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Abstract 

 

Haze occurs almost every year in Malaysia and is caused by smoke which 

originates from forest fire in Indonesia. It causes visibility to drop, therefore 

affecting the data acquired for this area using optical sensor such as that on board 

Landsat satellite. The effects of haze on the data can be observed from the spectral 

and statistical properties of land cover classification. The work presented in this 

thesis is meant to analyse the statistical properties of land cover classification of 

hazy dataset. Maximum Likelihood (ML) was found to be a preferable 

classification scheme in which the effects of haze can be investigated. The study 

made use of hazy dataset that were simulated based on real haze spectral and 

statistical properties. By investigating these dataset, the spectral and statistical 

properties of the land classes can be systematically analysed, in which showing 

that haze modifies the class spectral signatures and statistical properties, 

consequently causing the data quality to decline.  
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1 Introduction 
 

Haze reduces visibility due to the attenuation (i.e. scattering and absorption) of 

solar radiation by the haze constituents [13]. Most haze consists of aerosols 

(suspension of fine solid particles or liquid droplets in the atmosphere) and trace 

gases, ranging in size from a few nanometres to a few micrometers [1], [10]. 

Studies have shown that haze that is due to biomass burning contains large 

amounts of hazardous gases, i.e., carbon monoxide (CO), nitrogen dioxide (NO2) 

and sulphur dioxide (SO2), and particulate matter, i.e., PM10 [11], [14], [15]. 

Compared to gases, aerosol has a more significant impact on visibility. The largest 

aerosol loading from biomass burning occurs below 5 km in altitude [12]. 

Atmospheric scattering and absorption depend very much on the wavelength of 

the radiation and the size of the atmospheric constituents it interacts with. 

Scattering is usually much stronger for short wavelengths than long wavelengths. 

Particles with size approximately 0.1 to 10 μm are particularly effective in Mie 

scattering in the visible wavelength regions (0.4 – 0.7 μm) hence can impair 

ground level visibilities [4]. In order to quantify the effects of haze, we therefore 

need to identify a suitable classification method and performance criteria against 

which to measure these effects. 

 

One of the primary uses of remote sensing data is to classify land covers [5], [7], 

[8]. A large number of classification methods are available, but our principal aim 

is to select the method most appropriate to the studies of haze [6], [9]. Our criteria 

for this selection include:  

 

• simplicity, i.e. the practicality of using a large amount of data. This should 

involve a smaller number of procedures but should produce reasonably accurate 

and standard results,  

• the ability to select important land covers with an acceptable accuracy, i.e. each 

pixel will be assigned to the correct land cover on the ground – the performance of 

the method should not be easily affected by factors such as the complexity of land 

covers, topographic conditions, etc. and  

• objectivity, i.e. not involving tuning by a user to improve performance – the 

generated classification works straight away without needing any adjustment in 

terms of the number of classes, training pixels, etc.  

 

These criteria lead us to consider the use of Maximum Likelihood (ML), which is 

a supervised method [2], [3]. In order to facilitate the use of this method, we can 

analyse its behaviour from a single image of Landsat 5 TM satellite from 11 

February 1999. This image contains the main land covers of Malaysia and has 

clear sky conditions (free from haze and little cloud cover), and therefore meets 

the purpose of our study, i.e. to provide a base map for use in studying the effects 

of haze on land cover classification and how this can be corrected (i.e. does not 

involve change detection). The Landsat 5 TM was launched in the 1984 and use 

Thematic Mapper (TM) as the main sensor. The TM comprises of visible band 1  
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(0.45-0.52 μm), band 2 (0.52-0.60 μm) and band 3 (0.63-0.69 μm), reflective 

infrared band 4 (0.76-0.90 μm), band 5 (1.55-1.75 μm) and band 7 (2.08-2.35 

μm), with 30 m spatial resolution and thermal infrared band 6 (10.40-12.50 μm) 

with 120 m spatial resolution. 

 

This study aims to analyse the spectral and statistical properties of land cover 

classification of hazy dataset. The study makes used hazy dataset that were 

simulated based on real haze spectral and statistical properties. By using these 

dataset, the spectral and statistical properties of the land classes can be 

systematically investigated and therefore the effects of haze can be assessed. In 

achieving the aim, Section 2 describes ML classification of hazy dataset, Section 

3 elaborates the statistical and spectral properties of Classes for the Hazy Datasets 

and finally, Section 4 concludes the study. 

 

2 ML Classification on the Simulated Hazy Dataset 
 

The vector-based structure of a dataset, the hazy band i,  iL V  can be written as 

[9]: 

 

 

L
i

V( ) = 1-b
i

1( )
V( )( )T

i
+ L

O
+b

i

2( )
V( )H

i
     ... (1) 

 

 

where T
i
 is signal component, H

i
 is haze component, L

O
 is path radiance due to 

natural scattering of the atmosphere, b
i

1( )
 is weighting due to signal attenuation 

and b
i

2( )
 is weighting due to haze intensity. 

 

 

ML classification was carried out using all 6 bands to produce 11 classes, viz. 

coastal swamp forest, dry land forest, oil palm, rubber, cleared land, sediment 

plumes, water, coconut, bare land, urban and industry. To carry out ML 

classification on the hazy scenes, we need training pixels within the hazy scene. 

For this purpose, the ROIs (regions of interest) for different land classes (different 

colours) that were applied on the clear scene were used as a template. Figure 1 

shows (a) patches of ROIs for different land classes (indicated by different 

colours) overlaid on bands 4, 5 and 3 (assigned to red, green and blue) of a 4 km 

visibility hazy scene used for selecting training pixels from the hazy scene and (b) 

the ML classification.   
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Fig.  1. (a) Patches of different colours are ROIs for different land classes used for 

selecting training pixels from a 4 km visibility hazy scene and (b) the ML 

classification. 

 

Figure 2 shows the 4 km hazy datasets before and after ML classification for 

visibilities 20 km, 10 km, 6 km, 4 km, 2 km and 0 km. These visibilities are 

chosen to visually show the transition from clear to very hazy conditions. It is 

obvious that the effects of haze become more severe on bands 3, 2, and 1 

(assigned to the red, green and blue channels respectively) as visibility decreases 

(images on the left). These bands are displayed since they are more affected by the 

haze than the bands with longer wavelengths. Therefore, classification is much 

more influenced by the effects of haze in shorter than longer wavelengths. The 

middle images show the corresponding ML classification using training pixels 

from the hazy dataset itself. As expected, the ML classification performance 

degrades as visibility drops. The classes are clearly inseparable at 0 km visibility.   

 

 

3 Spectral and Statistical Properties of Land Cover Classes in 

Hazy Dataset 
 

 

In order to extract the statistics of the classes generated by the ML classification, 

the classification produced from the clear scene was used as a template to 

demarcate the pixels in each class and then to compute the class means and 

correlation between bands in hazy data. To illustrate this, Figure 3 shows plots of 

mean radiances versus bands for all classes. As expected, the means are more 

affected at shorter than longer visibilities. At 16 visibility, the difference between 
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 (i) Before Classification (ii) After ML Classification 

(a)  

 

20 km 

visibility 

  

(b) 

 

10 km 

visibility 

  

(c)   

 

6 km 

visibility 

  

(d)   

 

4 km 

visibility 

  

(e) 

 

0 km 

visibility 

  

 

Fig.  2. Bands 3, 2 and 1 assigned to red, green and blue channels respectively 

(left), the ML classification using training pixels from hazy datasets (right) and 

ML classification using training pixels from clear datasets for (a) 20 km (clear), 

(b) 10 km, (c) 6 km, (d) 4 km and (e) 0 km visibility. 
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the original class radiance (red curve) and hazy class radiance (black curve) is 

very small for most classes. Similarly, there is little difference between the 

standard deviation of the original class radiance (red vertical bars) and the hazy 

class radiance (black vertical bars). At 2 km visibility, the haze clearly increases 

the radiance of bands 1, 2 and 3 for most classes except for bare land and industry, 

which decrease. The increase in radiance tends to occur for dark classes (e.g. 

forests and vegetation) because the apparent radiance is dominated by the haze 

radiance (i.e. radiance scattered directly to the satellite’s field of view). A 

decrease in radiance tends to occur for bright classes because the haze scatters 

some of the solar radiance out of the satellite’s field of view before reaching the 

ground, and attenuates the reflected radiation on the way back. These effects 

become more apparent as haze severity increases. This is consistent with Equation 

(1) that shows that haze increases  iL V  through the scattering effects on 

   2

i iV H  but at the same time decreases  iL V  through the absorption effects 

on 
    1

i i1 V T . Hence, the absorption effect is proportional to iT ; therefore 

the brighter the surface, the higher the absorption,  consequently the more  iL V  

decreases. However, it should be noted that this is true in absolute terms but not 

relative; 
   1

i V  does not depend on iT .It can also be seen that most classes 

exhibit an increase in standard deviation as visibility reduces. In other words, the 

haze increases the variability in the intensity of the class pixels and consequently 

leads to an increase in the pixels’ standard deviation. This is expected from 

Equation (1); since: 

 

          

                 

1 2

i i i i i

1 2 1 2

i i i i i i i i

Var L V Var 1 V T V H

                    = Var 1 V T Var V H 2C 1 V T , V H

                    

        

            
        

+

 

iT  is independent of iH , so the third term equal to zero. However we cannot 

discard the iT  term since the target is not constant, so there still exist some 

variance.

 

 

             
2 2

1 2

i i i i iVar L V = 1 V Var T V Var H            
 

 

When haze gets more severe,  V  decreases but 
   1

i V and
   2

i V  both increase. 

Hence, the contribution from the target variance decreases but that from the haze 

increases. The balance between the two depends on target brightness because 

bright targets (such as industry and bare land) have larger variance. This is more 

noticeable in the dark classes (such as vegetation and water) due to the greater 

difference between the haze and dark class spectral measurement.  
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Fig.  3. Mean radiances versus bands of individual classes for a scene with haze 

(black) and without haze (red) at visibility (a) 16 and (b) 2 km. Vertical bars 

indicate standard deviations. 

 

Figure 4 shows plots of the means of all classes versus bands for visibilities 20 

km, 16 km, 12 km, 6 km, 4 km and 0 km. At 20 km visibility, all classes exhibit  

 



 

9008                                                                   Asmala Ahmad  and Shaun Quegan 

 

 

their true spectral signature curves, but experience little modification by haze at 

16 and 12 km visibility. At 4 visibility, these curves are severely modified by the 

haze and become inseparable as the visibility reduces to 0 km. At 0 km visibility, 

all curves become very close, approximating the pure haze spectral signature. In 

other words, during no or light haze, the spectral signature of the classes are 

evident because the true signal radiance predominates, but as the haze gets severe, 

the spectral signature of the classes vanishes and is replaced by that of pure haze. 

 

1 2 3 4 5 7
0

10

20

30

40

50

60

70

80

Band

R
a
d
ia

n
c
e
 (

W
 m

-2
 s

r-1
 

m
-1

) 

Visibility = 20 km

 

 

Coastal Swamp Forest

Dryland Forest

Oil Palm

Rubber

Cleared Land

Sediment Plumes

Coconut

Water

Bare Land

Urban

Industry

 
1 2 3 4 5 7

0

10

20

30

40

50

60

70

80

Band

R
a
d
ia

n
c
e
 (

W
 m

-2
 s

r-1
 

m
-1

) 

Visibility = 16 km

Coastal Swamp Forest

Dryland Forest

Oil Palm

Rubber

Cleared Land

Sediment Plumes

Coconut

Water

Bare Land

Urban

Industry

 
(a) (b) 

1 2 3 4 5 7
0

10

20

30

40

50

60

70

80

Band

R
a
d
ia

n
c
e
 (

W
 m

-2
 s

r-1
 

m
-1

) 

Visibility = 12 km

 

 

Coastal Swamp Forest

Dryland Forest

Oil Palm

Rubber

Cleared Land

Sediment Plumes

Coconut

Water

Bare Land

Urban

Industry

 
1 2 3 4 5 7

0

10

20

30

40

50

60

70

Band

R
a
d
ia

n
c
e
 (

W
 m

-2
 s

r-1
 

m
-1

) 

Visibility = 6 km

Coastal Swamp Forest

Dryland Forest

Oil Palm

Rubber

Cleared Land

Sediment Plumes

Coconut

Water

Bare Land

Urban

Industry

 
(c) (d) 

1 2 3 4 5 7
0

10

20

30

40

50

60

70

Band

R
a
d
ia

n
c
e
 (

W
 m

-2
 s

r-1
 

m
-1

) 

Visibility = 4 km

Coastal Swamp Forest

Dryland Forest

Oil Palm

Rubber

Cleared Land

Sediment Plumes

Coconut

Water

Bare Land

Urban

Industry

 
1 2 3 4 5 7

0

20

40

60

80

100

120

140

Band

R
a
d
ia

n
c
e
 (

W
 m

-2
 s

r-1
 

m
-1

) 

Visibility = 0 km

 

 

Coastal Swamp Forest

Dryland Forest

Oil Palm

Rubber

Cleared Land

Sediment Plumes

Coconut

Water

Bare Land

Urban

Industry

 
(e) (f) 

  

Fig.  4. Mean spectral signatures of the 12 classes at visibilities (a) 20, (b) 16, (c) 

12, (d) 6, (e) 4 and (f) 0 km. 

 

For each class, correlations between different band pairs were computed for 

visibilities running from 20 km to 0 km from the simulated hazy datasets by using 
ENVI and then checked using Equation (2) with MATLAB; both show a very good 
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agreement. The correlation between band k and band l of a simulated radiance 

scene with a particular visibility V  can be expressed by the following equation: 

 

 
 

   
S

C L V,k, l
ρ k, l

Var L V,k Var L V,l

  
      

     ... (2) 

 

                       

              

1 1 2 2

k l k l

2
1 2 2

k k

where

C L V,k, l 1 V 1 V C T k, l V V C H k,l and

Var L V,k 1 V Var T k V Var H k ,and

              

            

 C T k,l   ,  Var T k    and  Var T l    are measured from the clear dataset 

while  C H k,l   ,  Var H k    and  Var H l    are measured from the pure haze 

dataset. Here, we assume 
   1

kβ V  and 
   2

kβ V  are constant throughout the image.  

 

 

Plots of correlation against visibility for coastal swamp forest, oil palm, urban and 

water are shown in Figure 5(a-e). Correlations at 20 km visibility represent the 

classes’ original correlation during clear sky condition (i.e. no haze); the 

correlation of pairs 1-2, 1-3 and 2-3 is higher than other pairs due to their adjacent 

wavelengths. On the other hand correlations at 0 km visibility represent those of 

pure haze; e.g. pairs 2-3, 2-4, 3-4, and 5-7 have the highest correlations at 0 km 

visibility, while pairs 1-5 and 1-7 the lowest. For coastal swamp forest, i.e. a very 

dark class, the correlation in most pairs starts to increase steadily at longer 

visibilities (i.e. 18 to 12 km), gets rapid at moderate visibilities (12 to 4 km) but 

steady again at shorter visibilities (i.e. less than 4 km). This shows the haze 

significantly modifies the correlations at shorter compared to longer visibilities, 

with a rapid increase in modification occurs at moderate visibilities. In such case, 

as haze becomes more severe,  C L V,k, l    gets bigger and so does  Sρ k, l .   

However, such trend is not so obvious for water because they already possesses 

quite high correlations at longer visibilities due to the original spectral properties 

of the classes. For oil palm, the rapid modification occurs at quite short visibilities 

(i.e. 6 to 2 km) due to the less dark properties of the class; i.e. its spectral 

properties are influenced by the ground reflectance from the spaces between the 

oil palm trees. For urban, a rapid increase in correlation occur at slightly longer 

visibilities compared to bare land, signifying the stronger effects of haze due to 

the less bright properties of the class. 
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Fig.  5. Correlation between bands with reducing visibility for (a) coastal swamp 

forest and (b) oil palm, (c) urban and (d) water. 
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4 Conclusions 
 

In this study, we successfully quantified the spectral and statistical properties of 

land cover classification under hazy conditions. Maximum Likelihood (ML) is 

found to be the preferable classification scheme in which the effects of haze were 

investigated. The study made use of hazy dataset that were simulated based on 

real haze spectral and statistical properties. By investigating these dataset, the 

spectral and statistical properties of the land classes were systematically analysed, 

in which showing that haze modifies the class spectral signatures and statistical 

properties, consequently causing the quality of the dataset to decline.  
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