

Faculty of Electrical Engineering

SIMPLIFIED FUZZY LOGIC CONTROL OF SINUSOIDAL PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVES

Siti Noormiza binti Mat Isa

Master of Science in Electrical Engineering

2014

C Universiti Teknikal Malaysia Melaka

SIMPLIFIED FUZZY LOGIC CONTROL OF SINUSOIDAL PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVES

SITI NOORMIZA BINTI MAT ISA

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Simplified Fuzzy Logic Control of Sinusoidal Permanent Magnet Synchronous Motor Drives" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Siti Noormiza binti Mat Isa
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

Signature	:	
Supervisor Name	:	PM Dr Zulkifilie bin Ibrahim
Date	:	

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved mother, father and family

To my beloved husband

ABSTRACT

Fuzzy Logic Control (FLC) is suitable for a controller design when the system is difficult to model mathematically due to its complexity, nonlinearity and imprecision. It is widely used in high performance drives to obtain precise speed control irrespective of load disturbances and parameter variations. The purpose of this project is to investigate and evaluate speed performance of the FLC in vector controlled Sinusoidal Permanent Magnet Synchronous Motor (SPMSM) drives. The SPMSM is controlled by a vector control technique operating like a separately excited DC motor. The mathematical model of SPMSM drives is simulated using the MATLAB Simulink program. The standard FLC which comprise of 49 rules is initially designed based on common criteria. From investigation on the FLC tuning, two simplified FLCs are designed based on fuzzy rules reduction with systematic and reasonable approaches. The efficacies of the FLC simplification are determined by conducting a comparative analysis between standard FLC and simplified FLCs over a wide range of operating conditions. This is based on simulation approach including various initial step speed commands, load disturbance, step reduction in speed command, inertia variations, and speed reversal operation. The FLCs are developed using the Fuzzy Logic Toolbox in MATLAB. The simulation results show that the simplified FLCs obtain comparable performance with the standard FLC in some cases while in others, they perform better than the standard FLC. The simulation results are further evaluated by an experimental investigation. The FLC, co-ordinate transformation and hysteresis current controllers are implemented in the software using Simulink, Fuzzy logic Toolbox and Real-time interface. The hardware implementation consisting of digital signal processor, voltage source inverter, resolver-to-linear DC converter, current sensors and SPMSM are equipped with a speed resolver. As a result, the simplified FLCs are capable to obtain high performance standards with simple rules, less complex structure, less computation time besides solving the limitation of processor and memory resources.

ABSTRAK

Kawalan fuzzy logic (FLC) sesuai untuk merekabentuk pengawal apabila sistem sukar untuk dimodelkan dengan kaedah matematik kerana kerumitan, ketidaklelurusan dan ketidaktetapan. Ia digunakan secara meluas dalam pemacu berprestasi tinggi untuk mendapatkan kawalan kelajuan yang tepat tanpa mengira gangguan beban dan variasi parameter. Tujuan projek ini adalah untuk menyiasat dan menilai prestasi kelajuan oleh FLC dalam kawalan vector pada pemacu Motor Segerak Magnet Kekal Sinusoidal (SPMSM). SPMSM ini dikawal oleh teknik kawalan vektor untuk beroperasi seperti motor arus terus aruhan berasingan. Model matematik pemacu SPMSM disimulasi menggunakan program MATLAB Simulink. 'Standard FLC' yang terdiri daripada 49 peraturan fuzzy yang pada mulanya direka berdasarkan kriteria yang biasa.Dari siasatan ke atas penalaan FLC, dua 'simplified FLC' direka bentuk berdasarkan pengurangan peraturan fuzzy dengan pendekatan yang sistematik dan munasabah. Keberkesanan permudahan FLC ditentukan dengan menjalankan analisis perbandingan diantara 'standard FLC' dan dua 'simplified FLC' dengan pelbagai keadaan operasi. Ini adalah berdasarkan kepada pendekatan simulasi termasuk pelbagai arahan kelajuan, gangguan beban, pengurangan arahan kelajuan, variasi inersia, dan operasi pembalikan kelajuan. FLC ini dibangunkan menggunakan Fuzzy Logic Toolbox yang terdapat dalam MATLAB. Keputusan simulasi menunjukkan bahawa 'simplified FLC' menghasilkan prestasi setanding dengan 'standard FLC' dalam beberapa kes manakala dalam kes yang lain, mereka lebih baik daripada 'standard FLC'. Keputusan simulasi dinilai lagi dengan siasatan ujikaji. FLC, transformasi koordinat dan pengawal arus 'hysteresis' dilaksanakan dalam perisian menggunakan Simulink, 'Fuzzy Logic Toolbox' dan 'Real-time interface'. Pelaksanaan perkakasan yang terdiri daripada pemproses isyarat digital, penyongsang sumber voltan, penukar resolver-kepada-linear DC, pengesan arus dan SPMSM dilengkapi dengan resolver kelajuan. Hasilnya, 'simplified FLC' mampu untuk mendapatkan standard prestasi tinggi dengan peraturan fuzzy yang mudah, struktur yang kurang kompleks, masa pengiraan yang kurang selain menyelesaikan had pemproses dan sumber memori.

ACKNOWLEDGEMENTS

First of all, ALHAMDULILLAH, with HIS blessings, finally I am able to complete this thesis. I am truly grateful to ALLAH SWT for HE has given me knowledge, patience and everything good in this life. Nevertheless, I could not make it through without the help of these special people (name them here). Their guidance and encouragement have helped me to go through the obstacles.

First and foremost, my special thanks goes to my academic supervisor, Assoc. Prof. Dr. Zulkifilie Ibrahim who has been very helpful in guiding and motivating me. I am also grateful for his advice, patience and willingness to spare most of his precious time helping me in completion of the thesis.

I also would like to express my deep gratitude to my bosom friends: Mrs. Jurifa, Ms. Raihana and Mrs. Nurazlin for their continuous encouragement, assistance and patience.

A million thanks goes to Mr. Anggun, Mr. Cheok, Mr. Musa, Mr. Mohd Norhisham, Mrs. FizatulAini, Mr. Shukri, Mr. Hairol, Mr. Azmi and Dr.Auzani who have been reaching out their hands helping me in the technical discussions throughout the hardware implementation which I have benefited a lot.

I would also like to thank to Dr. Mariana Yusoff and all those who have directly and indirectly involved in this project. Thank you from the bottom of my heart.

Finally, last but not least, my heartfelt gratitude for my parents: Mat Isa Abdullah and Hamidah Omri, my husband, Izad Syahruddin Mohd Ismail who have been supporting me with their love and patience, and mere words could not express my gratitude. Without you, I could not have gone any further than where I am now. Thank you ALL.

TABLE OF CONTENTS

APH DEI ABS ABS ACI TAI LIS LIS	CLARATION PROVAL DICATION STRACT STRAK KNOWLEDGEMENTS BLE OF CONTENTS T OF TABLES T OF FIGURES	i ii iii iv vii ix
	T OF APPENDICES T OF ABBREVIATIONS	xiv xv
	T OF PUBLICATIONS	xviii
CH. 1.	APTER INTRODUCTION 1.1 Background 1.2 Motivation for Research	1 1 3
	 1.3 Problem Statement 1.4 Research Objectives 1.5 Research Methodology 	4 4 5
	 1.6 Scope of Work 1.7 Contribution of Research 1.8 Thesis Outline 	6 7 8
2.	LITERATURE REVIEW OF FUZZY LOGIC CONTROL	10
	2.1 High Performance SPMSM Drives	10
	2.2 Fuzzy Logic Control of High Performance Drive	12
	2.3 Tuning Strategy of Fuzzy Logic Control	19
	2.4 Tuning of Fuzzy Rule Base	20
	2.5 Tuning of Membership Function	26
	2.6 Tuning of Scaling Factor	29
	2.7 Optimization of Fuzzy Logic Control2.8 Summary	32 35
3.	MODELING OF VECTOR CONTROLLED SINUSOIDAL PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVES	36
	3.1 Modeling of SPMSM	36
	3.2 Park's Transformation	39
	3.3 Vector Control of SPMSM	40
	3.4 Voltage Source Inverter	41
	3.5 Hysteresis Current Controller	44
	3.6 Speed Control of SPMSM	46
	3.7 Fuzzy Logic Speed Control	47
	3.8 Vector Controlled SPMSM Drives	49
	3.9 Summary	49

4.	DE	SIGN (OF FUZ	ZY LOGIC CONTROLLER	51
	4.1	Introd	luction		51
	4.2	Desig	n of the	Standard FL Speed Controller	52
				l Principle	55
			Normal		56
			Fuzzifi		60
			Rule Ba		61
				ce Engine	61
			Defuzz		62
				nalization	63
				pment of FLC using Fuzzy Logic Toolbox	63
	4.3	0		Simplified FL Speed Controller	66
			-	ied 7-rules FLC	66
			-	ied 9-rules FLC	85
		4.3.3		Method of Fuzzy Rules	88
				Method 1 (Simplified 7-rules FLC)	89
		a		Method 2 (Simplified 9-rules FLC)	90
	4.4	Sumn	nary		91
5.	DIS	SCUSS	ION OF	RESULTS	93
	5.1	Simul	lation Inv	vestigation	93
		5.1.1	Introdu	ction	93
		5.1.2	Simula	tion Procedure	93
		5.1.3	Forwar	d and Reverse Operations	94
		5.1.4	Load D	visturbances	96
		5.1.5	Step Re	eduction in Speed Command	98
		5.1.6	Change	es of Initial Speed Command	99
		5.1.7	Variatio	ons of Inertia	102
		5.1.8	Compa	rison of Simplified 7-rules FLC and Simplified 9-rules FLC	106
	5.2	Exper	rimental	Investigation	109
		5.2.1	Introdu	ction	109
		5.2.2		re Implementation	110
			5.2.2.1	MATLAB/Simulink Model	110
				ControlDesk	110
		5.2.3		are Implementation	111
				Digital Signal Processor (DSP)	111
				Power circuit	111
				Sinusoidal Permanent Magnet Synchronous Motor	112
				Position Sensor and Resolver-to-Linear DC Converter	114
				Current Sensor	116
			-	nent Procedure	116
		5.2.5	-	nental Results	117
			5.2.5.1	Response to step speed command from standstill under no load conditions	118
			5.2.5.2	Response to 10% step reduction of speed command under	123
				no load conditions	
			5.2.5.3	Response to step speed command from standstill under loaded conditions	125
			5254	Load rejection transient	129
			2.2.2.1		/

5.2.5.5 Response to 10% step reduction of speed command under loaded conditions	132
5.2.5.6 Speed reversal transients under no load conditions	134
5.3 Performance Comparison of Simplified 7-rules FLC	135
5.4 Summary	141
CONCLUSION	144
6.1 Summary	144
6.2 Achievement of Research Objectives	148
6.3 Significance of Research Outputs	149
6.4 Suggestions for Future Work	149

REFERENCES APPENDICES

6.

151 164

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	Switching functions of VSI	43
3.2	Hysteresis current controller for first leg inverter	45
3.3	Hysteresis current controller for second leg inverter	46
3.4	Hysteresis current controller for third leg inverter	46
4.1	Procedure and practice of designing FLC in vector controlled SPMSM	52
	drives	
4.2	Rule table for Standard FLC	61
4.3	Standard rule table with numbering	68
4.4	Rule table for Simplified 7-rules FLC	81
4.5	A comparison on the number of activated rules used by different FLC	83
4.6	Rule table for Simplified 9-rules FLC	86
5.1	Forward operation at rated speed from motor standstill	96
5.2	Reverse operation at rated speed during motor under forward operation	96
5.3	Reverse operation at rated speed from motor standstill	96
5.4	Forward operation at rated speed during motor under reverse operation	96
5.5	Load disturbance during motor under forward operation	97
5.6	Load disturbance during motor under reverse operation	98
5.7	Step reduction from rated to 0.9 of rated	99
5.8	Step reduction from rated to 0.5 of rated	99
5.9	Transient state at medium initial speed command	101
5.10	Transient state at low initial speed command	101
5.11	Load disturbance during medium initial speed command	101
5.12	Load disturbance during low initial speed command	101
5.13	Step reduction during medium initial speed command	102
5.14	Step reduction during low initial speed command	102
5.15	Transient state at fivefold inertia application	104

5.16	Transient state at tenfold inertia application	105
5.17	Load disturbance at fivefold inertia application	105
5.18	Load disturbance at tenfold inertia application	105
5.19	Step reduction at fivefold inertia application	105
5.20	Step reduction at tenfold inertia application	106
5.21	Comparison of Simplified 7-rules FLC and Simplified 9-rules FLC	106
5.22	Forward operation at 500rpm – no load	121
5.23	Forward operation at 400rpm – no load	122
5.24	Forward operation at 300rpm – no load	122
5.25	Forward operation at 200rpm – no load	122
5.26	Forward operation at 100rpm – no load	123
5.27	Forward operation at 500rpm – load	127
5.28	Forward operation at 400rpm – load	128
5.29	Forward operation at 300rpm – load	128
5.30	Forward operation at 200rpm – load	128
5.31	Forward operation at 100rpm – load	129
5.32	Load disturbance at 500rpm	131
5.33	Load disturbance at 400rpm	131
5.34	Load disturbance at 300rpm	132
5.35	Load disturbance at 200rpm	132
5.36	Step reduction at 500rpm - load	133
5.37	Step reduction at 300rpm - load	134
5.38	Comparison of speed performance at 500rpm forward operation	137
5.39	Comparison of speed performance at 400rpm forward operation	137
5.40	Comparison of speed performance at 300rpm forward operation	137
5.41	Comparison of speed performance at 200rpm forward operation	138
5.42	Comparison of speed performance at 100rpm forward operation	138
5.43	Comparison of speed performance at 500rpm reverse operation	139
5.44	Comparison of speed performance at 300rpm reverse operation	139
5.45	Comparison of speed performance at 100rpm reverse operation	139

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Flowchart of research methodology	5
2.1	Structure of PID-like FLC (Volosencu, 2012)	15
2.2	Other structure of PID-like FLC (Kim & Han, 2006)	16
2.3	Structure of (a) PI-like FLC (b) PD-like FLC (Li & Gatland, 1996)	16
2.4	Structure of model reference adaptive control (MRAC)	18
2.5	Structure of a self-tuning control (Yang & Wang, 2009)	18
2.6	Structure of a supervised MRAC-based self-tuning fuzzy control	19
	(Masiala et. al., 2008)	
2.7	Zones in a rule table (Zheng, 1992)	21
2.8	Zones in a rule table (Ibrahim, 1999)	22
2.9	Shifting route of firing rule base (Zheng, 1992)	23
2.10	Rule decision table for (a) 49 rules (b) 25 rules (c) 9 rules	24
2.11	Membership functions for error (a) 49 rules (b) 25 rules (c) 9 rules	25
2.12	Tuning parameters for membership function	27
2.13	Different width of overlap (a) more fuzziness (b) less fuzziness	27
2.14	Self-tuning fuzzy logic PI controller (Karakaya & Karakas, 2008)	30
2.15	Structure of self-tuning FLPI controller (Masiala et. al., 2008)	31
3.1	Magnetic axes at a common rotor reference frame of a SPMSM	36
3.2	A three phase voltage source inverter	41
3.3	Hysteresis current control for first leg of VSI	45
3.4	Configuration for simulation of FLC in vector controlled SPMSM	48
	drives	
3.5	Configuration of speed and hysteresis current control for vector	49
	controlled SPMSM drives	
4.1	Mamdani type of fuzzy logic controller (a) schematic block diagram	51
	of a control system containing a Mamdani type of FLC (b) PI-like	

	FLC with two inputs (c) PD-like FLC with two inputs (Vas, 2006)	
4.2	Flowchart for standard FL controller design method	55
4.3	Block diagram of FL speed control in vector controlled SPMSM	56
	drives	
4.4	Fuzzy set in specified Universe of Discourse (UoD)	57
4.5	Fuzzy set in normalized Universe of Discourse	58
4.6	PI-like FLC with scaling factors implementation	58
4.7	Scaling factor and fuzzy set for (a) speed error, <i>e</i> (b) change of speed	59
	error, <i>ce</i>	
4.8	Membership function of e, ce and cu variables for Standard FLC	60
4.9	Max-min inference method for two fuzzy rules	62
4.10	Scaling factor and fuzzy sets for <i>cu</i>	63
4.11	The development of standard FLC using Fuzzy Logic Toolbox for	64
	Standard FLC (a) FIS editor (b) MF editor for e (c) MF editor for ce	
	(d) MF editor for <i>cu</i> , and (e) rule editor	
4.12	Control rule of standard FL controller	65
4.13	Control surface of a standard FL controller	66
4.14	Four quadrants of motor operation	67
4.15	Profile of speed command from forward to reverse operation	69
4.16	Motor operations in Quadrant I, IV and III	69
4.17	Distinct operating regions for forward motor operation at start-up	70
4.18	The relationship of fuzzy set and speed error response	71
4.19	Region A (a) activated fuzzy set for speed error (b) activated fuzzy set	72
	for change of speed error	
4.20	Region B (a) activated fuzzy set for speed error (b) activated fuzzy set	74
	for change of speed error	
4.21	Profile of speed command from reverse to forward operation	75
4.22	Motor operation in Quadrant III, II and I	75
4.23	Distinct operating regions for reverse motor operation at start-up	76
4.24	Region C (a) activated fuzzy set for speed error (b) activated fuzzy set	77
	for change of speed error	
4.25	Region D (a) activated fuzzy set for speed error (b) activated fuzzy set	78
	for change of speed error	

4.26	Region E (a) activated fuzzy set for speed error (b) activated fuzzy set for change of speed error	80
4.27	Control surface of Simplified 7-rules FLC	81
4.28	Development of Simplified 7-rules FLC using Fuzzy Logic Toolbox	84
	(a) FIS editor (b) MF editor for <i>e</i> (c) MF editor for <i>ce</i> (d) MF editor	
	for <i>cu</i> (e) rule editor	
4.29	Control rule of Simplified 7-rules FLC	85
4.30	Membership function of speed error <i>e</i> , change of speed error, <i>ce</i> and	86
	change of output, <i>cu</i> for Simplified 9-rules FLC	
4.31	Development of Simplified 9-rules FLC using Fuzzy Logic Toolbox	87
	(a) FIS editor (b) MF editor for <i>e</i> (c) MF editor for <i>ce</i> (d) MF editor	
	for <i>cu</i> (e) rule editor	
4.32	Two views of Simplified 9-rules FLC (a) control rule (b) control	88
	surface	
5.1	Speed responses of Standard FLC, Simplified 9-rules FLC and	95
	Simplified 7-rules FLC	
5.2	Speed responses of Standard FLC, Simplified 9-rules FLC and	95
	Simplified 7-rules FLC	
5.3	Speed responses of Standard FLC, Simplified 9-rules FLC and	97
	Simplified 7-rules FLC to rated torque application (a) during forward	
	operation (b) during reverse operation	
5.4	Speed responses of Standard FLC, Simplified 9-rules FLC and	98
	Simplified 7-rules FLC to changes of speed command (a) from rated	
	to 0.9 times rated (282.6rad/s) (b) from rated to 0.5 times rated	
	(157rad/s)	
5.5	Responses of Standard FLC, Simplified 9-rules FLC and Simplified	100
	7-rules FLC at medium initial speed command (a) transient state	
5.6	Responses of Standard FLC, Simplified 9-rules FLC and Simplified	100
	7-rules FLC at low initial speed command	
5.7	Responses of Standard FLC, Simplified 9-rules FLC and Simplified	103
	7-rules FLC for fivefold inertia application	
5.8	Responses of Standard FLC, Simplified 9-rules FLC and Simplified	103
	7-rules FLC for tenfold inertia application	

5.9	Configuration for the experimental setup	109
5.10	Hardware configuration	113
5.11	Scale factor of speed measurement	115
5.12	Speed scale factor in Simulink model	115
5.13	Profile of speed command under no load condition	118
5.14	Experimental responses at 500rpm - no load (a) speed (b) reference	120
	stator q-axis currents (c) actual stator phase 'a' current for Standard	
	FLC (d) actual stator phase 'a' current for Simplified 9-rules FLC (e)	
	actual stator phase 'a' current for Simplified 7-rules FLC (f) enlarge	
	scale of actual stator phase 'a' currents	
5.15	Experimental speed responses of Standard FLC, Simplified 9-rules	121
	FLC and Simplified 7-rules FLC - no load (a) at 400rpm (b) at	
	300rpm (c) at 200rpm (d) at 100rpm	
5.16	Experimental responses to 10% step reduction in speed commands of	123
	500rpm - no load (a) speed (b) reference stator q-axis currents (c)	
	actual stator phase 'a' current for Standard FLC (d) actual stator phase	
	'a' current for Simplified 9-rules FLC (e) actual stator phase 'a'	
	current for Simplified 7-rules FLC (f) enlarge scale of actual stator	
	phase 'a' currents	
5.17	Experimental speed responses of Standard FLC, Simplified 9-rules	124
	FLC and Simplified 7-rules FLC to 10% step reduction in speed	
	commands - no load (a) at 300rpm (b) at 100rpm	
5.18	Profile of speed command with load torque application	125
5.19	Experimental responses at 500rpm - load (a) speed (b) reference stator	126
	q-axis currents (c) actual stator phase 'a' current of Standard FLC (d)	
	actual stator phase 'a' current of Simplified 9-rules FLC (e) actual	
	stator phase 'a' current of Simplified 7-rules FLC (f) enlarge scale of	
	actual stator phase 'a' currents	
5.20	Experimental speed responses of Standard FLC, Simplified 9-rules	127
	FLC and Simplified 7-rules FLC – load (a) at 400rpm (b) at 300rpm	
	(c) at 200rpm (d) at 100rpm	
5.21	Experimental responses at 500rpm - load (a) speed (b) reference stator	130
	a axis currents (c) actual stator phase 'a' current for Standard EI C (d)	

q-axis currents (c) actual stator phase 'a' current for Standard FLC (d)

actual stator phase 'a' current for Simplified 9-rules FLC (e) actual stator phase 'a' current for Simplified 7-rules FLC (f) enlarge scale of actual stator phase 'a' currents

- 5.22 Experimental speed responses of Standard FLC, Simplified 9-rules 131
 FLC and Simplified 7-rules FLC load (a) at 400rpm (b) at 300rpm
 (c) at 200rpm (d) at 100rpm
- 5.23 Experimental responses to 10% step reduction in speed commands of 133
 500rpm load (a) speed (b) reference stator q-axis currents (c) actual stator phase 'a' current for Standard FLC (d) actual stator phase 'a' current for Simplified 9-rules FLC (e) actual stator phase 'a' current for Simplified 7-rules FLC (f) enlarge scale of actual stator phase 'a' currents
- 5.24 Experimental speed responses of Standard FLC, Simplified 9-rules 134
 FLC and Simplified 7-rules FLC to 10% step reduction in speed
 commands load (a) at 300rpm (b) at 100rpm
- 5.25 Experimental responses of Standard FLC, Simplified 9-rules FLC and 135
 Simplified 7-rules FLC to speed reversal at 500rpm-no load (a) speed
 (b) reference stator q-axis currents
- 5.26 Experimental speed responses of Standard FLC, Simplified 9-rules 135
 FLC and Simplified 7-rules FLC to speed reversal -no load (a) at 300rpm (b) at -100rpm
- 5.27 Experimental and simulation speed responses of Simplified 7-rules 136
 FLC (a) at 500rpm (b) at 400rpm (c) at 300rpm
- 5.28 Experimental and simulation speed responses of Simplified 7-rules 139
 FLC (a) at -500rpm (b) at -300rpm
- 5.29 Experimental and simulation speed responses of Simplified 7-rules 140FLC during load disturbance (a) at 500rpm (b) at 400rpm (c) 300rpm
- 5.30 Experimental and simulation speed responses of Simplified 7-rules 140
 FLC to 10% step reduction in speed commands (a) of 500rpm (b) of 400rpm (c) of 300rpm

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Motor Data	164
В	Data of DC Generator Compound Excitation	165
С	Simulink Model for Simulation	166
D	Simulink Model for Experiment	171
Е	Layout of ControlDesk for Experiment	173

LIST OF ABBREVIATIONS

1) Principle symbols

се	change of error
е	error
G _e	scaling factor of error
G _{ce}	scaling factor of change of error
G_u	scaling factor of output signal
i_a, i_b, i_c	stator phase a, b, c current
i _{ds}	d -axis stator current
i _{qs}	q-axis stator current
J	total inertia
L	inductance
Р	number of pole pairs
θ	rotor position angle
R	resistance
S	switching function
T_e	electromagnetic torque
T_L	load torque
T_s	sampling time
и	control signal
V_a, V_b, V_c	stator phase a, b, c voltage
V _{ds}	d-axis stator voltage

V_{qs}	q-axis stator voltage
φ	flux linkage
ω	speed
V _{dc}	DC link voltage

2) Superscript

- * commanded value
- 3) List of abbreviations

AC	alternative current
A/D	analog/digital
ADC	analog-to-digital converter
AI	artificial intelligent
ANN	artificial neural networks
ASIC	application specific integrated circuit
BJT	bipolar junction transistor
CoG	centre of gravity
D/A	digital/analog
DAC	digital-to-analog converter
DC	direct current
DTC	direct torque control
DSC	direct self control
DSP	digital signal processor
EMF	electromagnetic force
FL	fuzzy logic
FLC	fuzzy logic control
FOC	field oriented control

GA	genetic algorithm
GTO	gate turnoff thyristor
HB	hysteresis band
HCC	hysteresis current control
HPD	high performance drives
IC	Integrated circuit
IGBT	insulated gate bipolar transistor
IGCT	integrated gate commutated thyristor
I/O	input/output
MF	membership function
MOSFET	metal-oxide-semiconductor field-effect
	transistor
MRAC	model reference adaptive control
MRAC MRAS	
	model reference adaptive control
MRAS	model reference adaptive control model reference adaptive system
MRAS PI	model reference adaptive control model reference adaptive system proportional integral
MRAS PI PID	model reference adaptive control model reference adaptive system proportional integral proportional integral derivative
MRAS PI PID PWM	model reference adaptive control model reference adaptive system proportional integral proportional integral derivative pulse width modulation
MRAS PI PID PWM R/LDC	model reference adaptive control model reference adaptive system proportional integral proportional integral derivative pulse width modulation resolver-to-linear DC converter
MRAS PI PID PWM R/LDC UoD	model reference adaptive control model reference adaptive system proportional integral proportional integral derivative pulse width modulation resolver-to-linear DC converter universe of discourse

LIST OF PUBLICATIONS

Journal Paper

1. Zulkifilie Ibrahim, **Siti Noormiza Mat Isa**, Jurifa Mat Lazi and Md. Hairul Nizam Talib, "Simplified Fuzzy Logic Speed Controller for Vector Controlled Permanent Magnet Synchronous Motor Drives", International Review of Electrical Engineering (I.R.E.E.), vol. 8, n. 1, January-February 2013.

Published Conference Proceedings

- 1. Siti Noormiza Mat Isa, Zulkifilie Ibrahim, Jurifa Mat Lazi, Md Hairul Nizam Talib, Nurazlin Yaakop and Ahmad Shukri Abu Hasim, "dSPACE DSP Based Implementation of Simplified Fuzzy Logic Speed Controller for Vector Controlled PMSM Drives", in IEEE International Conference on Power and Energy (PECon), Sabah, Malaysia, 2012, pp. 898-903.
- 2. Siti Noormiza Mat Isa, Zulkifilie Ibrahim, Jurifa Mat Lazi, Md Hairul Nizam Talib and Nurazlin Mat Yaakop *"Fuzzy Logic Speed Controller with Reduced Rule Base for Vector Controlled PMSM Drive"*, in Power and Energy Conversion Symposium (PECS), Melaka, Malaysia, 2012, pp. 94-101.
- 3. Siti Noormiza Mat Isa, Zulkifilie Ibrahim and Jurifa Mat Lazi, "Comparative Analysis of Simplified and Standard Fuzzy Logic Controller in Vector Controlled PMSM Drive", in IEEE Symposium on Industrial Electronics and Applications (ISIEA), Langkawi, Malaysia, 2011, pp. 580-585.
- 4. Siti Noormiza Mat Isa, Zulkifilie Ibrahim and Fazlli Patkar, "A Detailed Comparative Study of Fuzzy Logic Speed Controller with Reduced Rule-Base in Vector Controlled PMSM Drive", in 2nd International Conference on Engineering and ICT (iCEi), Melaka, Malaysia, 2010, pp. 114-120.
- 5. Siti Noormiza Mat Isa, Zulkifilie Ibrahim and Fazlli Patkar, "Comparative Study of Fuzzy Logic Speed Controller in Vector Controlled PMSM drive: Minimum Number of Fuzzy Rule-Base", in Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA), Sunway, Malaysia, 2009, pp. 112-118.

CHAPTER 1

INTRODUCTION

1.1 Background

Electrical drives are known as drives that use electric motors as the prime movers to provide motion control. In general, the electrical drives control speed, torque, and direction thus, resulting the horsepower of a motor. Traditionally, the operation of motor drives is uncontrolled where the motor runs at a constant speed such as compressor motor in a refrigerator when it turns ON. In order to fulfill the industry requirements for different speed applications such as electric vehicle, an adjustable method is introduced to determine the controlled operation where the motor is able to be operated at variable speeds.

The components of electrical drives consist of motor, power source, power processor, control unit and sensors. The motors are available in two types, namely Direct Current (DC) and Alternating Current (AC) motors. The motor obtains power from the electrical sources. Selection of the type of motor depends on application, cost, environmental factor and type of sources available. The power sources, either utility interface or renewable energy, or AC/DC supplies, are used to provide energy for the electrical motors. For high efficiency operation, the power obtained from electrical sources needs to be regulated using the power processor. The conventional power processor is the variable impedance or relay. The power electronics converters are normally used in the modern electrical drives. The possible conversions are from AC to DC, DC to AC, DC to DC, and AC to AC. The control unit depends on the desired performance and the type of