

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

LOGICAL APPROACH: CONSISTENCY RULES BETWEEN
ACTIVITY DIAGRAM AND CLASS DIAGRAM

NORAINI BINTI SULAIMAN

MASTER OF COMPUTER SCIENCE (SOFTWARE ENGINEERING
AND INTELLIGENCE)

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka (UTeM) Repository

https://core.ac.uk/display/235654191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Information and Communication Technology

LOGICAL APPROACH: CONSISTENCY RULES
BETWEEN ACTIVITY DIAGRAM AND CLASS

DIAGRAM

Noraini Binti Sulaiman

Master of Computer Science (Software Engineering and Intelligence)

2015

LOGICAL APPROACH: CONSISTENCY RULES BETWEEN ACTIVITY DIAGRAM
AND CLASS DIAGRAM

NORAINI BINTI SULAIMAN

A project submitted

in fulfillment of the requirements for the degree of Master of Computer Science

(Software Engineering and Intelligence)

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

DECLARATION

I declare that this project entitled “Logical Approach: Consistency Rules between Activity

Diagram and Class Diagram” is the result of my own research except as cited in the

references. The thesis has not been accepted for any degree and is not concurrently submitted

in candidature of any other degree.

Signature : ……………………….

Name : Noraini Binti Sulaiman

Date : 1 August 2015

APPROVAL

I hereby declare that I have read this report and in my opinion this report is sufficient in terms

of scope and quality as a partial fulfillment of Master of Computer Science (Software

Engineering and Intelligence).

Signature : …………………………………………

Supervisor Name : Dr. Sharifah Sakinah Binti Syed Ahmad

Date : 1 August 2015

DEDICATION

I sincerely dedicate this thesis to my beloved parents, Haji Mat Nasir and Hajah Nik Azmani,

who supported me each step of the way.

“Ayah & Ibu, you gave me a second “life” that I’ve never dreamed of before.”

ABSTRACT

Requirements validation especially models validation has gained quite an interest from a lot of

researchers. The research regarding the consistency checking is proliferating from time to

time. Several of techniques, approaches and methods have been proposed to cater the issues of

requirements inconsistency especially in models validation. UML modelling has been used

widely in software development industry. The varied of UML models that representing the

system in different viewpoints but somehow relate to each other make them inextricable from

one model to another. Hence, the inconsistency becomes inevitable. The models will be

inconsistent if there are overlapping elements of diverse models that depicts the parts of the

system are failed to cooperative. In this paper, we focused on the consistency rules between

two models, activity and class diagrams by converting the rules into logical predicates and the

logical predicates will be evaluated using a sample of case study that consists of the two

models.

i

ABSTRAK

Pengesahan keperluan terutama pengesahan model telah menarik minat di kalangan

penyelidik. Penyelidikan berkenaan dengan pemeriksaan konsisten keperluan ini semakin

meningkat dari semasa ke semasa. Beberapa teknik, pendekatan dan kaedah telah

dicadangkan untuk menangani isu-isu keperluan yang tidak konsisten terutamanya di antara

model-model. Model UML telah digunakan secara meluas dalam industri pembangunan

perisian. Pelbagai model UML yang berlainan digunakan untuk menggambarkan suatu

sistem dari sudut pandangan yang berbeza, menjadikan setiap model tersebut berkait rapat

antara satu sama lain. Oleh itu, isu model tidak konsisten tidak dapat dielakkan. Model-model

akan menjadi tidak konsisten jika terdapat pertindihan elemen dalam model yang berbeza

yang menggambarkan fungsi sistem itu gagal berinteraksi. Dalam kajian ini, kami

memfokuskan kepada peraturan konsisten untuk pemeriksaan di antara dua model, gambar

rajah aktiviti dan gambar rajah kelas dengan menukarkan peraturan tersebut kepada

pernyataan logik dan pernyataan logik itu kemudian akan dinilai dengan menggunakan

sampel kajian kes yang mengandungi dua model tersebut.

ii

ACKNOWLEDGEMENT

Alhamdulillah, praises to Allah SWT.

I would not have been possible to complete this master project without the help and

support from the certain people around me.

This project would not have been possible without help, support, and patience from

my honorable supervisor, Dr. Sharifah Sakinah Binti Syed Ahmad. Not forgotten the two

panels who had given me some research challenge to improve my study, Dr. Massila Binti

Kamalrudin and Dr. Sabrina Binti Ahmad. May Allah SWT reward them with His blessing.

A warm appreciation to my comrades, Clarissa Terry, and Junaida Karim and to the five

respondents who have been participated in my questionnaire for this project.

Finally, I convey my deepest gratitude and sincere love to my blessed parents, Haji

Mat Nasir and Hajah Nik Azmani, and to my beloved sisters and brothers; for their

uncountable support, prayers and encouragement.

iii

TABLE OF CONTENTS

DECLARATION
APPROVAL
DEDICATION
ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv

LIST OF FIGURES vi
LIST OF TABLES vii
LIST OF APPENDICES viii
1.INTRODUCTION 1

1.1 Background of the Study 1

1.2 Problem Statements 6

1.3 Research Questions 7

1.4 Research Objectives 7

1.5 Research Scopes 7

1.6 Significant and Research Contribution 8

1.7 Summary 8

2.LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Requirements Validation Techniques 9

2.3 UML Models Consistency Checking 10

2.4 Related Work 12

2.4.1 Logical Approach 16

2.5 Summary 17

3.RESEARCH METHODOLOGY 20

3.1 Introduction 20

3.2 Research Methodology 20

3.2.1 Analysis 21

iv

3.2.2 Design and Development 22

3.2.3 Testing and evaluation 23

3.3 Summary 23

4.IMPLEMENTATION 24

4.1 Introduction 24

4.2 Consistency rules between Activity and Class diagrams 24

4.3 Rules Collection 25

4.4 Rules Refinement 26

4.4.1 Remove redundant rules 26

4.5 Formalize the Models 27

4.5.1 Formalization of AD 28

4.5.2 Formalization of CD 31

4.6 Formalization on consistency between AD and CD 34

4.7 Rules Validation 36

4.8 Summary 37

5.RESULT 38

5.1 Introduction 38

5.2 UML Models for Tour Management System (TMS) 38

5.3 Consistency Rules between AD and CD 42

5.4 Response from Industry 43

5.4.1 Companies Background 43

5.4.2 Requirements Validation Practice 44

5.4.3 Models Consistency Checking 45

5.5 Summary 46

6.CONCLUSION 47

6.1 Introduction 47

6.2 Conclusion 47

6.3 Limitations 48

6.4 Future Works 49

REFERENCES 50

APPENDICES 54

v

LIST OF FIGURES

FIGURE TITTLE PAGE

1.1 A framework for managing inconsistency 4

1.2 Consistency checking rules sources 5

2.1 Relationship among UML models 13

3.1 Research methodology 21

3.2 Method of proposed design 22

4.1 Sample of activity diagram elements 28

4.2 Sample of class diagram elements 31

4.3 Sample of class diagram generalization 32

5.1 Activity diagram for TMS 40

5.2 Class diagram of TMS 41

5.3 Requirements validation technique 44

5.4 Impact of requirements inconsistency in SRS 45

5.5 UML diagrams 45

vi

LIST OF TABLES

TABLE TITLE PAGE

2.1 Example of lookup table 14

2.2 Result of consistency rules analysis 15

2.3 Summary of literature review 18

4.1 Rules between AD and CD 26

4.2 Rules between AD and CD after refinement 27

vii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Research activities flowchart 56

B Activities Gantt chart 57

C Project 1 & 2 milestones 58

D Questionnaire 59

E Response summary 63

viii

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Requirements engineering (RE) is a fundamental in software development process.

This is the first phase of software development process in order to develop software that is

working perfectly and fulfill the client’s needs. Requirements engineering encompasses

activities ranging from requirements elicitation and analysis to specification, verification and

validation. Poor requirements have been proved to be a major cause of software problems such

as cost overruns, delivery delays, failure to meet expectation and degradation. The

requirements inconsistencies normally happen during requirements elicitation phase because

customer’s requirements usually uncertain and sketchy (Nuseibeh 1996) which is lead to an

inadequate, incomplete, inconsistent or ambiguous Software Requirements Specification

(SRS) (Heimdahl & Leveson 1996). These drawbacks in SRS have a critical impact on the

quality of the software development. Basically, SRS is written in Natural Language (NL). This

NL is prone to misunderstanding because the lack of clarity. It is sometimes difficult to use

language in a precise and ambiguous way without making the document wordy and difficult to

read. Sometimes it leads to requirements confusion. The developer could not distinguish

whether it is a functional requirement or non-functional requirement, sometimes several

requirements may be expressed into single requirement (Anon n.d.). Tools and techniques

1

were introduced to translate this NL into logic statements by using logic and mathematical

formulas (Zowghi et al. 2001).

The use of logic is theoretically proved to be effective to model the requirements by

using Unified Modeling Language (UML). UML is a standard modeling language to represent

the requirements of the system in diagrammatic notations in object oriented development

practices. The UML currently provides 14 diagrams to visualize the requirements of the

system from different aspects (Torre 2015). For example, Use Case diagram (UCD) models

the functionalities of the system, Activity diagram (AD) describes the flows of activities and

actions of the system and Class diagram (CD) describes the structure of the system (Eriksson

& Penker 2000). However, it may not always be possible to get consistent models. The more

mind boggling a system is, the more its development obliges an accumulation of distinctive

models. Vast scale modern system may include several software engineers taking a shot at

many distinctive however related models speaking to parts of the entire system detail.

Guaranteeing consistency between those models gets to be basic as even a minor

inconsistency can prompt to critical faults in the system (Blanc et al. 2008).

Therefore, we need to do requirements validation, which is concern with checking the

requirements for consistency, completeness and correctness (three Cs). Zowghi & Gervasi

(2002) stated in their paper about relationship between these three Cs. In order to preserve the

consistency in requirements, we often failed to preserve their completeness; therefore it affects

the correctness of the requirements because normally in attempt to complete the requirements,

we tend to add more requirements which are increase the possibility of inconsistency to

happen. Hypothetically, the increasing of completeness will decrease the consistency and

correctness in requirements.

2

Inconsistency means any situation in which a set of description does not obey some

relationship that hold between them. The relationship here can be expressed as a consistency

rule against which description can be checked (Nuseibeh et al. 2000). As mentioned in

(Nuseibeh 1996), “inconsistency occurs if and only if a (consistency) rule has been broken”.

Requirements consistency can be determined by ensuring each requirement externally

consistent with its documented sources such as higher-level goals and requirements, ensuring

each requirement externally consistent with all other related requirements of the same type or

at the same requirements specification. For example, two requirements should neither be

contradictory nor describe the same concepts using different words and make sure the

constituent parts of each requirement internally consistent. For example, all parts of a

compound precondition or post condition must be consistent (Anon n.d.). Nuseibeh et al.

(Easterbrook & Nuseibeh 1995; Nuseibeh et al. 2000; Nuseibeh 1996) came out with a frame

work to manage inconsistency (see Figure 1.1), which provides a basis for inconsistency

management activities. This framework explained how we can use consistency checking rules

from the monitoring for inconsistency until monitoring the consequences of the handled

inconsistency.

3

Figure 1.1: A framework for managing inconsistency

 Nuseibeh et al. (2000) said, “Consistency rules provide an indication of possible

inconsistencies in a description. Consistency checking rules can emerge from several sources

such as (see Figure 1.2); Notation definitions; for example, in a strongly typed programming

language, the notation requires that the use of each variable be consistent with its declaration.

Development methods; for example, a method for designing distributed systems might require

that for any pair of communicating subsystems, the data items to be communicated must be

defined consistently in each subsystem interface. Development process models; a process

model typically defines development steps, entry and exit conditions for those steps, and

constraints on the products of each step. Local contingencies; sometimes a consistency

relationship occurs between descriptions, even though the notation, method, or process model

does not predetermine this relationship. For example, a particular timing constraint in

requirement A must be the same as the timing constraint in requirement B. Application

domains; many consistency rules arise from domain-specific constraints. For example, the

telecommunication domain might impose constraints on the nature of a telephone call. Such

constraints can be specified as consistency rules to be checked during development.”

4

Figure 1.2: Consistency checking rule sources

There are several techniques or approaches to validate the requirements such as

requirements review, prototyping, model validation, requirements testing and etc. Different

approaches and tools (Liang & Wu 2004; Hua-xiao et al. 2013; Kamalrudin 2009; Li 2011)

have been proposed by the researchers in different ranging of inconsistency management,

from diagnosing to handling the inconsistencies. Every researcher stated that how important it

is to have good techniques to manage the inconsistencies in requirements regardless at any

phase in software development it is being implemented.

In this research, we aim to justify the consistency checking rules for two commonly

used UML models in software development which are, Activity diagram (AD) and Class

diagram (CD) by using logical approach. The motivation for this research is because there is

still lack of researches focusing on these two models, even though activity diagram is the one

of the top five most used UML diagrams in industry and the fact that the number one most

used UML diagram is Class diagram are the reasons why we chose to focus on these two

models (Reggio et al. n.d.). The feedback we got from the questionnaire regarding the most

Consisntecy
Checking

Rule Sources

Application
Domain

Local
Contigencies

Development
Process Model

Development
Method

Notation
Definition

5

used UML diagrams, which the respondents chose activity diagram as their most used UML

diagram in their development also has convinced us to focus on these models. Activity

diagrams are usually associated to a class as such, they model the operations flow inside the

class. Nevertheless, the activity diagram also allows a hierarchical decomposition,

through the use of sub activity states, and so it can model several classes related by

class aggregation. Through the use of external events we can even synchronize several

activity diagrams. We then validated the rules by providing examples of models from a case

study.

1.2 Problem Statements

The problem statements as described below:

1) Typical SRS written by using Natural Language (NL) is prone to misunderstanding

because lack of clarity which is lead to requirement inconsistency.

2) Conflicting in UML models because of different notations/elements used from each

other to describe the same functionality which is lead to inconsistency.

3) The constant changes of requirements due to changing circumstances that leads to

requirement specification inconsistency.

6

1.3 Research Questions

The study will examine key research questions (RQ) as described below:

1) What are the most UML diagrams used by the industrial experts in software

development field?

2) What are the existing rules proposed by the researchers to check the inconsistency

between Activity diagram (AD) and Class diagram (CD)?

3) What are the suitable parameters that can be used as rules for checking the consistency

of requirements between Activity diagram (AD) and Class diagram (CD)?

1.4 Research Objectives

Through this research, we aim to justify the existing consistency rules that can check

the consistency between the Activity diagram (AD) and Class diagram (CD) by using logical

approach.

This project embarks on the following objectives:

1) To explore the existing consistency rules between activity and class diagram.

2) To justify the existing rules between activity and class diagrams using logical

approach.

3) To evaluate the rules justification by using a case study.

1.5 Research Scopes

The scope for this research is focusing on proposing justification for consistency

checking rules between Activity diagram (AD) and Class diagram (CD). These two models

7

(AD and CD) are the most used UML models in software development field (Reggio et al.

n.d.). The analysis from the literature review will be used to propose the rules. Since this

research involved with the industry, official approval from the selected software house was

obtained to have the information and documents gathered for the sole use of analysis and

knowledge discovery purposes.

1.6 Significant and Research Contribution

This research will significantly help others to get a better understanding why

requirements consistency validation is important in software development industry, especially

for checking the consistency between requirements models. This study should be able to

encourage other researchers to do more research on consistency rules for these two models.

The contribution of this research is the justification of consistency rules between Activity

diagram (AD) and Class diagram (CD) using logical approach.

1.7 Summary

This chapter briefly described about the problems and impact of the inconsistency in

requirements specification to the software development. The chapter also covered about the

research questions that have been considered for the study and the objectives of the research.

Research scopes are explained as well as the significant and the contribution of the research.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This literature review focused on studies, review, and examines the requirements

validation techniques and models consistency checking. The section starts with reviewing the

existing requirements validation techniques and briefly describing the models consistency

checking. The next section will review the models consistency checking approaches and rules

that have been proposed by other researchers and lastly, the last section will review the rules

which are going to be used in this study.

2.2 Requirements Validation Techniques

Kotonya and Sommervile (1998) stated in their book, there are several techniques or

methods to validate the requirements such as requirements review, prototyping, requirements

testing and model validation. Even though requirements review is a very effective way of

discovering problems, it does involve a lot of time and expense in order to conduct the

meeting, gather all the stakeholders and hire experts to form a multidisciplinary team for

reviewing. Prototyping is a good method to demonstrate the requirements to the multiple

stakeholders and end-users as in they may find it easier to understand and discover the

problems and what need to be improvised. However, this only can be done if the prototype has

9

been developed during requirements elicitation because it is very not cost effective to develop

a prototype just for the validation. Requirements testing can be done by using test cases for the

requirements to reveal the problems. But this requirements testing which involves a lot of test

cases takes quite a lot of time to execute which is delayed the development phase. Acharya

and George (2005) used a combination of techniques, like specification inspection and testing

the executable specification of a prototype using test cases, to validate the specification against

the requirements as well as to ensure that the specified consistency conditions are respected

and maintained by the operations defined in the specification. Model validation such as UML

models (Object diagram (OD), Collaboration diagram (COD), Sequence diagram (SD) and

etc.) could be checked to see whether the models are self-consistent or not.

2.3 UML Models Consistency Checking

The UML models able to illustrate both static and behavior abstractions. The static

structure of a software basically is represented by using a class diagram, and, a behavior of the

software is represented using behavioral models such as activity diagram, state chart diagram

or sequence diagram. A class diagram is a compilation of classes and their associations. A

class in a class diagram can describe the attributes and operations, but the actual behavior of

these operations is represented by using behavioral models. The UML behavioral models are

used to describe behavior of an object of a class during its lifetime. These models are

comprised of states and transitions, where each transition is annotated with an operation. The

operation on the transition depicts what happens to the object during its whole lifetime (Khan

2013). Among the behavioral models, the activity diagram is mostly not given much

consideration by the researchers. This is quite unfair as the activity diagram is actually very

10

	dec app ded.pdf
	DECLARATION
	DEDICATION

	report_full.pdf
	ABSTRACT
	ABSTRAK
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	INTRODUCTION
	1.1 Background of the Study
	1.2 Problem Statements
	1.3 Research Questions
	1.4 Research Objectives
	1.5 Research Scopes
	1.6 Significant and Research Contribution
	1.7 Summary

	LITERATURE REVIEW
	2
	2.1 Introduction
	2.2 Requirements Validation Techniques
	2.3 UML Models Consistency Checking
	2.4 Related Work
	2.4.1 Logical Approach

	2.5 Summary

	RESEARCH METHODOLOGY
	3
	3.1 Introduction
	3.2 Research Methodology
	3.2.1 Analysis
	3.2.2 Design and Development
	3.2.2.1 Proposed Design

	3.2.3 Testing and evaluation

	3.3 Summary

	IMPLEMENTATION
	4
	4.1 Introduction
	4.2 Consistency rules between Activity and Class diagrams
	4.3 Rules Collection
	4.4 Rules Refinement
	4.4.1 Remove redundant rules

	4.5 Formalize the Models
	4.5.1 Formalization of AD
	4.5.2 Formalization of CD

	4.6 Formalization on consistency between AD and CD
	4.7 Rules Validation
	4.8 Summary

	RESULT
	5
	5.1 Introduction
	5.2 UML Models for Tour Management System (TMS)
	5.3 Consistency Rules between AD and CD
	5.4 Response from Industry
	5.4.1 Companies Background
	5.4.2 Requirements Validation Practice
	5.4.3 Models Consistency Checking

	5.5 Summary

	CONCLUSION
	6
	6.1 Introduction
	6.2 Conclusion
	6.3 Limitations
	6.4 Future Works

