

DESIGN AND FINITE ELEMENT ANALYSIS OF INTERFERENCE PRESS-FIT ALUMINUM NUT

AZNIZAM BIN ABDULLAH

MASTER OF MANUFACTURING ENGINEERING (MANUFACTURING SYSTEM ENGINEERING)

2014

DESIGN AND FINITE ELEMENT ANALYSIS OF INTERFERENCE PRESS-FIT ALUMINUM NUT

AZNIZAM BIN ABDULLAH

A thesis submitted

In fulfillment of the requirement for the degree of Master of Manufacturing Engineering (Manufacturing System Engineering)

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

DECLARATION

I declare that this thesis entitle "Design and Finite Element Analysis of Interference Press-fit Aluminum Nut (INPREANUT)" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature: ADMine Name: AZNIZAM BIN ABDUCLAFI Date: 27/6/2014

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Manufacturing Engineering (Manufacturing System Engineering)

Ar. Shajalon Signature :.... Midlen. Biz Supervisor Name :.... 27 Date :.... <u>_____</u> DR. SHAJAHAN BIN MAIDIN Pensyarah Kanan

Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved parent, parent in-laws, wife, children, sisters and brothers for having the patience and supported me to reach this point. All of you provide me with a loving and supporting condition without giving up and also have encourage me in many ways. Without all of support, this journey would never have been accomplished.

ABSTRACT

Construction of mechanical platforms requires a suitable method for assembling two physical components. One of the assembly methods that are being used for discrete hardware component is called fasteners. In the world of Technical Vocational Education Training (TVET), some projects require students to design and produce a product that will involve the installation of mechanical components. Taking into account the difficulties faced to make such assembly, joining process involved cutting the parts accurately until the components could be mated together. Thus, the fastener innovation was rather innovated to provide a more effective alternative method. The Interference Press-fit Aluminum Nut (INPREANUT) has designed and manufactured to meet such purpose. Quality Function Deployment (QFD) is used to translate the user needs and requirements into technical requirements. Once this step is completed, Design for Manufacturing and Assembly (DFMA) is used to select the best approach in assembly to reduce the constraints such as assembly time, efficiency and most importantly, cost. During the design process of INPREANUT, the strength of the connection between INPREANUT with aluminum round tube was analyzed using Finite Element Analysis (FEA). The CATIA 3D software was employed to design INPREANUT being imported into ANSYS software to analyse the INPREANUT's shear strength. The strength of a mechanical connectivity is a key requirement to ensure that it has the expected friction force as well able to meet some of the other features. The features are easy to install, safe, lightweight, saves time and accurate. After completing the preliminary design and analysis, the INPREANUT is then fabricated and experiments performed to verify that the numerical methods used correlates with real measurement values. It is hoped that the INPREANUT fabrication will able to help students to make mechanical assembly components quickly, accurately and economically.

ABSTRAK

Pembinaan platfom mekanikal memerlukan kaedah yang sesuai bagi mencantumkan dua komponen diantaranya ialah komponen mekanikal diskrit iaitu fastener. Di dalam dunia pendidikan teknikal, beberapa projek memerlukan para pelajar untuk merekabentuk produk yang akan melibatkan proses pemasangan secara mekanikal. Dengan mengambilkira kesukaran yang dihadapi untuk membuat pemasangan pada penyambungan telah melibatkan proses pemotongan komponen sehinggalah kepada pemasangan, maka inovasi fastener telah dijanakan bagi menyediakan kaedah alternatif yang lebih efektif. Produk tersebut dinamakan Interference Press-fit Aluminum Nut (INPREANUT) telahpun direkabentuk dan dihasilkan bagi memenuhi tujuan tersebut. Teknik Quality Function Deployment (QFD) telah dipilih untuk menterjemahkan kehendak dan keperluan pengguna bagi mendapatkan mendapatkan maklumat teknikal. Seterusnya, Design for Manufacturing and Assembly (DFMA) telah digunakan bagi mendapatkan rekabentuk yang effisien dan mengurangkan kos. Semasa didalam proses rekabentuk, kekuatan penyambungan diantara INPREANUT dengan tiub bulat aluminum telah dianalisis dengan menggunakan Finite Element Analysis (FEA). Perisian 3D CATIA telah digunapakai untuk merekabentuk INPREANUT sebelum diimport kedalam perisian ANSYS bagi tujuan analisa kekuatan ricih. Kekuatan bagi penyambungan itu merupakan keperluan utama bagi menentukan bahawa ianya adalah boleh digunakan dan mempunyai ketahanan yang diharapkan disamping mampu memenuhi beberapa ciri-ciri yang lain. Ciri-ciri tersebut adalah mudah dipasang, selamat, ringan, menjimatkan masa dan tepat. INPREANUT kemudiannya difabrikasi dan dilakukan eksperimen bagi menentusahkan bahawa kaedah numerikal yang digunapakai memenuhi nilai sebenar pada penyambungan. Adalah diharapkan dengan menggalakkan penggunaan teknik fabrikasi dan pemasangan yang lebih selamat iaitu dengan menggunakan INPREANUT dengan tiub bulat aluminum akan dapat membantu para pelajar membuat pemasangan komponen mekanikal dengan cepat, tepat dan berpatutan.

ACKNOWLEDGEMENTS

There have been many people whom had helped me in preparing of this thesis. Their guidance, patient, advice, humor, moral support and inspiration sustained me along the way during this Master's project. With this opportunity, I would like to thank all of them. First and foremost, I would like to thank Allah S.W.T for giving me the light to see His Greatness.

Great thanks are in order to my supervisor, Dr Shajahan Bin Maidin for having the patience to and whom who had supervised, guided and assisted me on this Master's project. Appreciation also goes to all the lecturers from Universiti Teknikal Melaka, Malaysia (UTEM) that who had motivated, taught and guided me during my study.

My sincere appreciation also goes to all my teachers, my family members and relatives. Each and every one of you has helped me with wise advice and sharing the knowledge and wisdom that I will be remembered throughout my life.

This appreciation is also extended to all my friends who have shared and helped me in many ways which have brought out the meaning of friendship to a new level. I thank you dearly.

TABLE OF CONTENTS

PAGE

DE	CLARA	TION	
AP	PROVAI		
DE	DICATI	ON	
AB	STRACT		i
AB	STRAK		ii
AC	KNOWL	LEDGEMENTS	iii
TA	BLE OF	CONTENTS	iv
LIS	T OF TA	ABLES	vii
LIS	T OF FI	GURES	viii
LIS	T OF AF	PPENDICE	xii
LIS	T OF AE	BBREVIATIONS	xiii
СН	APTER		
1.	INTR	ODUCTION	1
	1.1.	Background	1
	1.2.	Problem Statement	
	1.8.	Objectives	2 3
	1.9.	Scope and limitation	3
	1.10.	Project Planning	4
2.	LITEF	RATURE REVIEW	6
	2.1.	Introduction	6
	2.2.	Mechanical fastening and integral mechanical attachment	6
	2.3.	Mechanical fastening	7
	2.4.	Integral mechanical attachment	9
		2.4.1 Key joints	9
		2.4.2 Interference fit	12
	2.5.	Fastener Application	14
	2.6.	Student's Project involved with Mechanical Assembly	17
		2.6.1 Parts assembly preparation	21
		2.6.2 During Assembly	22
	2.7.	Mechanical Fastening and Integral Mechanical Attachment Summary	23
	2.8.	The Concept of Design for Manufacturing/Assembly	24
	2.9.	Quality Function Deployment (QFD)	27
	2.10.	0	29
	2.11.	Design for Manufacturing and Assembly (DfMA)	31

2.12.	DFMA Methodology	33
	2.12.1 Lucas Design for Assembly	33
	2.12.2 Assemblability Evaluation Method	35
	2.12.3 Boothroyd-Dewhurst Design for Assembly Method	36
2.13.		37
2.14.		40
2.15.		42
2.16.		42
2.17.	• • •	44
	2.17.1 Pin joints	44
	2.17.2 Fittings	45
2.18.	č	46
2.19.	••	49
	Finite Element Analysis (FEA) using ANSYS	52
	2.20.1 ANSYS Pre-processing	52
	2.20.2 ANSYS Solver	54
	2.20.3 ANSYS Post-processing	54
2.21.	Finite Element Analysis Summary	55
METI	HODOLOGY	56
3.1.	Introduction	56
3.2.	Process Flow	57
3.3.	Conceptual Design	58
3.4.	Determining The Customer Needs – Voice of Customer (VOC)	59
3.5.	Quality Function Deployment (QFD)	60
3.6.	Concept generation and evaluation	62
3.7.	Detail Design	63
3.8.	INPREANUT Design for Assembly Case Study	65
3.9.	Interference Fits member	70
3.10.	Dimensional Tolerance of INPREANUT	71
3.11.	INPREANUT Assembly	72
3.12.	INPREANUT Finite Element Analysis (FEA)	72
3.13	INPREANUT experiment set up condition	73
3.14.	INPREANUT pull out simulation	74
3.15.	INPREANUT Fabrication	75
3.16.	INPREANUT Pull Out Validation	75
3.17.	Summary	79
RESU		80
	Introduction	83
	Boothroyd Dewhurst DFA Case Study Result	83
	INPREANUT Finite Element Analysis	89
	Method of analysis	90
	Experimental Test	94
	Implementation	96
4.7.	Boothroyd Dewhurst DFA Case Study Result	98

3.

4.

5.	CONCLUSION AND FUTURE WORK	99
	5.1. Project Conclusion	99
	5.2. Recommendation for future work	101
DDI		101

REFERENCES APPENDIX

101 110

LIST OF TABLES

TABL	E TITLE	PAGE
1	Label and description of INPREANUT nomenclature	64
2	Specification of two types of Aluminium tube from manufacturer	70
3	Application of DFA rules for part reduction	84
4	Result of Design for Assembly (DFA) Analysis for the old Wheel Mobile Robot Design	85
5	Summary parts after an application of DFA	87
6	Result of Design for Assembly (DFA) Analysis for the New Design of Wheel Mobile Robot Platform	88

LIST OF FIGURES

FIGU	TITLE	PAGE
1	Schematic illustration of some general mechanical fastening methods and fasteners Including: (a) a nail in wood; (b) a pin (with locking Cotter pin) in metal; (c) an upset rivet in metal; (d) a self-tapping screw in wood; (e) a nut and bolt in metal; (f) mating eyelets/grommets in a soft material, such as gabric or leather; and (g) a staple in paper,	8
	cardboard or leather (Messler, 2004)(h) Two-Piece Tree Type Panel Fastener	
2	Key joints (a) Schematic diagram (b) Key joint with Assembly parts	8
3	Spline shaft	10
4	Flanges	10
5	Tapered joint	11
6	Jaw coupling	11
7	Interference fits	12
8	Graphical representation of fits (Singh, 2006)	13
9	Press Fit	14
10	Ferrule fitting for hydarulic hose	15
11	Rivet nut (Bollhoff Ltd, 2007)	15
12	Revnut Rivet	16
13	Steps to setting the revnut for assembly	16

14	Fixturing pin with application in automotive	17
15	Example Robot used in Robotics Project	19
16	Robot assembly problem faced by the students	20
17	Example cutting material by using hack saw	21
18	Kerf mark on human bone produced by hack saw (Bailey et al., 2011)	22
19	Aluminum Square Hollow after cut	22
20	Process for assembly square tube	23
21	The morphology of design (Lal, Gupta and Reddy, 2005)	25
22	House of Quality (HOQ)	28
23	Framework for Design for X Perspectives	30
24	Lukas-Hull DfMA Method	34
25	Assessment of suitability for assembly and redesign (Miyakawa and Ohashi, 1986)	35
26	Flow chart for typical steps taken using DFMA techniques (Boothroyd, Dewhurst and Knight, 2002)	36
27	Geometrical features affecting part handling	38
28	Common fastening method (Left to right: Simplest, low cost to most parts hardest to assembly)	39
29	Geometry of Peg and Hole (Boothroyd, Dewhurst and Knight, 2002)	40
30	The process of Finite Element Analysis (Bathe, 1996)	43
31	Lame's model assumptions and the real behavior (Yang et al., 2001)	47
32	Geometry of the two underformed rings	49
33	Finite element model (a) and mesh and (b) of hollow shaft-hub connections	51
34	Common elements types used in ANSYS Workbench Simulation (ANSY WB, 2006)	52

35	Process Flow in Design and FEA of Interference Press-fit Aluminum	57
• -	Nut (INPREANUT)	50
36	Kano's Model of Customer Satisfaction (Kano et al., 1984)	59
37	Affinity Diagram to structure the voice of customers	60
38	Design requirements translate into quality characteristics	61
39	New Approach Decision Selection Matrices	62
40	Interference Press-fit Aluminum Nut (INPREANUT) Design	63
41	INPREANUT Nomenclature	64
42	INPREANUT Drawing	65
43	Old design of wheel mobile robot platform	66
44	Selected manual handling time standards, seconds (parts are within easy	67
	reach, are no smaller than 6mm, do not stick together, and are not	
	fragile or sharp) (Boothroyd, Dewhurst and Knight, 2002)	
45	Alpha and Beta rotational symmetries for various parts (Boothroyd,	68
	Dewhurst and Knight, 2002)	
46	Selected manual insertion time standards, seconds (parts are small and	69
	there is no resistance to insertion) (Boothroyd, Dewhurst and Knight,	
	2002)	
47	Aluminum round tube	70
48	INPREANUT Tolerance Size	71
49	Interference Press-fit Aluminum Nut (INPREANUT) Assembly	72
50	Interference Press-fit Aluminum Nut (INPREANUT) Assembly in	72
	Wireframe	
51	ANSYS Software for interference fit and pin pull-out contact analysis	73
52	Process layout for Interference Press-fit Aluminum Nut (INPREANUT)	75
	fabrication	
53	Galdabini Universal Testing Machine	76

54	INPREANUT with aluminum tube before press-fit	77
55	INPREANUT with aluminum tube after press-fit	77
56	INPREANUT assembly test sample for stress test	77
57	INPREANUT assembly on Universal Test Machine (UTM)	78
58	Graphic User Interface (GUI) of Galdabini Universal Test Machine	79
59	Summary of methodology	80
60	Exploded view of wheel mobile robot parts (92 parts)	83
61	New wheel mobile robot modified Design for Assembly	86
62	New wheel mobile robot modified Design for Assembly exploded view	86
	(36 parts)	
63	INPREANUT with aluminum hollow in ANSYS environment	89
64	FEA result of INPREANUT	91
65	Force applied in press-in and pull-out test of INPREANUT	92
66	INPREANUT press-in into the aluminum tube	93
67	INPREANUT pull-out from the aluminum tube	93
68	An example of INPREANUT Specimen Pull-Out Test Result from	95
	Galdabini UTM Machine	
69	Sub-assembly INPREANUT and aluminum hollow tube joint with	96
	modular aluminum profles (MAPS)	
70	Components used in Wheel Mobile Robot Assembly	97
71	An Assembly of Wheel Mobile Robot Platform	97

LIST OF APPENDICE

APPENDICE

TITLE

PAGE

Upper and lower allowances in shaft 1

113

LIST OF ABBREVIATIONS

AEM	Assemblability Evaluation Method
DfMA	Design for Manufacture and Assembly
DfX	Design for X
DfA	Design for Assembly
DfM	Design for Manufacture
FEA	Finite Element Analysis
HOQ	House of Quality
INPREANUT	Interference Press-fit Aluminum Nut
QFD	Quality Function Deployment

CHAPTER 1

INTRODUCTION

1.1 Background

This chapter introduces the project as well as briefly describes the problem statements, objectives and its scope. This chapter will also provide an overview of the project's implementation.

Method that allow for easy to assemble and disassembly is the best method to be applied in student's design and build the project or mechanical construction model because of a few factors. The students are constrained with the time allocated and also need to work with the equipment and tools that will reduce the risk to harm them. Furthermore, the project need to be disassemble afterwards that due to storage constraint's and some parts is needs to be recycled by and for the next group of students. This situation reflect on the importance of disassembly that become as a premise in product recycling and also established important link of product remanufacturing (Tian et al., 2012). Furthermore, recycling, reuse and reduction (3R) of waste consider product disassembly pattern and modularity as a strategy to enhance 3R-abilities (Huang et al., 2012).

1.2 Problem Statement

The conventional method of permanent joint assembly such as rivet or welding the structure shows some difficulties and drawbacks. To overcome these issues, a new method for the joint assembly needs to be introduced. An innovative approach in improving mechanical fitting will be able to reduce the unnecessary process, increase safety aspect, allow students to modify the dimension of parts, relatively easy to assemble and disassemble, increase accuracy, reduce weight and reuse the parts. The key improvement in this approach is by mating the parts for locating round features within a round tolerance zone rather than the square traditional within a square tolerance zone. The mechanical fastener must meet the fits standard to signify the range of tightness or looseness that may result from the application of specific combination of allowances and tolerance in mating parts. Therefore, in this project the fastener is designed to meet the specified requirement.

However in the joining performance criterion are measured based on strength of the joint. To avoid unnecessary experimenting during the design process, a numerical model is the best option to be used. This is because the computer models can be used to make simulations and also prediction, uncertainty analyses or sensitivity studies (De Rocquigny et al., 2008). The finite element analysis (FEA) is one of the tools used to solve this type of problem. The developed numerical model, analyses the strength of mechanical assembly on which is then validated by experiment.

1.3 Objectives

The objectives of the project are as follows:

- i. To design and validate INPREANUT based on the needs and the design efficiency.
- ii. To performed Finite element analysis (FEA) of press-fit and pull-out INPREANUT
- iii. To validate the FEA and hence the INPREANUT experimentally

1.4 Scope and limitation

The scopes of this project are as follows:

- i. The Interference Press-fit Aluminum Nut (INPREANUT) is designed to joint aluminum hollow tubes with specified standard by using interference press-fit in manual assembly.
- ii. The fastener will be modeled by using Mechanical CAD software (CATIA V5R18).
- iii. The INPREANUT Finite element analysis (FEA) will be analyzed by using ANSYS software.
- iv. The fastener fabrication will be done by the used of Didactic CNC Lathe machines and Conventional Lathe available in the workshop after machine capability is studied and understands.
- v. The pull-out strength of assembly between INPREANUT and aluminum hollow tube will tested by using tensile test machine.
- vi. The limitation of this project is that the INPREANUT will only be fabricated to match the hollow tube with inner diameter of, \emptyset 10.9mm and \emptyset 10.7mm.

1.5 Project Planning

The project milestone is shown in Table 1. The schedule is divided into two phases based on semester on which is for semester four and semester five. The project flow begins with a review of papers, Interference Press-Fit Aluminum Nut (INPREANUT) design, interference press-fit. The pull-out of INPREANUT shears strength will be analyses by using the Finite element analysis (FEA), INPREANUT fabrication, parts assembly and testing.

ELEMENT ANALYSIS (FEA) OF INTERFERENCE PRESS-FIT Automn NUT (INPREANUT) Automn NUT (INPREANUT) Auto															-		
ALUMINUM (INPREANU) Automotive for and the antipart of the an		DESIGN AND FINIT	Ē	LEMEN	TANAL	SIS (FEA)	OF IN	TERFE	RENCE	PRE	SS-FI				NEV.	REVISION
Monthlyaers Year Stall Monthlyaers Jean Jean Jean Jean Monthlyaers Jean Jean Jean Jean Jean Anteria Pan Jean Jean Jean Jean Jean Anteria Pan Anteria Jean Jean Jean Jean Anteria Pan Anteria Jean Jean Jean Jean Jean Jean Asternal Steagn Pan Anteria Jean				ALUI	MINUM N	IUT (II	NPRE	ANUT	~					epared by nizam A.	Approve Dr Shaia	ed by: han M.	DATE 3/2/2013
Montry/set (Bpless Montry/set (Bpless Montry (Bpless Montry (Bpless <th< th=""><th></th><th></th><th>,</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>			,														
Alterieur di palers Parr Parrieur di palers Parrieur di parrieur	N/S	wonunyears	Month	JAN	FEB	MARCI		APRIL	MAY				AUGUST	SEPT	OCTOBER		2 DECEMBER
Problem Statement, Aims. Pain Objectives and Scope Actual Objectives and Scope Actual Mechanical Assembly joint parts) Pain Mechanical Assembly joint parts) Pain Checkprout Pain Design (Conceptual Design, Design) Actual Embodiment & Detail Design, Design Pain Entre Element Analysis (FEA) for Plan Pain Inteference-fit Actual Meterials, programming, tools and Plan Pain Insectine parning Actual Reting Actual			Plan														
Objectives and Scope Actual Mechanical Assembly (joint parts) Actual Mechanical Assembly (joint parts) Actual Design (Conceptual Design) Actual Embodiment & Detail Design) Plan Entrie Element Analysis (FEA) for Inteference-fit Actual Materials programming tools and mechine planning Plan Materials programming tools and Materials Actual Materials programming tools and Materials Plan Materials Plan Materials Actual Materials Plan Materials Actual Materials Actual Materials Actual Material Plan Material Actual Material			Plan														
Mechanical Assembly upinit parts) Plain			Actual										•				
Actual Actual Design (Conceptual Design Pelan Embodiment & Detail Design Embodiment & Detail Design Finite Element Analysis (FEA) for antiference-fit Actual Materials, programming tools and actual Materials, programming tools and actual Materials, programming tools and actual NPREANUT Fabrication Plan NPREANUT Fabrication Ban Neterial Materials, programming tools and actual Ban Nencetine panning Data analysis & comparison Actual Data analysis & comparison Actual Report write up Report submission presentation and	3		Plan														
Design (Conceptual Design) Pain Embodiment & Detail Design) Actual Finite Element Analysis (FEA) for interference-fit Actual Materials, programming tools and machine panning Actual Materials, programming tools and machine panning Actual NPREANUT Fabrication Actual Refinement Actual Refinement Actual Data analysis & comparison Actual Data analysis & comparison Actual Report write up Actual Report write up Actual			Actual														
Enrinourment & vetail Lesign) Actual Finite Element Analysis (FEA) for Interference-fit Actual Materials programming tools and mechine planning Plan Material Plan Material Plan Material Plan Data analysis & comparison Actual Actual Actual Report write up Actual Actual Actual Report submission presentation and Plan		Design (Conceptual Design, Design	Plan														
Finite Element Analysis (FEA) for Interference-fit Plan Plan Materials, programming tools and machine panning Plan Plan Materials, programming tools and machine panning Plan Plan NPREANUT Fabrication Plan Plan NPREANUT Fabrication Plan Plan Naterials, programming tools and machine panning Plan Plan NPREANUT Fabrication Actual Plan Refinement Actual Plan Data analysis & comparison Actual Plan Report write up Actual Plan Report write up Plan Plan																	
Interference-rit Actual Actual Actual Actual Actual Materials programming tools and Actual Materials programming tools and Actual Actua	40		Plan	•													
Materials, programming tools and machine planning tools and machine planning tools and machine planning to the machine planning to the machine plan between the machine plan analysis & comparison to the machine plan between the machine plan between the machine plan between the machine plan between the machine presentation and the machine presentation and the machine presentation and the machine presentation and the machine plan between the machine presentation and the machine			Actual														
mechine panning Actual Actual Actual Internation Ac	u	iming, tools and	Plan														
NPREANUT Fabrication Festing Festing Festing Refinement Refin	D		Actual														
Actual Actual Testing Actual Refinement Actual Actual Plan Data analysis & comparison Plan Data analysis & comparison Plan Report write up Actual Actual Actual Report write up Actual Report write up Actual	~		Plan														
Testing Plan Refinement Actual Actual Plan Data analysis & comparison Actual Data analysis & comparison Actual Report write up Actual Report submission presentation and Actual	-		Actual														
Refinement Actual Actual Ban Branch Actual Data analysis & comparison Actual Actual Report write up Actual Report submission presentation and Plan Actual Report submission presentation and Plan Actual Report submission presentation and Actual Report submission and Actual Report submission presentation and Actual Report sub	00		Plan														
Refinement Refinement Actual Actual Actual Report write up Actual Report submission Actual Report submission needer analysis & comparison Report submission needer actual Report submission ne			Actual														
Actual Actual Data analysis & comparison Plan Actual Actual Report write up Actual Report submission presentation and Plan	6		Plan														
Data analysis & comparison Plan Plan Actual Actual Report write up Actual Actual Actual Report write up Actual Report write up Actual			Actual														
Report write up Report write up Report submission presentation and Report submission p	10		Plan														
Report write up Report submission presentation and Plan Report submission presentation			Actual														
Actual Actual Report submission presentation and Plan	11	Report write up	Plan		Ĩ												
Report submission presentation and Plan			Actual														
	12	Report submission presentation and	Plan						tion								

Table 1: Master Project Milestone Chart

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter is divided into three major sections:

- i. Mechanical fastening and integral mechanical attachment
- ii. The concept of Design for Manufacturing/Assembly
- iii. Finite element analysis (FEA) of Fasteners and Mechanical Joining

2.2 Mechanical fastening and integral mechanical attachment

Mechanical joining of parts or structural elements into assemblies or structures requires some means for developing interference forces or interlocking between those parts or elements at their mating or faying surfaces to prevent unwanted movement (at least in some directions) or unintentional disassembly (Messler, 2004).

Messler (2006) divides mechanical joints into two subgroups (i) mechanical fastening and (ii) integral mechanical attachment. The joining is achieved completely through mechanical force with at some scale interlocking arises resulting in physical interference among parts. At a macroscopic level, interlocking and interference arise from Designed-in or processed-in (or, in nature from naturally occurring) geometric features. In mechanical fasteners, the features are the result of the parts being joined and a supplemental of part or devices known as "fastener" whereas in integral mechanical