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ABSTRACT 

 

Requirements validation especially models validation has gained quite an interest from a lot of 

researchers. The research regarding the consistency checking is proliferating from time to 

time. Several of techniques, approaches and methods have been proposed to cater the issues of 

requirements inconsistency especially in models validation. UML modelling has been used 

widely in software development industry. The varied of UML models that representing the 

system in different viewpoints but somehow relate to each other make them inextricable from 

one model to another. Hence, the inconsistency becomes inevitable. The models will be 

inconsistent if there are overlapping elements of diverse models that depicts the parts of the 

system are failed to cooperative. In this paper, we focused on the consistency rules between 

two models, activity and class diagrams by converting the rules into logical predicates and the 

logical predicates will be evaluated using a sample of case study that consists of the two 

models. 
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ABSTRAK 

 

Pengesahan keperluan terutama pengesahan model telah menarik minat di kalangan 

penyelidik. Penyelidikan berkenaan dengan pemeriksaan konsisten keperluan ini semakin 

meningkat dari semasa ke semasa. Beberapa teknik, pendekatan dan kaedah telah 

dicadangkan untuk menangani isu-isu keperluan yang tidak konsisten terutamanya di antara 

model-model. Model UML telah digunakan secara meluas dalam industri pembangunan 

perisian.  Pelbagai model UML yang berlainan digunakan untuk menggambarkan suatu 

sistem dari sudut pandangan yang berbeza, menjadikan setiap model tersebut berkait rapat 

antara satu sama lain. Oleh itu, isu model tidak konsisten tidak dapat dielakkan. Model-model 

akan menjadi tidak konsisten jika terdapat pertindihan elemen dalam model yang berbeza 

yang menggambarkan fungsi sistem itu gagal berinteraksi. Dalam kajian ini, kami 

memfokuskan kepada peraturan konsisten untuk pemeriksaan di antara dua model, gambar 

rajah aktiviti dan gambar rajah kelas dengan menukarkan peraturan tersebut kepada 

pernyataan logik dan pernyataan logik itu  kemudian akan dinilai dengan menggunakan 

sampel kajian kes yang mengandungi dua model tersebut. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of the Study 

Requirements engineering (RE) is a fundamental in software development process. 

This is the first phase of software development process in order to develop software that is 

working perfectly and fulfill the client’s needs. Requirements engineering encompasses 

activities ranging from requirements elicitation and analysis to specification, verification and 

validation. Poor requirements have been proved to be a major cause of software problems such 

as cost overruns, delivery delays, failure to meet expectation and degradation. The 

requirements inconsistencies normally happen during requirements elicitation phase because 

customer’s requirements usually uncertain and sketchy (Nuseibeh 1996) which is lead to an 

inadequate, incomplete, inconsistent or ambiguous Software Requirements Specification 

(SRS) (Heimdahl & Leveson 1996). These drawbacks in SRS have a critical impact on the 

quality of the software development. Basically, SRS is written in Natural Language (NL). This 

NL is prone to misunderstanding because the lack of clarity. It is sometimes difficult to use 

language in a precise and ambiguous way without making the document wordy and difficult to 

read. Sometimes it leads to requirements confusion. The developer could not distinguish 

whether it is a functional requirement or non-functional requirement, sometimes several 

requirements may be expressed into single requirement (Anon n.d.). Tools and techniques 
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were introduced  to translate this NL into logic statements by using logic and mathematical 

formulas (Zowghi et al. 2001).  

The use of logic is theoretically proved to be effective to model the requirements by 

using Unified Modeling Language (UML). UML is a standard modeling language to represent 

the requirements of the system in diagrammatic notations in object oriented development 

practices. The UML currently provides 14 diagrams to visualize the requirements of the 

system from different aspects (Torre 2015). For example, Use Case diagram (UCD) models 

the functionalities of the system, Activity diagram (AD) describes the flows of activities and 

actions of the system and Class diagram (CD) describes the structure of the system (Eriksson 

& Penker 2000). However, it may not always be possible to get consistent models. The more 

mind boggling a system is, the more its development obliges an accumulation of distinctive 

models. Vast scale modern system may include several software engineers taking a shot at 

many distinctive however related models speaking to parts of the entire system detail. 

Guaranteeing consistency between those models gets to be basic as even a minor 

inconsistency can prompt to critical faults in the system (Blanc et al. 2008). 

Therefore, we need to do requirements validation, which is concern with checking the 

requirements for consistency, completeness and correctness (three Cs). Zowghi & Gervasi 

(2002) stated in their paper about relationship between these three Cs.  In order to preserve the 

consistency in requirements, we often failed to preserve their completeness; therefore it affects 

the correctness of the requirements because normally in attempt to complete the requirements, 

we tend to add more requirements which are increase the possibility of inconsistency to 

happen. Hypothetically, the increasing of completeness will decrease the consistency and 

correctness in requirements.  
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Inconsistency means any situation in which a set of description does not obey some 

relationship that hold between them. The relationship here can be expressed as a consistency 

rule against which description can be checked (Nuseibeh et al. 2000). As mentioned in 

(Nuseibeh 1996), “inconsistency occurs if and only if a (consistency) rule has been broken”. 

Requirements consistency can be determined by ensuring each requirement externally 

consistent with its documented sources such as higher-level goals and requirements, ensuring 

each requirement externally consistent with all other related requirements of the same type or 

at the same requirements specification. For example, two requirements should neither be 

contradictory nor describe the same concepts using different words and make sure the 

constituent parts of each requirement internally consistent. For example, all parts of a 

compound precondition or post condition must be consistent (Anon n.d.). Nuseibeh et al. 

(Easterbrook & Nuseibeh 1995; Nuseibeh et al. 2000; Nuseibeh 1996) came out with a frame 

work to manage inconsistency (see Figure 1.1), which provides a basis for inconsistency 

management activities. This framework explained how we can use consistency checking rules 

from the monitoring for inconsistency until monitoring the consequences of the handled 

inconsistency. 
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Figure 1.1: A framework for managing inconsistency 

 Nuseibeh et al. (2000) said, “Consistency rules provide an indication of possible 

inconsistencies in a description. Consistency checking rules can emerge from several sources 

such as (see Figure 1.2); Notation definitions; for example, in a strongly typed programming 

language, the notation requires that the use of each variable be consistent with its declaration. 

Development methods; for example, a method for designing distributed systems might require 

that for any pair of communicating subsystems, the data items to be communicated must be 

defined consistently in each subsystem interface. Development process models; a process 

model typically defines development steps, entry and exit conditions for those steps, and 

constraints on the products of each step. Local contingencies; sometimes a consistency 

relationship occurs between descriptions, even though the notation, method, or process model 

does not predetermine this relationship. For example, a particular timing constraint in 

requirement A must be the same as the timing constraint in requirement B. Application 

domains; many consistency rules arise from domain-specific constraints. For example, the 

telecommunication domain might impose constraints on the nature of a telephone call. Such 

constraints can be specified as consistency rules to be checked during development.” 
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Figure 1.2: Consistency checking rule sources 

There are several techniques or approaches to validate the requirements such as 

requirements review, prototyping, model validation, requirements testing and etc.  Different 

approaches and tools (Liang & Wu 2004; Hua-xiao et al. 2013; Kamalrudin 2009; Li 2011) 

have been proposed by the researchers in different ranging of inconsistency management, 

from diagnosing to handling the inconsistencies. Every researcher stated that how important it 

is to have good techniques to manage the inconsistencies in requirements regardless at any 

phase in software development it is being implemented. 

In this research, we aim to justify the consistency checking rules for two commonly 

used UML models in software development which are, Activity diagram (AD) and Class 

diagram (CD) by using logical approach. The motivation for this research is because there is 

still lack of researches focusing on these two models, even though activity diagram is the one 

of the top five most used UML diagrams in industry and the fact that the number one most 

used UML diagram is Class diagram are the reasons why we chose to focus on these two 

models (Reggio et al. n.d.).  The feedback we got from the questionnaire regarding the most 
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used UML diagrams, which the respondents chose activity diagram as their most used UML 

diagram in their development also has convinced us to focus on these models. Activity 

diagrams are usually associated to a class as such, they model the operations flow inside the 

class.  Nevertheless,  the activity diagram  also  allows  a  hierarchical  decomposition,  

through the  use  of  sub activity states,  and  so  it  can  model  several  classes  related by  

class aggregation.  Through  the  use  of  external  events  we can  even  synchronize  several 

activity diagrams. We then validated the rules by providing examples of models from a case 

study. 

1.2 Problem Statements 

The problem statements as described below: 

1) Typical SRS written by using Natural Language (NL) is prone to misunderstanding 

because lack of clarity which is lead to requirement inconsistency. 

2) Conflicting in UML models because of different notations/elements used from each 

other to describe the same functionality which is lead to inconsistency. 

3) The constant changes of requirements due to changing circumstances that leads to 

requirement specification inconsistency. 
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1.3 Research Questions 

The study will examine key research questions (RQ) as described below: 

1) What are the most UML diagrams used by the industrial experts in software 

development field? 

2) What are the existing rules proposed by the researchers to check the inconsistency 

between Activity diagram (AD) and Class diagram (CD)?  

3) What are the suitable parameters that can be used as rules for checking the consistency 

of requirements between Activity diagram (AD) and Class diagram (CD)? 

1.4 Research Objectives 

Through this research, we aim to justify the existing consistency rules that can check 

the consistency between the Activity diagram (AD) and Class diagram (CD) by using logical 

approach. 

 

This project embarks on the following objectives: 

1) To explore the existing consistency rules between activity and class diagram. 

2) To justify the existing rules between activity and class diagrams using logical 

approach. 

3) To evaluate the rules justification by using a case study. 

1.5 Research Scopes 

The scope for this research is focusing on proposing justification for consistency 

checking rules between Activity diagram (AD) and Class diagram (CD). These two models 
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(AD and CD) are the most used UML models in software development field (Reggio et al. 

n.d.). The analysis from the literature review will be used to propose the rules. Since this 

research involved with the industry, official approval from the selected software house was 

obtained to have the information and documents gathered for the sole use of analysis and 

knowledge discovery purposes. 

1.6 Significant and Research Contribution 

This research will significantly help others to get a better understanding why 

requirements consistency validation is important in software development industry, especially 

for checking the consistency between requirements models. This study should be able to 

encourage other researchers to do more research on consistency rules for these two models. 

The contribution of this research is the justification of consistency rules between Activity 

diagram (AD) and Class diagram (CD) using logical approach. 

1.7 Summary 

This chapter briefly described about the problems and impact of the inconsistency in 

requirements specification to the software development. The chapter also covered about the 

research questions that have been considered for the study and the objectives of the research. 

Research scopes are explained as well as the significant and the contribution of the research. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

2.1 Introduction 

This  literature  review  focused  on  studies,  review,  and  examines  the  requirements 

validation techniques and models consistency checking. The section starts with reviewing the 

existing requirements validation techniques and briefly describing the models consistency 

checking. The next section will review the models consistency checking approaches and rules 

that have been proposed by other researchers and lastly, the last section will review the rules 

which are going to be used in this study. 

2.2 Requirements Validation Techniques 

Kotonya and Sommervile (1998) stated in their book, there are several techniques or 

methods to validate the requirements such as requirements review, prototyping, requirements 

testing and model validation. Even though requirements review is a very effective way of 

discovering problems, it does involve a lot of time and expense in order to conduct the 

meeting, gather all the stakeholders and hire experts to form a multidisciplinary team for 

reviewing. Prototyping is a good method to demonstrate the requirements to the multiple 

stakeholders and end-users as in they may find it easier to understand and discover the 

problems and what need to be improvised. However, this only can be done if the prototype has 
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been developed during requirements elicitation because it is very not cost effective to develop 

a prototype just for the validation. Requirements testing can be done by using test cases for the 

requirements to reveal the problems. But this requirements testing which involves a lot of test 

cases takes quite a lot of time to execute which is delayed the development phase. Acharya 

and George (2005) used a combination of techniques, like specification inspection and testing 

the executable specification of a prototype using test cases, to validate the specification against 

the requirements as well as to ensure that the specified consistency conditions are respected 

and maintained by the operations defined in the specification. Model validation such as UML 

models (Object diagram (OD), Collaboration diagram (COD), Sequence diagram (SD) and 

etc.) could be checked to see whether the models are self-consistent or not.  

2.3 UML Models Consistency Checking 

The UML models able to illustrate both static and behavior abstractions. The static 

structure of a software basically is represented by using a class diagram, and, a behavior of the 

software is represented using behavioral models such as activity diagram, state chart diagram 

or sequence diagram. A class diagram is a compilation of classes and their associations. A 

class in a class diagram can describe the attributes and operations, but the actual behavior of 

these operations is represented by using behavioral models. The UML behavioral models are 

used to describe behavior of an object of a class during its lifetime. These models are 

comprised of states and transitions, where each transition is annotated with an operation. The 

operation on the transition depicts what happens to the object during its whole lifetime (Khan 

2013). Among the behavioral models, the activity diagram is mostly not given much 

consideration by the researchers.  This is quite unfair  as the activity diagram  is  actually very 
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