

Faculty of Manufacturing Engineering

THE EFFECT OF ALKALIZATION TREATMENT ON THE MECHANICAL PROPERTIES AND WATER ABSORPTION OF KENAF/POLYESTER BIOCOMPOSITES

Phongsakorn A/L Prak Tom

MSc. in Manufacturing Engineering

2010

THE EFFECT OF ALKALIZATION TREATMENT ON THE MECHANICAL PROPERTIES AND WATER ABSORPTION OF KENAF/POLYESTER BIOCOMPOSITES

PHONGSAKORN A/L PRAK TOM

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2010

DECLARATION

I declare that this thesis entitled "The Effect of Alkalization Treatment on The Mechanical Properties and Water Absorption of Kenaf/Polyester Biocomposites" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	PHONGSAKORN A/L PRAK TOM
Date	:	

DEDICATION

To my beloved family

ACKNOWLEDGEMENT

I wish to express my sincere appreciation to my thesis supervisor, Professor Dr. Md. Dan Md. Palil, for encouragement, guidance critics and friendship. I am also very thankful to Mr. Mohd Yuhazri Yaakob for their guidance and advices.

I am also indebted to Ministry of Science, Technology and Innovation (MOSTI) for funding. My Universiti Teknikal Malaysia Melaka (UTeM) also deserves special thanks for their assistance in supplying the relevant literatures.

My fellow postgraduate students should also be recognized for their support. My sincere appreciation also extends to all who have provided assistance at various occasions. I am grateful to all my family members.

TABLE OF CONTENTS

			PAGE
DECLAR	ATION		ii
DEDICA	TION		iii
ACKNOV	WLEDGE	EMENT	iv
TABLE (OF CONT	TENTS	V
LIST OF	TABLES	3	ix
LIST OF	FIGURE	es	X
LIST OF	ABBRAV	VIATIONS	xiii
LIST OF	SYMBO	LS	XV
ABSTRA	CT		xvii
ABSTRA	K		xix
СНАРТЕ	R		
1	INTI	RODUCTION	
	1.0	Background	1
	1.1	Statement of the Purpose	3
	1.2	Hypotheses	3
	1.3	Problem Statement	4
	1.4	Objectives	6
	1.5	Research Scopes Area	7

	1.6	Rational of Research	7	
2	LITERATURE REVIEW			
	2.0	Background	8	
	2.1	Introduction of Composites	8	
	2.2	Polymer Matrix Composites	11	
		2.2.1 Thermoplastics	11	
		2.2.2 Thermosetting	12	
		2.2.3 Biological plastics	13	
		2.2.4 Elastomers	14	
	2.3	Natural Fiber Composites	14	
	2.4	Chemical Modification	21	
	2.5	Composites Processing	25	
		2.5.1 Hand Lay-up	26	
		2.5.2 Vacuum Infusion Process	27	
	2.6	Composite Properties	28	
		2.6.1 Properties Comparison of Composites	29	
3	RESEARCH METHODOLOGY			
	3.0	Introduction	31	
	3.1	Process Flowcharts	32	
	3.2	Raw Materials	33	
	3.3	Fiber treatment	33	
	3.4	Bio-composites Processes	34	
		3.4.1 Vacuum Infusion Process Methods	35	

		3.4.2	Benefits of Vacuum Infusion	39	
		3.4.3	Hand Lay-up Method	41	
	3.5	Fiber	Characterization	42	
	3.6	Mecha	anical Properties	42	
		3.6.1	Tensile Test Method	43	
			3.6.1.1 Theoretical of Tensile Test	45	
		3.6.2	Flexural Test Method	46	
			3.6.2.1 Theoretical of Flexural Test	47	
		3.6.3	Izod Impact Test Method	48	
			3.6.3.1 Theoretical of Pendulum Test	51	
	3.7	Water	Absorption Test	51	
4	RESULTS AND DISCUSSION				
	4.0	Introd	uction	53	
	4.1	Morpl	nological of Fiber Surfaces	53	
	4.2	Tensil	e Properties	57	
		4.2.1	Manufactariant of Tanaila Enacture Conford	63	
			Morphological of Tensile Fracture Surface		
		4.2.2	Comparison of Tensile Properties Between Resin		
			-	67	
	4.3	4.2.2	Comparison of Tensile Properties Between Resin	67 70	
	4.3 4.4	4.2.2	Comparison of Tensile Properties Between Resin Infusion and Hand Lay-Up Method	70	
		4.2.2 Flexui	Comparison of Tensile Properties Between Resin Infusion and Hand Lay-Up Method ral Properties		
	4.4	4.2.2 Flexui	Comparison of Tensile Properties Between Resin Infusion and Hand Lay-Up Method ral Properties t Properties	70 74	
5	4.4 4.5	4.2.2 Flexui	Comparison of Tensile Properties Between Resin Infusion and Hand Lay-Up Method ral Properties t Properties Absorption Test	70 74	

5.1	Conclusions	78
5.2	Recommendations for Future Work	80
REFERENCES		82
APPENDICES		

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison of properties for fibre reinforced composites	30
3.1	The chemical solution of the treatment	34
3.2	Qualities of vacuum infusion process	40
4.1	Tensile properties of kenaf/polyester composites	60
4.2	Flexural properties of kenaf/polyeste r composites	72

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	a, Young kenaf plant, b, adult kenaf plant	2
1.2	a, Kenaf flower, b, leave	2
1.3	a, Kenaf bast, b, core	2
1.4	The bicycle frame is made of glass-carbon reinforced epoxy	4
2.1	Composites reinforcement form	10
2.2	Hand lay-up process	27
2.3	Cross section view of resin infusion process setup	27
2.4	Illustrations of four stages of deformation of fibres,	
	matrix and composite	29
3.1	Research methodology	31
3.2	Process flowcharts showing the applied fabrication route of	
	kenaf/polyester composites	32
3.3	The flow lines of resin	35
3.4	The general sequence of vacuum infusion process	36
3.5	The configuration of vacuum infusion set-up	37
3.6	a, sealant tape, b, spiral tube, c, resin inlet/outlet tube	37
3.7	a, silicon mold release agent, b, long bast kenaf fibers	38
3.8	a, peel ply, b, distribution media, c, vacuum bag	38
3.9	a, resin trap, b, vacuum pump	38

3.10	Process of composite fabrication by vacuum infusion	39
3.11	Process of composite fabrication by hand lay-up method	41
3.12	Mechanical testing	43
3.13	Universal Testing Machine model AG-I Shimadzu	44
3.14	Geometry of specimen for tensile strength test according to	
	ASTM D638 – 01	44
3.15	Allowable range of loading nose and support 5585	47
3.16	Flexural testing machine model Instron	47
3.17	Impact tester machine model IT 30	49
3.18	Izod impact test specimen and its position in the anvil	50
3.19	Geometry of specimen for izod impact test	50
3.20	The specimens immerse in water for 24 hours	52
4.1	SEM micrograph of untreated kenaf fiber	55
4.2	SEM micrograph of treated kenaf fiber with 3% NaOH	
	for 12 hours	55
4.3	SEM micrograph of treated kenaf fiber with 3% NaOH	
	for 24 hours	56
4.4	SEM micrograph of treated kenaf fiber with 6% NaOH	
	for 12 hours	56
4.5	SEM micrograph of treated kenaf fiber with 6% NaOH	
	for 24 hours	57
4.6	SEM micrograph of treated kenaf fiber with 9% NaOH	
	for 12 hours	57
4.7	Stress-strain curve for sample T3 which was treated with	
	6% NaOH for 12 hours	59

4.8	Stress-strain curve for sample UT which was untreated	59
4.9	Tensile strength of kenaf/polyester composites	61
4.10	Tensile modulus of kenaf/polyester composites	63
4.11	SEM micrograph of tensile fracture, a, sample KP-UT,	
	b, sample KP-T1	65
4.12	SEM migrograph of tensile fracture, a,sample KP-T2,	
	b, sample KP-T3	66
4.13	SEM migrograph of tensile fracture, a, sample KP-T4,	
	b, sample KP-T5	66
4.14	Fracture specimens of kenaf/polyester composite with difference	
	fabricated method, a, Hand lay-up, b, Vacuum infusion	67
4.15	Comparison of tensile strength of kenaf/polyester composites	
	between vacuum infusion and hand lay-up method	68
4.16	Comparison of tensile modulus of kenaf/polyester composites	
	between vacuum infusion and hand lay-up method	69
4.17	Graph load-extension for sample KP-T5 which was treated	
	with 9% NaOH for 12 hours	71
4.18	Graph load-extension for sample KP-UT which was untreated	71
4.19	Flexural strength of kenaf/polyester composites	73
4.20	Flexural modulus of kenaf/polyester composites	74
4.21	Impact strength of kenaf/polyester composites	75
4.22	Fracture specimen of izod impact test for sample KP-T3	76
4.23	Percentage of water absorption for kenaf/polyester composites	77

LIST OF ABBREVIATIONS

ABS - Acrylonitrile Butadiene Styrene

AC - Acidic Chloride

AO - Ammonium Oxelate

ASTM - American Society for Testing of Materials

CCC - Carbon/carbon Composite

CMC - Ceramic Matrix Composite

FTIR - Fourier Transform Infra Red

FRP - Fiber Reinforced Polymer

GPa - Giga Pascal

hr - Hour

kGy - Kilogray

kJ - Kilo Joule

LDPE - Low-density Polyethylene

MAPP - Maleic Anhydride Grafted Polypropylene

MARDI - Malaysia Research and Development Institute

MEKP - Methyl Ethyl Ketone Peroxide

mm - Millimeter

MMC - Metal Matrix Composite

MPa - Mega Pascal

N - Newton

NaOH - Sodium Hydroxide

PET - Polyethylene Terephthalate

PHB - Polyhydroxybutyrate

PLLA - Poly-L-lactic Acid

PMC - Polymer Matrix Composite

PP - Polypropylene

RFI - Resin Film Infusion

RIP - Resin Infusion Process

RTM - Resin Transfer Molding

sec - Second

SEM - Scanning Electron Microscopy

UTM - Universal Testing Machine

VIP - Vacuum Infusion Process

WAXS - Wide-angle X-ray Scattering

LIST OF SYMBOLS

b - Width of the sample

 $dS/d\varepsilon$ - Slope of the stress versus strain curve

 E_{abs} - Energy absorbed during impact

 E_I - Initial Energy

 E_k - Kinetic Energy

 E_p - Potential Energy

 E_r - Energy after rupture

E - Young's Modulus

 E_b - Flexural Modulus

 E_t - Young's Modulus in tension

g - Gravity

h - Height or thickness of the sample

L - Length of the sample

l_o - Initial gage length

m - Initial slope of the load versus deflection curve

P - Load

S - Stress

V - Velocity

 W_a - Initial Work

 W_b - Work after rapture

- % Percentage
- Δl Extension

ABSTRACT

Bio-composite is a material formed by resin as a matrix and a reinforcement of natural fiber. The objectives of this research are to determine the effect of chemical treatment on mechanical properties and water absorption of bio-composite kenaf fiber. The long bast kenaf fibers were treated by chemical method using sodium hydroxide (NaOH) to improve properties of fiber. The effects of the modification on fibers have been analyzed using scanning electron microscopy (SEM). Morphological analyses proved that natrium hydroxide have effective to remove impurities on the fiber surface. By using vacuum infusion process (VIP), the bio-composite kenaf fibers panel is produced. Vacuum infusion method offers benefits over hand lay-up method, which was higher fiber to resin ratio and whilst stronger composites. In this research, mechanical tests were performed to evaluate the effect of chemical treatment on the mechanical properties of bio-composite kenaf fiber. It has been found that the alkalization treatment has improved the mechanical properties of the composites. The mechanical properties of kenaf/polyester composites were found increase with increasing of NaOH concentration. Otherwise, it decrease when immerse time is up from 12 to 24 hours. The tensile and flexural strengths were achieved as high as 90.81MPa and 93.35MPa, respectively. In spite of its high tensile and flexural properties, kenaf polyester composites treated with 9% NaOH for 12 hours demonstrated relatively low impact strength. As better impact properties are demonstrated by higher failure value, it is believed that too high concentration of NaOH possibly low failure value. The ability of water absorption among the composite also have been analyzed in this study.

The percentage of moisture uptake proven that fiber treatment have positive affected on the water absorption of the composites. Lastly, it has been summarize that chemical treatment on kenaf fibers as well as manufacturing process played important role to fabricate a good mechanical properties of composites.

ABSTRAK

Bio-komposit merupakan bahan yang terbentuk daripada campuran antara resin sebagai matrik dan gentian semula jadi. Objektif kajian ini adalah untuk mengenalpasti kesan rawatan kimia gentian kenaf terhadap sifat mekanikal dan penyerapan air komposit bio gentian kenaf. Gentian kulit kenaf panjang dirawat dengan rawatan kimia menggunakan natrium hydroxide (NaOH) untuk meningkatkan tahap kecekapan gentian. Kesan rawatan kimia gentian kenaf dianalisis menggunakan Scanning Electron Microscopy (SEM). Analisis morfologi membuktikan bahawa rawatan menggunakan natrium hydroxide berjaya membersihkan bendasing pada permukaan gentian kenaf. Dengan menggunakan proses vacuum infusion (VIP), kepingan komposit gentian kenaf dihasilkan. Kelebihan proses vacuum infusion berbanding kaedah hand lay-up ialah ia menghasilkan komposit dengan nisbah gentian kepada resin yang lebih baik dan lebih kuat. Dalam penyelidikan ini, ujian mekanikal dijalankan untuk mengkaji kesan rawatan kimia gentian kenaf terhadap sifat mekanikal komposit gentian kenaf. Didapati bahawa rawatan alkali yang dijalankan dapat meningkatkan sifat mekanikal komposit. Sifat mekanikal komposit gentian kenaf didapati meningkat apabila kepekatan NaOH meningkat. Sebaliknya ia menurun dengan peningkatan masa rendaman gentian kenaf daripada 12 jam kepada 24 jam. Kekuatan tegangan dan lenturan mencapai tahap tertinggi masing-masing pada 90.81MPa dan 93.35MPa. Disebalik sifat ketegangan dan kelenturan yang tinggi, komposit gentian kenaf yang dirawat dengan 9% kepekatan NaOH dan rendaman 12 jam menunjukkan kekuatan hentaman yang rendah. Dengan sifat hentaman yang baik

menunjukkan nilai kebolehan patah yang tinggi, ia dipercayai bahawa kepekatan NaOH yang terlalu tinggi menyebabkan nilai kebolehan patah menjadi rendah. Kemampuan penyerapan air di antara komposit juga telah dianalisis dalam kajian ini. Peratusan kelembapan penyerapan telah membuktikan bahawa rawatan terhadap gentian kenaf juga memberi kesan positif dalam penyerapan air oleh komposit. Akhirnya, dapat dirumuskan bahawa rawatan kimia terhadap gentian kenaf serta proses pembuatan memainkan peranan yang penting dalam menghasilkan komposit dengan sifat mekanikal yang baik.

CHAPTER 1

INTRODUCTION

1.0 Background

Kenaf is a warm annual crop. It is a member of hibiscus family (Hibiscus cannnabinus L.) and related to cotton and jute. Kenaf is originally native in Africa. For the last 200 years, India has produced and used kenaf. In the United States, kenaf was introduced as material for the war effort during World War II. Then in 1950s, the US researchers have found that kenaf was an excellent cellulose fiber source for pulping of paper products (Webber et. al., 2002).

Kenaf plant is growing to more than 3 meters tall within 4-5 month. The stems are 2.5-3.5cm diameter and consisting of two parts, an outer fibrous bark and an inner woody core (Zhang, 2003). Raw kenaf fiber obtained from the outer fibrous bark is a bundle of lignocelluloses fibers. The core is the spongy tissue inner the bark of the plant. Figure 1.1, 1.2 and 1.3 shows the kenaf plant and its intersection.

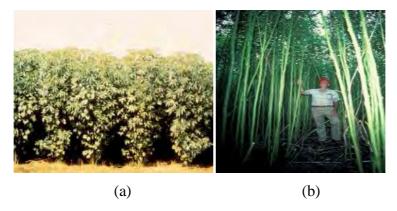


Figure 1.1 (a) Young kenaf plant and (b) adult kenaf plant

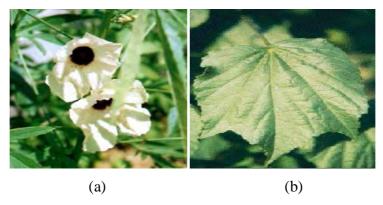


Figure 1.2 (a) Kenaf flower and (b) leave

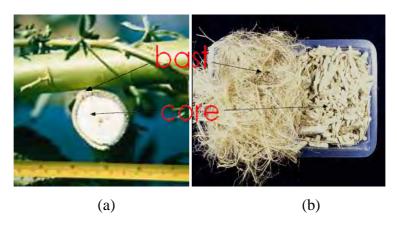


Figure 1.3 (a) Kenaf bast and (b) core

Kenaf has been used to produce twine, rope and sackcloth for thousands of years (Webber, 2002). Because of its biodegradability and environmental protection, the usage of kenaf has increased recently. It has found more application. In some countries, kenaf is used as the substitute for wood to produce pulp and paper. Nowadays, there are various new applications for kenaf including automotive industry, packaging, building materials, absorbents and animal feeds (Zhang, 2003).

1.1 Statement of the Purpose

The purpose of the research is to investigate the effect of fiber treatment on the mechanical properties such as tensile, flexural and impact properties and water absorption of kenaf/polyester composite.

1.2 Hypotheses

- Increasing either the concentration of NaOH or treatment time will affect the kenaf fiber properties.
- Varying the manufacturing method will affect the mechanical properties of composite.