

Faculty of Manufacturing Engineering

DEVELOPMENT OF SUSTAINABLE MATERIAL SELECTION FOR AUTOMOTIVE BUMPER FASCIA USING ANALYTICAL HIERARCHY PROSES (AHP)

Zamzury Bin Mat

Master of Manufacturing Engineering (Manufacturing System Engineering)

2013

C Universiti Teknikal Malaysia Melaka

DEVELOPMENT OF SUSTAINABLE MATERIAL SELECTION FOR AUTOMOTIVE BUMPER FASCIA USING ANALYTICAL HIERARCHY PROSES (AHP)

ZAMZURY BIN MAT

A thesis submitted in fulfillment of the requirements for the degree of Master of Manufacturing Engineering (Manufacturing System Engineering)

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2013

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Development of Sustainable Material Selection for Automotive Bumper Fascia Using Analytical Hierarchy Process (AHP)" is the results of my own research except as cited in references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	Junie
Author's Name	:	Zamzury Bin Mat
Date	:	19 June 2013

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Master of Manufacturing (Manufacturing System Engineering). The member of supervisory committee is as follow:

Supervisor

ENGR. DR. HAMBALI BIN AREP @ ARIFF Head Of Department (Manufacturing Design) Faculty Of Manufacturing Engineering Universiti Teknikal Malaysia Melaka

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Pemilihan bahan yang mampan adalah sangat penting untuk proses perkembangan produk baru. Oleh itu, keputusan yang tepat dalam pemilihan bahan yang sesuai adalah perlu bagi menyokong keperluan pembangunan yang mampan. Objektif utama kajian ini adalah untuk mencadangkan rangka kerja pemilihan bahan mampan bagi fascia bumper automotif menggunakan proses hierarki analisis (AHP). Kaedah AHP membantu untuk melakukan proses membuat keputusan untuk merumuskan semua kepentingan setiap kriteria ke satu nilai diutamakan. Pelbagai faktor dan sub-faktor yang mempengaruhi proses pemilihan dipertimbangkan. Untuk menunjukkan rangka kerja pemilihan bahan mampan yang dicadangkan, enam jenis bahan dipertimbangkan Hasilnya didapati bahawa ia dapat membuktikan polyamides, PA6 dengan 30% GFR adalah bahan yang paling sesuai untuk fascia bumper automotif kerana ia mempunyai peratusan tertinggi nilai keutamaan pada 19% berbanding dengan bahan lain. Keputusan akhir bahan yang diperolehi dengan melakukan 4 senario analisis sensitiviti dan analisis menunjukkan bahawa ia telah terbukti iaitu PA6 dengan 30% GFR adalah keputusan yang paling optimum.

ABSTRACT

Selection of sustainable material is very essential for the development process of a new product. Therefore, the right decision on selection of the appropriate material is necessary in order to support sustainable development requirements. The main objective this study is to propose a sustainable material selection framework for automotive bumper fascia using analytical hierarchy process (AHP). AHP method helps to perform decision-making process to summarize all the importance of each criterion into one prioritized value. Various factors and sub-factors that influence the selection process were considered. To demonstrate the proposed sustainable material selection framework, six different types of materials were considered. The results revealed that Polyamides, PA6 with 30% GFR is the most appropriate sustainable material for automotive bumper fascia because it has the highest percentage of priority value of 19% compared to the other material. The final judgement of the material is gained by performing 4 scenarios of the sensitivity analysis and the analysis showed that it is proven that PA6 with 30% GFR is the most optimum decision.

DEDICATION

I would like to dedicate this report to my beloved wife and sons, Karmila, Haikal, Harraz and Hafiy and all my friends in order to encourage and helps me in completing this report.

· .

ACKNOWLEDGEMENT

Here, I would like to take this opportunity to express my sincere gratitude and appreciation to my family for their love, support, sacrifice and understanding throughout my study and most essential to my supervisor, Engr. Dr. Hambali Bin Arep@ Ariff for his constant guidance, valuable knowledge, constructive idea, encouragement and friendship in guiding me to accomplish this Master Project. I also would like to express my sincere appreciation to my manufacturing lecturers that helps in giving their knowledge for many aspects. My sincere appreciation also extends to all my colleagues and others who have provided assistance and knowledge at various occasions. Their views and tips are useful indeed toward the success of this project.

iv

TABLE OF CONTENTS

ABS	TRAK	i
ABS	TRACT	ii
DED	DICATION	iii
ACK	NOWLEDGEMENTS	iv
TAB	BLE OF CONTENTS	V
LIST	Γ OF TABLES	viii
LIST	r of figures	X
LIST	Γ OF ABBREVIATIONS	xi
LIST	F OF APPENDICES	xiv
СНА	PTER 1: INTRODUCTION	1
1.1	Background of Project	1
1.2	Problem Statement	2
1.3	Objective	3
1.4	Scope of Project	4
СНА	PTER 2: LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Sustainable Manufacturing	5
2.3	Application of MCDM in Sustainable Manufacturing	7
2.4	Analytical Hierarchy Process (AHP)	9
	2.4.1 Application of AHP in Sustainable Manufacturing	15
	2.4.2 AHP in Decision Making Process	16

	2.4.3	AHP in Material Selection Process	1 8
2.5	Introdu	ction to Bumper Fascia	1 9
2.6	Materia	al for Bumper Fascia	23
	2.6.1	Polyphenylene Oxide (PPO)	24
	2.6.2	Polycarbonate (PC)	25
	2.6.3	Polyester Elastomer	26
	2.6.4	Polyurethanes (PU)	26
	2.6.5	Polypropylene (PP)	27
	2.6.6	Polyamides (PA)	27
2.7	Sustain	able Material Factor for Bumper Fascia	28
2.8	Expert	Choice 11.5	31
2.9	Summa	ıry	32

CHAPTER 3: METHODOLOGY 33

3.1	Introduction	33
3.2	Framework of Study	33
3.3	Process Flow of Material Selection Using AHP	35
3.4	Summary	37

CHAPTER 4: METHOD SELECTION PROCESS USING AHP 38

4.1	Introd	Introduction 38	
4.2	AHP Steps for Bumper Fascia Material Selection		40
	4.2.1	Step 1: Define the Problem	41
	4.2.2	Step 2: Develop a Hierarchy Model	41
	4.2.3	Step 3: Construct a Pair-wise Comparison Matrix	42
	4.2.4	Step 4: Perform Judgement of Pairwise Comparison	42
	4.2.5	Step 5: Synthesizing the Pairwise Comparison	42
	4.2.6	Step 6: Perform the Consistency	43

	4.2.7	Step 7: Step 3-6 Are Performed for All Levels in the Hierarchy		
	Model			
	4.2.8	Step 8: Develop Overall Priority Ranking		
	4.2.9	Step 9: Result of Selection	54	
СНАР	TER 5:	RESULTS AND DISCUSSION	55	
5.1	Results		55	
5.2	Discuss	sion	57	
	5.2.1	Verification through Sensitivity Analysis	57	

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS		
6.1	Conclusion	61
6.2	Recommendations	62

REFERENCES

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Scale for Pair Wise	13
2.2	Perform Judgment of Pair wise Comparison of Criteria	
	Respect to Goal	13
2.3	Random Index	15
2.4	Type of Material for Automotive Bumper Fascia	24
4.1	Properties Data for Each Criterion	39
4.2	Pair wise Comparison of Criteria with Respect to Overall Goal	42
4.3	Synthesizing the Matrix for the Criteria	43
4.4	Calculation to get a New Factor	44
4.5	The Consistency Test for the Criteria	45
4.6	The Consistency Test for the MP –Sub-Criteria	46
4.7	The Consistency Test for the PP-Sub-Criteria	46
4.8	The Consistency Test for the P	46
4.9	The Consistency Test for the EU	47
4.10	The Consistency Test for the Alternatives Based on LT	47
4.11	The Consistency Test for the Alternatives Based on EE	47
4.12	The Consistency Test for the Alternatives Based on EA	48
4.13	The Consistency Test for the Alternatives Based on D	48
4.14	The Consistency Test for the Alternatives Based on WA	49
4.15	The Consistency Test for the Alternatives based on DU	49
4.16	The Consistency Test for the Alternatives based on S	50
4.17	The Consistency Test for the Alternatives based on C	50

4.18	The Consistency Test for the Alternatives based on RC	51
4.19	The Consistency Test for the Alternatives based on DP	51
4.20	The Consistency Test for All the Alternatives	52
4.21	The Consistency Test for All the Alternatives	53
4.22	Overall Priority Vectors for Sub-Criteria with Respect to the Criteria	53
4.23	Overall Priority Vectors for Alternatives with Respect to the Criteria	54
4.24	Result Selection	54
5.1	Priority Percentage by MS Excel	55
5.2	Comparison Priority Percentage by MS Excel and Expect Choice	57
5.3	The Result Obtained by Simulated for Scenarios	59

LIST OF FIGURES

FIGU	RE TITLE	PAGE
2.1	AHP principle and its steps	10
2.2	A for level hierarchy model	11
2.3	Bumper System	20
3.1	Structure of research work	34
3.2	Material selection using AHP principle	36
3.3	A framework for automotive bumper fascia material selection	37
4.1	Steps of AHP method	40
4.2	A hierarchy model for automotive bumper fascia material selection	41
5.1	Hierarchy model by using Expert Choice	56
5.2	Priority ranking by Using Expert Choice	56
5.3	The sensitivity graph of the main criteria with respect to the goal	58
5.4	The sensitivity graph of the main criteria with respect to the goal	59
	when score or weight of manufacturing process is increased by 16%	

LIST OF ABBREVIATIONS

ABS	-	Acrylonitrile butadiene styrene
AHP	-	Analytical Hierarchy Process
ANC	_	Average of Normalized Column
ANN	-	Artificial Neural Network
ANSYS	-	Analysis System
APME	-	Association of Plastics Manufacturers in Europe
ASA	-	Acrylonitrile Styrenen Acrylic Ester Copolymer
CAD	-	Computer Aided Design
CBU	-	Completely Built-up Units
CS	-	Cost
CTE	-	Coefficient Thermal Expansion
D	-	Density
DEA	-	Development analysis
DSS	-	Decision Support Software
EAB	-	Elongation at Break
ELECTRE II		ELimination Et Choix Traduisant la REalite
ELVs	-	End-of-Life Vehicles
ER	-	Electric Resistivity
EPR	-	Ethylene propylene rubber
FM	-	Flexural Modulus
FS	-	Flexural Strength
FEA	-	Finite Element Analysis
FOS	-	Factor of Safety

xi

C Universiti Teknikal Malaysia Melaka

FRP	-	Fiber-Reinforced Plastics
GF	-	Glass Fiber
HIPS	-	High Impact Polystyrene
MA-AHP		Morphological Analysis and Analytical Hierarchy Process
MCDM		Multi-Criteria Decision Making
MFR	-	Melt Flow Rate
Mpa	-	Mega Pascal
MOS	-	Metal Oxy Sulfate
MP	-	Mechanical Properties
MS	-	Microsoft
MT	-	Mold Temperature
PA	-	Polyamide
PALF	-	Pineapple Leaf Fiber
PBT	-	Polybutylene Terephthalate
PC	-	Polycarbonate
PCA		Principal Component Analysis
PDS	-	Product Design Specifications
PET	-	Polyethylene Terephthalate
PP	-	Polypropylene
PPE	-	Polyphenylene Ethe
PROMETHEE		Preference Ranking Organisational Method for Enrichment Evaluation
PU	-	Polyurethane
PVC	-	Polyvinyl Chloride
RI	-	Random Index
R&D	-	Research And Development
RIM	-	Reaction Injection Molding
RMC	-	Raw Material Cost
SAN	-	Styrene Acrylonitrile Copolymer

SMC	-	Sheet Moulding Compound
TBL	-	Triple Bottom Line
TPU	-	Thermoplastic Polyurethane
US	-	United States
UV	-	Ultra Violet
WA	-	Water Absorption
YS	-	Yield Stress

LIST OF APPENDICES

APPE	NDICES	TITLE	PAGE
A	Gantt Chart for Master Project		71
В	Criteria		72
С	Sub Criteria (Manufacturing Process	3)	74
D	Sub Criteria (Physical Properties)		75
E	Sub Criteria (Performance)		78
F	Sub Criteria (Cost)		80
G	Sub Criteria (End Of Use)		82
Н	Sub Criteria (Less Toxic)		84
I	Sub Criteria (Embodied Energy)		85
J	Sub Criteria (Energy Absorption)		88
K	Sub Criteria (Density)		90
L	Sub Criteria (Water Absorption)		92
М	Sub Criteria (Durability)		94
N	Sub Criteria (Stiffness)		96
0	Sub Criteria (Recyclability)		98
Р	Sub Criteria (Disposal)		100
Q	Graph Physical Properties Decrease		102
R	Graph Performance Increase		103
S	Graph Cost Increase		104

xiv

T Graph End of Use Increase

105

CHAPTER 1

INTRODUCTION

Generally this chapter discusses the sustainable material selection by using the Analytical Hierarchy Process (AHP) which includes the background, problem statement, objectives and scope of project.

1.1 Background of Project

Sustainability culture is one of the key factors in enhancing success in design or even in manufacturing on the whole. The increased of awareness towards the importance of sustainability concepts is driven by the demand from the customers for sustainable products and also the expansion of regulations by the government. Sustainability concepts can categorized into economy, environmental and also social perspectives. On the other hand, sustainable concepts in the manufacturing field can be categorized by material, product design and also the manufacturing process. Selection on sustainable concept is essential for contemporary manufacturing organizations. There are various selection methods in the selection process. The Multi-Criteria Decision Making (MCDM) adopts the Analytical Hierarchy Process (AHP) in order to determine and evaluate the material which fulfils the sustainable material selection requirements. Analytical Hierarchy Process (AHP) is a systematic approach which assists single or group decision makers in problem solving process. The AHP is made up by three processes namely the hierarchy construction, priority analysis and consistency verification. Firstly, the decision makers need to disintegrate complex multiple criteria decision problems into its components part whereby every possible attributes are arranged into multiple hierarchical levels. Subsequently, these clusters will be compared along the same level in a pairwise manner based on their own experience and knowledge (Ho, 2008).

The application of AHP was illustrated in determining the sustainable material selection for automotive bumper fascia. Studies on different types of material were carried out and the sensitivity analysis was performed to test the stability of the priority ranking. Consequently, the study presented the method of selecting sustainable material by considering environmental requirements during selection process by using the analytical hierarchy process.

1.2 Problem Statement

At present, engineers encounter great challenges in determining the sustainable material selection which concurrently fulfils the environmental requirement during the development process. Determining the best sustainable material on product design is a crucial task since there are many factors to be taken into consideration. Inaccurate decision on sustainable material selection during the product development process may lead to redesigning or remanufacturing process of the product. Thus, the AHP is only of the techniques which can be employed in assisting the engineers in their product development process.

2

Automotive bumper fascia was selected as a case study of this research. Automotive bumper fascia is one of basic structural component of an automotive bumper system which contributes to vehicle crashworthiness or occupant protection during front or rear collisions. Other basic components namely energy absorber, bumper beam and bumper stay (Yim et al., 2005 and Lee and Bang, 2006). From all four basic components, the bumper fascia is already a largely mature application for plastic on automotive industry. Thus, it is important to determine the most appropriate sustainable material for the automotive bumper fascia at the early stage of product development process. So far, there is no researchers have used Analytical Hierarchy Process (AHP) to develop the sustainable material selection for automotive bumper fascia.

1.3 Objectives

The goal of this study is to propose a new sustainable material selection framework for automotive bumper fascia and the specific objectives of this study are as follows:

- i. To identify sustainable material factors that influences the selection process.
- ii. To determine the possible solution on sustainable material selection for automotive bumper fascia using the proposed framework.
- iii. To study the effects of different factors on deciding the best decision option by conducting the sensitivity analysis.

 $\hat{h} \sim \hat{c}$

1.4 Scope of project

The scope of study on different types of material for automotive bumper fascia will include:

- i. The study on product development process related to sustainable requirements
- ii. Performing sensitivity analysis using expert choice software.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In order to produce products with low environmental impact, a few principles need to be considered during the product development stage with special regards to material selection, design, product in use, recycling criteria, cultural aspects and many others. The purpose of decision analysis is not to replace judgement, but to help organise it and to provide better understanding of the system. The multi-criteria decision-making process may help the manufacturers systematically develop appropriate and profitable material for their sustainable products.

2.2 Sustainable Manufacturing

The keys of measuring sustainability for five established cement industries mentioned by creating the list of criteria associated with the particular industry and using the proposed list of criteria and the sustainability reports. The harmful effects of CO2 emissions and it are partly related to the performance indicators given in the report that have been presented by Isaksson and Steimle (2009).

Szekely and Knirsch (2005) discussed about the methods and tools employed in various manufacturing organisations such as sustainability indices, performance indicators to measure sustainability performance where else economic, environmental and social as the metrics involved in the achievement of sustainability to improve the measurement of

5