
Automatic Acceptance Test Case
Generation From Essential Use Cases

Massila Kamalrudina,1, M. Nor Aiza
a, John Grundyb, John Hoskingc, Mark Robinsond

a
 Innovative Software System & Services Group, Universiti Teknikal Malaysia Melaka,

Malaysia
massila@utem.edu.my, P031320015@student.utem.edu.my

b
 Centre for Complex Software Systems & Services, Swinburne University of

Technology, PO Box 218, Hawthorn Victoria 3122, Australia
jgrundy@swin.edu.au

c
 College of Engineering and Computer Science, Australian National University,

Canberra, ACT, Australia
john.hosking@anu.edu.au

d
 Fulgent Corporation, USA
marcos@fulgentcorp.com

Abstract. Requirements validation is a crucial process to determine whether
client-stakeholders’ needs and expectations of a product are sufficiently correct
and complete. Various requirements validation techniques have been used to
evaluate the correctness and quality of requirements, but most of these techniques
are tedious, expensive and time consuming. Accordingly, most project members
are reluctant to invest their time and efforts in the requirements validation process.
Moreover, automated tool supports that promote effective collaboration between
the client-stakeholders and the engineers are still lacking. In this paper, we
describe a novel approach that combines prototyping and test-based requirements
techniques to improve the requirements validation process and promote better
communication and collaboration between requirements engineers and client-
stakeholders. To justify the potential of this prototype tool, we also present three
types of evaluation conducted on the prototpye tool, which are the usability survey,
3-tool comparison analysis and expert reviews.

Keywords. Requirements Engineering, Validation, Essential Use Case (EUC),
Automated Acceptance Test

Introduction

Capturing correct and consistent requirements from client-stakeholders is often difficult,
time consuming and error prone [1][2]. Therefore, it is important to validate
requirements at the earliest stage of software development in order to be able to detect
and prevent errors in requirements specifications.

Currently, various requirements validation techniques, such as requirements
review, inspections, prototyping, model-based, requirements testing and viewpoint-

1 Massila Kamalrudin-massila@utem.edu.my.

jgrundy
13th International Conference on Intelligent Software Methodologies, Tools, and Techniques (SOMET14), Langkawi, Malaysia, September 22-24, 2014, © IOS Press

jgrundy

oriented requirements validation have been applied to develop quality software
[3][4][5]. Each has its own advantages and disadvantages depending on the needs of
the organization. Studies have recognized two effective techniques to identify
requirements defects: the requirements prototyping and test-based requirements
validation. The former is beneficial as it helps users to visualize requirements by
providing a prototype of the system. The prototype is also reusable in other activities,
such as the system design and user interface development [4]. The test-based
requirements validation helps by defining test cases to ensure each requirement is
testable, providing a means to determine when a requirement is satisfied. It is also an
effective way of exposing problems, such as incompleteness, inconsistency and
ambiguity by suggesting possible ways of testing the requirements [3]. However, both
techniques are expensive and time consuming, as they require resources and efforts to
develop the prototype and write the test cases. Moreover, to our knowledge there have
been very few successful attempts made to support rapid prototyping and model-based
testing.

Previously, we developed a rapid prototyping support for an end-to-end user
requirements validation tool [1]. We used an abstract Essential User Interface (EUI)
prototype and concrete formed-based User Interface (UIs) to help stakeholders
visualize and walk-through rapid prototypes based on their elicited requirements. To
further improve the requirements validation process, we enhanced our tool by
providing executable UIs with a set of related abstract test cases for testing the
requirements. The abstract test cases are derived from the developed EUC and EUI
patterns. These executable UIs also allow stakeholders to experiment with generated
prototypes from their requirements. We conducted a small user study to evaluate the
usability of our prototype tool. An analysis of the results of this preliminary evaluation
showed that our approach could improve the validation process and promote better
communication and collaboration between Requirements Engineers (REs) and client-
stakeholders.

1. Related Works

Extensive research has been conducted in requirements validation especially on model
and test-based validation. Test-based requirements, or requirements testing, is one of
the most commonly used techniques in requirement validation. This involves the
acceptance testing, where users or developers create test cases to validate requirements.
In our preliminary study, we conducted a comparison analysis of a few selected
automated acceptance-testing tools from the existing literature and experience reports
[6]. We found that automated acceptance tools are beneficial for both business
stakeholders and the development team to reduce the time and efforts in the manual
acceptance testing process.

In a different study done by Escalona et al. [7], they presented a rigorous
comparative analysis of 13 different characterized approaches on functional test cases
generation from functional requirements. They claimed that development teams need to
have a good understanding of most of the approaches involving generating functional
test cases from models, such as the UML activity diagrams. They also found that some
of the approaches are highly systemized, though they do not offer a tool support.
Overall, they concluded that there is no definitive approach that effectively generates
functional test case automatically.

The UML diagrams are the most commonly used modeling technique in model-
based requirements validation. For instance, EuRailCheck [8] used a set of UML
concepts and diagrams, such as classes, class diagrams, state machines, and sequence
diagrams to formalize the categorized requirement fragments of a requirements
document. The authors claimed to support an end-to-end methodology for the analysis
of requirements and guarantee traceability, aspects that received positive feedbacks in
validating system for different railway organizations. However, the tool requires
human intervention in all of the three main functions of the tool: fragmentation,
categorization and formalization of the requirements.

B. Hasling, H. Goetz and K. Beetz [9] have used UML use case models for
creating system test cases to ensure the testability of requirements. The supporting tool
i.e. TDE/UML allows efficient use of this approach and assist for creation of system
tests. It has features to prune the number of test paths through the model. However, it
still needs some sort of prioritization scheme to prioritize the generated test for which
need to be executed first.

Z. Bin and W. Anbao [10] have proposed a method by integrating use case models
and task model to generate functional and user interface test cases. They used the
integration of both models with the formal semantic of finite state machine (FSM) to
generate more complete and detailed test cases. This approach is heavyweight which
contrast to our work to be easier as it is automated and uses semi-formalise model and
prototype to visualise the output.

The UCAT (Use Case Acceptance Tester) [11] provides an automated support for
executing acceptance tests. However, this tool requires end users to possess substantial
expertise in modeling use cases. The efficiency of the developed acceptance test is
highly dependent on the quality of the use case model, which is heavily reliable on the
skill and experience of the Requirements Engineer.

R. Ibrahim et al. [12] proposed a tool called GenTCase to generate test case
automatically according to the system’s requirements. The test cases can be used as a
checklist for a programmer to validate that the system meets its requirements. The tool
is found to be able to reduce the cost for system testing and save time of producing the
test case manually. In similarity, this tool also concern on capturing the functional
requirements of the system only, for which the non-functional requirement need to
captured and tested outside the tool. Instead of using natural language for the system
requirements, this tool requires the user to place the use case diagram, flow of event
and sequence diagram, where the consistency of test cases generated are highly
dependant on the consistency of the flow of events and sequence diagrams.

The Essential Use Cases (EUCs), a semi-formal model for requirements
specification, have been used in MaramaAI for capturing and validating business
requirements [1]. The EUCs are automatically extracted from natural language
requirements and translated into a low-fidelity “Essential User Interface” prototype.
Although this tool is useful for consistency management and requirement validation, it
does not support user acceptance testing.

2. Our Approach

We have been exploring a new approach that combines a rapid UI prototyping and
requirements-based testing to validate user requirements using a black-box testing
strategy [13][14]. Figure 1 presents an overview of our approach. The process starts by

capturing the client-stakeholder requirements in the form of user story or use case
narrative (1). These requirements are analyzed to generate an EUC model (2). A low-
fidelity EUI prototype is then derived from the EUC model (3). This model is
transformed to a concrete HTML form-based UI (4). The next step is the user
acceptance testing to validate the requirements. A set of abstract test cases and
associated executable UIs that match the EUI prototype are generated to guide this
testing (5). Users can indicate whether the tests pass or fail by choosing a radio button
option. This tool aims to help validating user’s requirements as well as facilitating
effective communication that promotes collaboration among the client-stakeholders.
The generated test cases can also serve as formal documentations and they are reusable
in the final testing phase.

Figure 1. An Overview of Our Approach

3. Usage Example

Figure 2 and 3 illustrate a usage example of our prototype tool using the requirement:
As an anonymous user, I want to login and see the application menu.

Figure 2. UI view of MEReq in use

In Figure 2, from the requirements text (1), the EUC models are derived (2) and
mapped to a low-fidelity EUI model (3). This EUI prototype is then mapped to the
concrete UI (4). Figure 3 illustrates the view of the associated executable UI, labeled as
(A) and its test cases generated based on the EUC and EUI models. The generated test
cases contain the description of the test, steps and expected results. Users may test the
UI by providing the input data given in the test case and view the expected results.
Figure 3 shows the UI view of the testing result (B), which is displayed when users run
the “Valid Authentication” test case. Then, users may indicate the status of the testing
in the “Testing Status” column. Test results are saved in the database and can be
retrieved for future reference.

Figure 3. The UI view of the executable UI and its related test case

4. Implementation

We have enhanced our MEReq [15] tool to map the EUI prototypes and concrete UIs to
an executable UI and related test cases. Figure 4 outlines the high level architecture of
our prototype tool, the TestMEReq. A user uses the tool via a web browser or tablet
device. The tool UI contains three key elements: the textual natural language
requirements, corresponding EUC and EUI models (1). An Apache Web server hosts a
Java Server Faces implementation of this web interface (2). A MySQL database server
contains the EUC and EUI pattern libraries along with the EUI template and abstract
test case pattern libraries (3).

Figure 4. High-Level Architecture of MEReq.

The former, MEReq [15] supports the extraction of EUCs from the requirement

text (4). To do this, we parse the requirements text to locate an essential interaction
phrase in the text to match a library pattern, and then we use this to identify the
associated abstract interaction. From here, the EUC model is generated (4). Then, the
associated EUI model together with the concrete UI templates are extracted based on
the generated EUC model (5). The EUC abstract interaction patterns are enhanced to
include the definition, preconditions and post-conditions of the EUC and EUI models.
Here, the black-box testing strategy is applied to derive the abstract test cases that are
predefined in the pattern library. A Java-implemented module is developed to
automatically parse the EUC to generate the abstract test cases (7). Then, the generated
concrete UI and abstract test cases are mapped to the associated executable UIs (8).

4.1. Usability Evaluation

We conducted a preliminary evaluation on our prototype tool to evaluate its usability.
20 postgraduate students majoring in Software Engineering and Artificial Intelligent
were recruited to carry out the evaluation. These students have sufficient understanding
of the concept and methodology of essential use cases. Each participant was given a
brief description and tutorial on how to use the tool. Then, they were asked to explore
the tool with the same requirements presented in Section 4. Although this requirements
scenario is simple, it is realistic and represents the common functions in most software
application. Finally, they were asked to complete a survey questionnaire. This survey
aimed at gaining insights of the usability of this protoype tool with respect to its
usefulness, ease of use, ease of learning and user’s satisfaction. The survey consisted of

three questions for each question block and was measured using five level Likert scale.
The results of the usability study are shown in Figure 5.

Figure 5. Usability Study Results

In term of the usefulness of the tool, 80% of the participants agreed and 20%
strongly agreed that the tool was useful for validating requirements. They also found
that the tool to be very easy (70%) and always easy (20%) to use. In term of the ease of
learning, 70% of the participants claimed that it is very easy to learn since the flow and
the interface design of the tool are simple and user-friendly. Additionally, 80% of the
participants were very satisfied, and 10% of the participants were always satisfied with
the tool for requirements validation as it allows them to visualize and walk-through the
requirements. The abstract test cases and workable UIs help them to visualize and
understand the high-level description of their requirements. Overall, the usability
results show that our prototype tool is useful, easily used and easily learnt. Users also
exert high satisfaction when using it. However, we believe that there are still rooms for
improvement on this prototype tool.

4.2. Tools Comparison

We also reviewed and compared our prototype tool with FitNesse [16] and Selenium
[17]. Our goal was to evaluate the usage of the three tools in acceptance testing. We
examined how they implement or create the test cases. We also evaluated their test case
readability for non-technical users. Finally, we evaluated their usability in terms of
user-friendliness, ease of use and learnability. Table 1 presents a summary of our
findings.

Table 1. Summary of Tools Comparison

Tools Name TestMEReq FitNesse Selenium
Requirements
Representation Formal - - -

Semi-Formal √ - -

Informal (NL, User
Stories, Table) √ √ √

Test Implementation Auto-generated √ - -

Coding - √ -

Capture & Replay - - √

Readability Test case Readability √ √ -

Usability Ease of use &
learnability √ √ √

User friendly √ √ √

FitNesse is an open source tool built on top of Fit, which is used for automating

acceptance test cases. It is an easy tool as it uses wiki web server, requiring a minimal
learning curve. It is a collaborative tool that aims to improve communication between
customer, analyst, and developer. It allows users to upload requirements and related Fit
tables containing inputs and expected outputs of tests [16][18].

Selenium is an open source tool for simple functional testing of a web application.
Tests are written as simple HTML tables [19]. However, it may not be easy for non-
technical users to read and write tests. Whilst FitNesse requires the developer to write
the code (Fixture) to link the test cases with the system under test, Selenium has record
and replay features to build test scripts. These features record users’ actions and export
them as reusable scripts that can be later executed [17][20][21].

In comparison, our TestMEReq support semi-formal requirements representations:
EUC and EUI model and in informal requirements in a form of user stories and
scenarios. At the same time, an workable UI is also generated where users can test and
run the UI by providing the input data given in the test cases. These test cases are
automatically generated from our test case pattern library, instead of writing the fixture
code as FitNesse or building the code using Capture and Replay feature as Selenium.
Our test cases are readable and easy to understand even by the non-technical users.
Based on the evaluation, it is found that our prototype tool is easy to use and learn and
also user friendly.

4.3. Expert Review

For further evaluation, we also conducted two interviews with the experts in the field of
software development and testing. The first interview was conducted with a project
manager in Fulgent Corp, USA. Our interview session was conducted through emails
and Skype. Based on the interview, he agreed that the tool is easy to use and learn.
However, he highlighted the scalability issue of the tool that may arise when handling
larger requirements. For improvement, he suggested to include a traceability link

between functional requirements and abstract test cases that are currently not supported
for large requirements.

The second expert review was derived from a face-to-face interview session with a
project manager in IBM, Malaysia, who manages a testing team in IBM. Based on the
interview, he agreed that this tool can facilitate validating and clarifying requirements
through workable UIs and abstract test cases. He commented that although this tool
looks similar to some existing tools, it is so much simpler and easier to use. He
suggested to add a function of generating a report on testing results in the form of
graph representation for added value to the industry users like IBM.

4.4. Limitations

Our prototype tool has two main limitations. Firstly, this tool cannot generate test cases
that are not defined by the EUC and EUI abstract interaction patterns. It requires
further enhancement on the pattern editor to allow new test cases to be updated or
created based on the EUC and EUI patterns. Secondly, it lacks the flexibility to allow
users to upload developed test scripts. We believe that these issues can be solved if we
integrate our tool with other existing testing tools, such as the FitNesse or Selenium to
better support the generation of test cases/scripts.

5. Impact And Future Directions

Often in software engineering efforts, it is a major challenge to elicit correct,
consistent, and complete requirements from all client-stakeholders. There are numerous
requirements validation techniques, but most of them are tedious, expensive, and time
consuming. Our approach combines rapid prototyping and acceptance testing to
validate user requirements. A preliminary evaluation of our approach suggests that our
tool facilitates the requirements validation process and promotes better communication
and collaboration among client-stakeholders.

For future work, we intend to conduct an industrial evaluation with the Fulgent
Corp to corroborate our preliminary findings. We also plan to integrate our tool with
existing automated testing tools, such as the FitNesse and Selenium. The former will
allow users to write their own test cases to upload into our database. The integration of
Selenium will allow replay-based test case/scripts generation from our executable UIs.

6. Acknowledgements

We would like to thank Fulgent Corporation, USA and FRGS grant:
FRGS/2/2013/ICT01/FTMK/02/2/F00185 for funding this research. We also would
like to thank UTeM and Dr. Safiah Sidek for her assistance.

References

[1] M. Kamalrudin and J. Grundy, “Generating Essential User Interface Prototypes to Validate

Requirements,” in IEEE/ACM International Conference on Automated Software Engineering, 2011, pp.
10–13.

[2] M. Kamalrudin, J. Grundy, and J. Hosking, “Tool Support for Essential Use Cases to Better Capture
Software Requirements,” in Proceedings of the IEEE/ACM international conference on Automated
software engineering, 2010, pp. 255–264.

[3] S. B. Saqi and S. Ahmed, “Requirements Validation Techniques practiced in industry  : Studies of six
companies,” Blekinge Institute of Technology, Sweden, 2008.

[4] U. A. Raja, “Empirical studies of requirements validation techniques,” in 2nd International Conference
on Computer, Control and Communication, 2009, pp. 1–9.

[5] F. Yousuf, Z. Zaman, and N. Ikram, “Requirements Validation Techniques in GSD  : A Survey,” in
IEEE International Multitopic Conference, 2008, pp. 553–557.

[6] M. Kamalrudin, S. Sidek, M. Nor Aiza, and M. Robinson, “Automated Acceptance Testing Tools
Evaluation in Agile Software Development,” Sci. Int., no. 4, pp. 1053–1058, 2013.

[7] M. J. Escalona, J. J. Gutierrez, M. Mejías, G. Aragón, I. Ramos, J. Torres, and F. J. Domínguez, “An
overview on test generation from functional requirements,” J. Syst. Softw., vol. 84, no. 8, pp. 1379–
1393, 2011.

[8] R. Cavada, A. Cimatti, A. Mariotti, C. Mattarei, A. Micheli, S. Mover, M. Pensallorto, M. Roveri, A.
Susi, S. Tonetta, and F. B. Kessler, “Supporting Requirements Validation  : the EuRailCheck tool,” in
IEEE/ACM International Conference on Automated Software Engineering, 2009, pp. 665–667.

[9] B. Hasling, H. Goetz, and K. Beetz, “Model Based Testing of System Requirements using UML Use
Case Models,” in International conference on Software Testing, Verification, and Validation, 2008, pp.
367–376.

[10] Z. Bin and W. Anbao, “Functional and User Interface Model for Generating Test Cases,” in 2012
IEEE/ACIS 11th International Conference on Computer and Information Science, 2012, pp. 605–610.

[11] M. El-Attar and J. Miller, “Developing comprehensive acceptance tests from use cases and robustness
diagrams,” Requir. Eng., vol. 15, pp. 285–306, 2010.

[12] R. Ibrahim, M. Z. Saringat, N. Ibrahim, and N. Ismail, “An Automatic Tool for Generating Test Cases
from the System’s Requirements,” in 7th IEEE International Conference on Computer and Information
Technology (CIT 2007), 2007, pp. 861–866.

[13] T. Hammel, R. Gold, and T. Snyder, Test-Driven Development: A J2EE Example. New York, USA:
Apress, 2005.

[14] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The Art of Software Testing, 2nd Editio.
Hoboken, New Jersey: John Wiley & Sons, Inc, 2004.

[15] M. Kamalrudin, S. Sidek, and N. Yusop, “MEReq: A Tool to Capture and Validate Multi-Lingual,” in
The 13th International Conference on Intelligent Software Methodologies, Tools and Techniques, 2014.

[16] “FitNesse.” [Online]. Available: http://fitnesse.org/. [Accessed: 03-Jul-2013].
[17] Selenium Project, “SeleniumHQ,” 2013. [Online]. Available: http://www.seleniumhq.org.
[18] B. Haugset and G. K. Hanssen, “The Home Ground of Automated Acceptance Testing: Mature Use of

FitNesse,” in 2011 AGILE Conference, 2011, pp. 97–106.
[19] A. Holmes and M. Kellogg, “Automating Functional Tests Using Selenium,” in Proceedings of Agile

2006 (Agile’06), 2006, pp. 270–275.
[20] R. A. Razak and F. R. Fahrurazi, “Agile testing with Selenium,” in 2011 Malaysian Conference in

Software Engineering, 2011, pp. 217–219.
[21] Selenium Project, “Selenium Documentation.” pp. 1–158, 2010.

