th} , 0^{th}
shown in second of 5 to 9 \dots 9/
Figure 6.14: Flow chart of yawning analysis algorithm
Figure 6.15: Mouth opening segmentation images
Figure 6.16: ROC curve for six classification results for LBP rotational invariant (r_i)
operator
Figure 6.17: ROC curve for six classification results for LBP rotational invariant pattern
with uniform pattern (<i>riu2</i>) operator
Figure 6.18: ROC curve for six classification results for LBP uniform pattern (u^2)
$\frac{104}{10}$
Figure 6.19: Plots of detection result (a) yawning with mouth region not covered
(b) yawning with covered mouth region
Figure 6.20: Plots of detection result for yawning with mouth not covered for a while
Defore it is covered
Figure /.1: Block diagram of Fatigue Monitoring Tool system. The input of the system
is image and the out is level of fatigue which based on sleep deprivation hours
Figure 7.2: Eye state profile plot for three blinks. T_{ec} is time of eye closed

Figure 7.3: The plot of three operations result; mouth opening measurement, covered mouth detection and wrinkles detection. yt represents the time of yawning. This result Figure 7.4: Training process where features vector are generated from extraction of eye activities. These features vectors are trained using Neural Network classifier, and the output are the trained parameters that to be used in classification operation......114 Figure 7.5: Blink rate of the eight participants from the SFF database that was used for Figure 7.6: The confusion matrix for trained network. The trained parameter is evaluated based training confusion, validation confusion, test confusion and overall confusion performance......117 Figure 7.7: The experiment was carried out in shipping bridge simulator room which Figure 7.8: Fatigue classification results for 10 minutes from SFF video database; (a) Ohour, (b) 3 hours, (c) 5 hours, and (d) 8 hours sleep deprivation......121 Figure 7.9: Classification results in 10 minutes monitoring; (a) for 0 hour and 3 hours, Figure 7.10: Proposed technique Vs PERCLOS results. The proposed technique produced the output based on level of fatigue signs, whilst PERCLOS based Figure A.2: The value of the integral image at point (x, y) is the sum of all the pixels

List of Tables

Table 2.1 C	auses of fatigue	7
Table 4.1 Se	ome of the prominent face image databases	48
Table 4.2 T	he iris databases	50
Table 4.3 S	SFF database	52
Table 5.1 L	ASMS Algorithm	76
Table 5.2 F	Face detection algorithm experiment result	77
Table 5.3 [Detection rate comparison for ZJU blink database	78
Table 5.4	Detection rate comparison for ZJU blink database	80
Table 5.5 . T	The average of iris area upon labelled measurement and algorithm	
measuremen	nt	83
Table 6.1 N	Nouth covered detection rate	102
Table 7.1 T	Fraining result for three PT	116
Table 7.2 F	Performance of eyes activities and yawn	120
Table A.1	The training algorithm for building a cascaded detector	133
	-	

Abbreviations

AAM	Active Appearance Model
AdaBoost	Adaptive Boosting
AECS	Average Eye Closure Speed
ARRB	Australian Road Research Board
ASM	Active Shape Model
ASTiD	Advisory System for Tired Driver
AU	Action Unit
AVMED	Institute of Aviation Medicine
BN	Bayesian Network
CAMSHIFT	Continuously Adaptive Mean Shift
CAS	Circadian Alertness Simulator
CAS-PEAL	Chinese Academic of Science - Pose, Expression, Accessories,
	and Lighting
CASIA	Chinese Academic of Science
CeSIP	Centre for excellence in Signal and Image Processing University
	of Strathclyde
CMU	Carnegie Mellon University
COPD	Chronic obstructive pulmonary disease
DFM	driver fatigue monitoring system
ECG	Electrocardiograph
ED	Distance between the centre of eyes
EDVTCS	Engine Driver Vigilance Telemetric Control System
EEG	Electroencephalography
EOG	Electrooculography

EMD	Distance between centre of mouth and the middle point between
	eyes
faceLAB TM	Face Laboratory
FAID	Fatigue Audit Interdyne
FACS	Facial Action Coding System
FER	Focus of Eye Region
FERET	Facial Recognition Technology
FFS	Forward Features Selection
FMR	Focus Mouth Region
FMT	Fatigue Monitoring Tool
FRMS	Fatigue Risk Management System
FSI	Flag State Implementation
FWR	Focus Wrinkles Region
GUI	Graphical user interface
HIV	Human immunodeficiency virus
HOG	Histograms of Oriented Gradients
HMM	Hidden Markov Model
HSI	Hue Saturation Intensity
HSV	Hue Saturation Value
IASMS	Interdependence and Adaptive Scale Mean Shift
ICAO	International Civil Aviation Organization
ICE	Iris Challenge Evaluation
IMO	International Maritime Organisation
IR	Infrared
ISM	International Safety Management
Lab	Laboratory
LBP	Local Binary patterns
LDA	Linear Discrimination Analysis
LED	Light Emitting Diode
MIT	Massachusetts Institute of Technology

MLR	Multinomial Ridge Regression
MMU	Malaysia Multimedia University
mo	mount opening
NIR	Near Infrared
NN	Neural Network
PCA	Principal Component Analysis
PERCLOS	Prominent technique
PIE	CMU Pose, Illumination, and Expression
PsyKE	Psychology Knowledge Exchange & Enterprise Unit University
	of Strathclyde, and Glasgow Sleep Centre
PVT	Psychomotor vigilance task
RAAF	Royal Australian Air Force
RGB	Red Green Blue
RLBP	Regional Local Binary Pattern
SAD	Sum of Absolute Difference
SAFE	System for Air Crew Fatigue Evaluation
SART	Sustained Attention to Response Task
SFF	Strathclyde Facial Fatigue
SGLD	Second order statistical features
SMS	Safety Management System
SURF	Speed Up Robust Features
SVM	Support Vector Machine
3D	Three dimensional
TPMA	Three Process Model of Alertness
UBIRIS	Irises database from University of Beira Interior
UEC	University Ethic Committee of University of Strathclyde
YAWN	Yawning
YcbCr	Luminance and chroma component colour space
YR	Yawn rate
ZJU	Zhejiang University

List of Symbols

δ	Delta
θ	Theta
α	Alpha
f	PERCLOS curve over a certain period
t_1	The time the eye is closed for only 20%
<i>t</i> ₂	The time when the eyes are 20% from completely closed
t ₃	The times from eye open to eye 20% open (after being closed)
t_4	The times from eye open to eye 80% open (after being closed)
r	red
8	green
b	blue
C _b	Blue different chroma component
C _r	Red different chroma component
hue	Properties of colour
Y min	Minimum y axis
Y max	Maximum y axis
x_{\min}	Minimum x axis
x_{\max}	Maximum x axis
R	radius
E	epsilon

B(x, y)	A bounding rectangle
sm	Small region of pixels
bg	Large region of pixels
g'(x,y)	Enhanced input image
g(x,y)	Input image
Gl_{\min}	The minimum input image intensities
Gl _{max}	The maximum input image intensities
Gl'_{\min}	The transformed minimum input image intensities
Gl'_{\max}	The transformed minimum input image intensities
H_i	The cumulative histogram
Х	The intensity value
aT	The adaptive threshold
P _{min}	The minimum pixel value
P _{max}	The maximum pixel value
sr	The aspect ratio of the bounding box shape
hbb	Height of then bounding box shape
wbb	Width of the bounding box shape
r	The iris radius
<i>x</i> ₀	The coordinate of the iris centre in the <i>x</i> -direction
Уо	The coordinate of the iris centre in the y-direction
I(x,y)	The input iris image
$G_{\sigma}(r)$	The Gaussian function

$\hat{q} = \{\hat{q}_u\}_{u=1\dots m}$	The probability of the colour histogram of the iris
Μ	The number of histogram bins
x_i	Normalised pixel location from 1 to n with the target iris centred at 0
δ	Kronecker delta function
$b(x_i)$	The bin for pixel x_i
k	The Epanechnikov kernel function
С	Normalisation constant
$\hat{p}_u(y)$	The probability of colour histogram of the target iris candidate model
Y	Centre position of the current frame
Н	Radius of weighting kernel
C_h	The normalisation constant
<i>d</i> (y)	The centre of the iris
$\hat{p}(y)$	Estimation of the Bhattacharyya coefficient
y 1	New location targeted iris
Wi	The weight
M $_{00}$	Zero th moment of the region
M 10, M 01, M 11	First-order moments
I(x, y)	Probability pixel value within the object region in x and y range
x_c, y_c	The centroid point of the region
M ₂₀ , M ₀₂	Second-order moments
$\mu_{20}, \mu_{02}, \mu_{11}$	Rotation of ellipse
θ	Degree of orientation of the ellipse

<i>a</i> , <i>b</i>	The semi-major axis of the ellipse
A	Area of region computed from the zero th moment
l_1	Length 1
l_2	Length 2
C_r	Centre point of the right eye
C_l	Centre point of the left eye
D_e	Distance between centre points of the irises
I _{FER}	Size of the FER
I _{SAD}	Sum of Absolute Difference (SAD) value of FER in between two frames
I _{SAD}	The normalise value of SAD
W	Width of FER
Н	Height of FER
T _{AOi}	Threshold value of the iris area
Rem	The ratio of ED and EMD distances
<i>x</i> ₁	Centre of right eye
<i>x</i> ₂	Centre of left eye
ml	The measured length of mouth
mh	The height of the mouth
YR	The ratio of <i>hl</i> to height of FMR
$LBP_{P,R}(x_c, y_c)$	The result of Local Binary Pattern
i_c, i_p	Gray level values of the central pixel
	Surrounding pixels in the circle neighborhood

xxii

Р	Surrounding pixels
R	Radius
ri	Rotational invariant
s(x)	Function binary LBP
и2	Uniform pattern
riu2	rotational invariant pattern with uniform pattern
ROR(x,i)	Circular bitwise right shift on the <i>P</i> -bit number x with i time
$LBP^{u2}_{(P,R)}$	LBP uniform pattern
$LBP_{(P,R)}^{riu2}$	Combination of rotational invariant pattern with uniform pattern
G_x	The gradient for the horizontal directions
G_y	The gradient for the vertical directions
FWR _{SAD}	Sum of the absolute values FWR
Normalised FWR _{SAD}	The normalise value of SAD
BR	Blink rate
T _{tec}	Total time of eye closed
A _{tec}	Average time of eye closed
Ac_{BR}	Accumulated BR
Ac _{NTiec}	Accumulated Normalised T_{tec}
Ac _{Atec}	Acculumated A _{tec}

xxiii

Publication

Published and Presented:

- N. A. Manap, G. Di Caterina, M.M. Ibrahim, and J.J. Soraghan."Co-operative surveillance cameras for high quality face acquisition in a real-time door monitoring system," 3rd European Workshop on Visual Information Processing (EUVIP), pp. 99-104, 2011.
- G. Di Caterina, N.A. Manap, M. M. Ibrahim, and J.J. Soraghan, 'Real time door access event detection and notification in a reactive smart surveillance system," Lecturer Notes in Computer Science, vol. 7340, pp. 459-467, Springer Berlin/Heidelberg, 2012.
- 3. M. M. Ibrahim, J. J. Soraghan, and L. Petropoulakis, "*Non-rigid eye movement tracking and eye state quantification*," 19th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 280-283, 2012.
- M. M. Ibrahim, J. J. Soraghan, and L. Petropoulakis, "Covered Mouth Detection For Yawning," 3rd International Conference Signal and Image Processing Application (ICSIPA), Melaka Malaysia, Oct. 2013.
- M. M. Ibrahim, J. J. Soraghan, L. Petropoulakis, "Eye-state analysis using an interdependence and adaptive scale mean shift (IASMS) algorithm", Elsevier, Biomedical Signal Processing and Control, Volume 11, Pages 53-62, 2014.

Submitted:

1. M. M. Ibrahim, J. J. Soraghan, and L. Petropoulakis' "Yawning Analysis with Mouth Covered Detection", Image and Vision Computing, Elsevier.

xxiv