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 Background: Hot-carrier-injection (HCI) is one of important reliability issue under 

short-channel effect in modern MOSFET devices especially in nano-scaled CMOS 
technology circuits. The effect of the hot carrier can be reduced by introducing Lightly-

Doped-Drain (LDD) structure on the device. The objective of this project is to study the 

effect of hot carrier in the LDD n-MOSFET. The LDD n-MOSFET is stressed with bias 
voltage at intervals of stressing time to determine the degradation model in the 

threshold voltage and drain current. From the parametrical analysis, it shows that the 

shift in threshold voltage and degradation in the drain current occurred after the 
MOSFET device is stressed with hot carrier stress test. The rate of threshold voltage 

shift and degradation of the drain current are dependence to the stressing time applied 
to the MOSFET device. The hot carrier stress test shows that the device with Si3N4 has 

smaller voltage shift compared to SiO2 material. 
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INTRODUCTION 

  

Since the invention of CMOS technology, the dimensions of the electronic devices are shrinking day by 

day. The demand for small area and low power are the main reasons behind the miniaturization of CMOS 

transistor up to nano level. The higher number of transistors is required in order to produce higher performance 

chip at smaller packaging size (Faiz, A. et al.,2013) (Idzdihar, M.I. et al., 2012). As transistor size is shrinking, 

many reliability issues have been raised as critical constraints which adversely affect the performance of a 

system. Since the evolution of CMOS miniaturization technology, Hot Carrier Injection (HCI) has been raised 

as one of the critical issues. This problem occur due to the aggressive scaling of transistors in nano-scale which 

cause the high electrical field at drain region, therefore HCI instability takes place in the n-channel MOSFETs 

which leads to the degradation of device performance. Since the key factor of hot carrier generation is due to 

high electric field at the drain, the hot carrier effect can be minimized by reducing the electric field strength at 

the channel (An, H. et al., 2013) (Bae, J. et al., 2009). The purpose of reducing the electric field strength at the 

drain is to separate the maximum current path away from the maximum electric field. This can be done by 

introducing the lightly-doped-drain (LDD) structure on MOSFET devices. 

The LDD structure is used to separate out the strong electric field between heavily doped drain/source and 

channel [5]. High k dielectric is necessary to reduce the leakage current but Ta2O5, Al2O3, La2O3, ZrO2, HfO2 

(Yoshio, O. and P. J. Tobin, 1994) (Polishchuk, I. et al., 2001) (Park, D. et al., 1998) (Chin, A. et al., 2000) 

(Ma, Y. et al., 1999) (Klang, L. et al., 2000) and many other silicates have problems with sustainability of the 

device. Si3N4 also can be used in this study since it has higher relative dielectric constant compared to SiO2 (Lu, 

Q., 1999).  

Equation (1) and (2) shows that by using a material with high dielectric constant, it increases the drain 

current hence reduce the threshold voltage (Pomper, M. et al., 1982).  
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            (1) 

 

which shows that   where, 

 

              (2) 

 

It has been explained that the distribution of the lateral electric field in LDD-MOSFETs is different if 

compared to conventional MOSFET devices (Muhammad, M. et al., 2009). Silver nitride has been used as the 

spacer for the LDD MOSFET in the past but it causes the large degradation. It has been found that this 

degradation is due to the HCI effect in the side-wall spacer of LDD MOSFET (Tomohisa M. et al., 2010). The 

main objective of this paper is to study the HCI effect on sub-nanometer LDD n-MOSFET and its impact on the 

threshold voltage VTH and drain current ID for two oxide materials, SiO2 and Si3N4. 

 

Experimental Design: 

TCAD device simulator is used to virtually fabricate the implemented device and device electrical 

characterizations on the hot carrier analysis. First, the device is virtually fabricated by using Silvaco ATHENA 

software. In order to check the electrical behavior, Silvaco ATLAS software is used to characterize the basic 

electrical information such as threshold voltage and drain current of the structural created by ATHENA. Besides 

that, the hot carrier stress test is also done by using this software where the device is stressed with stressing 

condition to obtain the electrical parameter degradation due to hot carrier effect. By using this software, all the 

aspect of device simulation can be characterized not only for CMOS technology but with wide range of 

integrated circuit design application (Muzalifah, M. S. et al., 2013). Geometrical dimensions and process 

parameters of the device are shown in Table 1.  

The substrate of LDD n-MOSFET was developed by starting with initial silicon in 2D <100> orientation 

and boron impurities. The gate oxide was growth by depositing the oxide with specified thickness of 2 nm. 

Threshold voltage was then implanted by depositing boron and poly-silicon gate is deposited on oxide. LDD 

structure having light doping concentration was implanted with phosphorus at concentration of 4 x 10
13 

cm
-3

. To 

secure the LDD area before doing the source/drain channel high doped implant, spacer oxide sidewall was 

created. At this point, the source/drain can now be implanted with arsenic having high dose of 2 x 10
16

 cm
-3

. 

Oxide layer is still remaining on the structure at this point. Aluminium needs to be deposited as a contact for 

source and drain. The oxide layer needs to be etched first before depositing the aluminium layer. Fig. 1 shows 

the cross section of full structure of LDD n-MOSFET in which the parameters and dimensions have been taken 

from Table 1. 

 
Table 1: Process parameters of the device 

Geometrical Dimension Process Parameter Material / Impurities Value 

Device Length  - 1.2 µm 

Device Height  - 0.7 µm 

Gate Length  Polysilicon 90 nm 

Gate Width  Polysilicon 1.2 µm 

 Oxide Thickness SiO2 2 nm, 2.5 nm, 5.9 nm 

 Spacer SiO2 72 nm 

 Substrate Boron 7.51 x 1017 cm-3 

 Threshold Voltage Implant Boron 
9.5 x 109 cm-3 

 

Lightly-Doped Area  Phosphorus 4 x 1013 cm-3 

 Source/Drain Arsenic 2 x 1016 cm-3 

 

The LDD n-MOSFET structure was loaded into the simulation file followed by the simulation model. The 

characterization was first done based on the default structure at default bias condition without stressing time. 

This purposely is to make the comparison in the graph between non-stressed behaviour and stressed behaviour. 

After non-stressed characteristic was done, the device is now stressed at bias condition at interval period. These 

stress conditions were based on the default temperature condition which is at 300 K. Table 2 shows the stressed 

biased conditions for the simulation (Chen, C. et al, 2001). 

The ID versus VGS curves were plotted for different oxide. The shift in threshold voltage and degradation on 

drain current can be observed. In order to further the degradation study, the characterizations were also 

performed on the various process parameters to see the effect of the process parameters in the threshold voltage 

and drain current degradation. The process parameter which involved in this characterization was on different 

gate insulator such as SiO2 and Si3N4 and different substrate doping concentration. 



27                                                                        H.H.M.Yusof et al, 2014 

Australian Journal of Basic and Applied Sciences, 8(16) October 2014, Pages: 25-33 

 

 
 

Fig. 1: Full LDD n-MOSFET structure 

 
Table 2: Stressed biased conditions 

Stress Condition Value 

Gate Voltage 0.2553 V 

Drain Voltage 2.5 V 

Time 10 s, 30 s, 100 s, 300 s, 1000 s 

Temperature 300K 

 

RESULTS AND DISCUSSION 

 

Comparison of Threshold Voltage between Si3N4 and SiO2: 

Fig. 2 shows the ID versus VG curves for Si3N4 and SiO2 across the oxide thickness of 2 nm, 2.5 nm and 5.9 

nm. The graph shows that Si3N4 the material has lower threshold voltage compared to SiO2 across all the oxide 

thickness. From the result, the higher dielectric constant produced lower threshold voltage. It is also shows that 

the thicker the dielectric the higher the threshold voltage level.  

 

 
 

Fig. 2: ID versus VG - Comparison between SiO2 and Si3N4 dielectric material across thickness. 
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From the data in Fig. 3 and Table 3, the percentage of the threshold voltage different between SiO2 and 

Si3N4 is 76% for 2 nm, 77% for 2.5 nm and 54% for 5.9 nm thickness of oxide. This is shows that the higher the 

dielectric constant the lower the threshold voltage. 

 

 
 

Fig. 3: VTH versus tox - Comparison between SiO2 and Si3N4 dielectric material across thickness. 

 
Table 3: Comparison on threshold voltage between SiO2 and Si3N4 dielectric material across thickness. 

Tox (nm) 
VTH (V) 
SiO2 

VTH (V) 
Si3N4 

∆VTH (V) ∆VTH (%) 

2 0.2553 0.0625 0.1928 76% 

2.5 0.2939 0.0688 0.2251 77% 

5.9 0.5478 0.2525 0.2953 54% 

 

Comparison of Drain Current between Si3N4 and SiO2: 

Fig. 4 shows the ID versus VD curves for Si3N4 and SiO2 across the oxide thickness of 2 nm, 2.5 nm and 5.9 

nm. The graph shows that the material of Si3N4 produced higher drain current compared to SiO2 material. The 

trends are same for all the oxide thickness size. By comparing side by side, for all 2 nm, 2.5 nm and 5.9 nm 

thicknesses had shown the similar behavior which is reduction in drain current. 

 

 
 

Fig. 4: ID versus VG – Comparison between SiO2 and Si3N4 dielectric material across thickness. 

 

Refer to the simulation data is shown in Fig. 5 and Table 4, percentage of reduction in drain current 

between SiO2 and Si3N4 material for 3 different thicknesses are laid in between 175 % to 219%. At 2nm oxide 
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thickness, the drain current value for Si3N4 is reduced about 219% compared to SiO2 material. The 2.5 nm and 

5.9 nm oxide thicknesses also experienced the same behaviour where the reductions of the drain current are 

216% and 175% respectively.  

 

 
Fig. 5: ID versus tox – Comparison between SiO2 and Si3N4 dielectric material across thickness. 

 

Table 4: Comparison on drain current between SiO2 and Si3N4 dielectric material across thickness. 

Tox (nm) 
ID (A) 

SiO2 

ID (A) 

Si3N4 
∆ID (A) ∆ID (%) 

2 0.00072 0.00230 0.00158 219% 

2.5 0.00068 0.00216 0.00148 216% 

5.9 0.00051 0.00141 0.00090 175% 

 

Hot Carrier Injection (HCI) analysis on LDD nMOSFET: 

Fig. 6 shows that the threshold voltage was shifted to right side which means in incremental value across 

the stressing time. The threshold voltage shift can cause a delay in operating frequency (Fakhruddin, M. et al., 

2007).  

 

 
Fig. 6: ID versus VG - Threshold voltage shift across stressing time 

 

The data shown in Fig. 7 and Table 5 representing the threshold voltage shift across the stressing time. 

Averagely, the threshold voltage for all the stressing time shifted about 223% to 295% from its non-stress 

condition. The first shift at 10 s shows high shift in threshold voltage at 223% of its original value. The 
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subsequent shift between the stressing time were considered small with the highest shift with reference to initial 

condition was at 1000 s stressing time. 

 

 
 

Fig. 7: VTH versus stress time. 

 
Table 5: Threshold voltage shift data. 

 Stress Time (s) VTH (V) ∆VTH (V) ∆VTH (%) 

0 0.2553 Reference 

10 0.8250 0.5697 223% 

30 0.8254 0.5701 223% 

100 0.8273 0.5720 224% 

300 0.9825 0.7273 285% 

1000 1.0072 0.7519 295% 

  

The drain current characteristic during hot carrier effect is shown in Fig. 8. The ID versus VD curve was 

taken at VG  = 2.2 V for all the stressing time and the curve shows the drain currents were slightly reduced at 

every setting of stressing time.  

 

 
Fig. 8: ID versus VD – Drain current degradation. 

 

The measurement data in the Fig. 9 and Table 6 were taken at VD  = 3.3 V. It clearly shows that the drain 

current is reduce along the stressing time. This is because after the device was stressed; the threshold voltage 

was shifted further which cause the value of threshold voltage increase. 
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The drain current shift about 12.55% from non-stress condition to stressed condition at 10 s. This is about 

0.0906 mA reduction in drain current. The highest reduction of drain current is at 1000 s stressing time where 

the reduction is about 0.1207 mA or 16.72%. This proved that the relationship between the shift of threshold 

voltage and drain current graph. The degradation of drain current between 10 s and 1000 s is considered small. 

 

 
Fig. 9: ID versus stress time. 

 
Table 6: Drain current degradation data. 

Stress Time (s) ID (A) ∆ID (A) ∆ID (%) 

0 7.222E-04 Reference 

10 6.316E-04 9.061E-05 12.55% 

30 6.308E-04 9.138E-05 12.65% 

100 6.283E-04 9.388E-05 13.00% 

300 6.136E-04 1.086E-04 15.04% 

1000 6.015E-04 1.207E-04 16.72% 

 

 

Comparison of HCI between SiO2 and Si3N4 Dielectric Material: 

For the comparison on hot carrier stress test between oxide materials, the materials that used are silicon 

dioxide, SiO2 and silicon nitride, Si3N4. The comparison is purposely to see the degradation trend between these 

two materials. As presented before, the threshold voltage for Si3N4 is lower compare to SiO2 due to high 

dielectric constant on Si3N4 material. Therefore, the value of threshold voltage for Si3N4 is lower in this 

simulation. 

Fig. 10 shows the comparison graph for both materials. Material Si3N4 shows the shift of threshold voltage 

at 10 s but for the rest of stressing time it looks like similar. By looking at the result data in Table 7, the 

threshold voltage shift for Si3N4 material is very small after 10 s stress. This shows that the device with Si3N4 

has smaller voltage shift at 10 s and more stable at longer stress time compared to SiO2 material. 

 

 
 

Fig. 10: VTH versus stress time – Comparison between SiO2 and Si3N4 
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Table 7: Threshold voltage shift data for SiO2 versus Si3N4. 

Stress Time (s) 
VTH (V) 

SiO2 

VTH (V) 

Si3N4 
∆VTH (V) ∆VTH (%) 

0 0.2553 0.0625 0.1928 75.52% 

10 0.8250 0.2875 0.5375 65.15% 

30 0.8254 0.2880 0.5374 65.10% 

100 0.8273 0.2883 0.5390 65.15% 

300 0.9825 0.2884 0.6941 70.64% 

1000 1.0072 0.2938 0.7134 70.83% 

 

Fig. 11 and data in Table 8 show that the drain current degradation is very small for Si3N4 material. This is 

due to the very small shift in threshold voltage for Si3N4 material. The shift of threshold voltage is less than 1 

mV for between stressing times, therefore the drain current degradation is also very small which is less than 10 

µA.  

 
Fig. 11: ID versus stress time – Comparison between SiO2 and Si3N4 

 
Table 8: Drain current degradation data for SiO2 versus Si3N4. 

Stress Time (s) 
ID (A) 

SiO2 

ID (A) 

Si3N4 
∆ID (I) ∆ID (%) 

0 7.222E-04 2.301E-03 1.579E-03 219% 

10 6.316E-04 2.230E-03 1.598E-03 221% 

30 6.308E-04 2.230E-03 1.599E-03 221% 

100 6.283E-04 2.229E-03 1.601E-03 223% 

300 6.136E-04 2.227E-03 1.613E-03 223% 

1000 6.015E-04 2.218E-03 1.617E-03 224% 

 

Summary: 

A study of the electrical characteristics and hot carrier degradation of LDD n-MOSFET has been presented 

in this paper. The device electrical characteristics across the process parameter such as oxide thickness and 

oxide material were analyzed by determining the threshold voltage and the effect on the drain current. Si3N4 

oxide material produced lower threshold voltage compared to SiO2 oxide material. The higher threshold voltage 

produced lower drain current value vice versa. This is because of the drain current is proportional with VG - VTH 

where the higher VTH results lower value of VG - VTH. The hot carrier stress test was carried out on default 

structure. In addition, the devices with different oxide materials were also simulated with hot carrier stress test. 

The hot carrier stress test shows that the device with Si3N4 has smaller voltage shift at 10 s and more stable at 

longer stress time compared to SiO2 material. 
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