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The waste heat from exhaust gases represents a significant amount of thermal energy, which has conventionally been used for
combined heating and power applications. This paper explores the performance of a naturally aspirated spark ignition engine
equipped with waste heat recovery mechanism (WHRM). The experimental and simulation test results suggest that the concept is
thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.
The simulation method is created using an artificial neural network (ANN) which predicts the power produced from the WHRM.

1. Introduction

The number of motor vehicles continues to grow globally and
therefore increases reliance on the petroleum and increases
the release of carbon dioxide into atmosphere which con-
tributes to global warming. To overcome this trend, new
vehicle technologies must be introduced to achieve better fuel
economy without increasing harmful emissions. For internal
combustion engine (ICE) in most typical gasoline fuelled
vehicles, for a typical 2.0 L gasoline engine used in passenger
cars, it was estimated that 21% of the fuel energy is wasted
through the exhaust at the most common load and speed
range [1]. The rest of the fuel energy is lost in the form of waste
heat in the coolant, as well as friction and parasitic losses.
Since the electric loads in a vehicle are increasing due to
improvements of comfort, driving performance, and power
transmission, it is therefore of interest to utilize the wasted
energy by developing a heat recovery mechanism of exhaust
gas from internal combustion engine. It has been identi-
fied in [2] that the temperature of the exhaust gas varies
depending on the engine load and engine speed. The higher

the engine speed the higher the temperature of the exhaust
gas. Significant amounts of energy that would normally be
lost via engine exhausts can thus be recovered into electrical
energy. Theoretically, the energy from the exhaust gas can be
harnessed to supply an extra power source for vehicles and
will result in lower fuel consumption, greater efficiency, and
also an overall reduction in greenhouse gas emission.

The recovery and conversion of this heat into useful
energy is a promising approach for achieving further reduc-
tions in fuel consumption and, as a result, reduction of
exhaust emission. Among other technologies for waste heat
recovery such as thermoelectric generators [3-5], secondary
combustion for emission reduction [6], thermal storage
system from heat exchanger [7], and pyroelectric using
heat conduction [8], the Organic Rankine Cycle (ORC) has
shown promising results and is already well established in
many applications on automotive field [2, 9-14]. However,
the construction, weight, and control system of the ORC
still encounter some problems when installed in the motor
vehicle.
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Fuel system Multi point fuel injection

Displacement 1587 cc (in-line)
Compression ratio 94:1

Bore 81mm
Stroke 77 mm
Power 112 Hp @ 6600 rpm
Torque 131 Nm @ 4800 rpm

The number of components of ORC and their volume
have to be reduced due to restrictions in costs, space and
weight, as well as complexity of steam pressure and tempera-
ture control during the transient operation.

In this study, a simple novel waste heat recovery mecha-
nism (WHRM) is proposed. The WHRM is a device adapted
from a turbocharger module, where the compressor part is
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FIGURE 1: The schematic layout of the experimental setup of the WHRM.
TABLE 1: Specification of the test engine. replaced with a DC generator to produce an output current
_— and voltage. This simple and low cost structure with straight
Type Specification forward energy recovery and with complexity-free control
Valve train DOHC 16 valves

system is expected to be a great alternative application for an
energy recovery system.

In order to predict this output power, the artificial neural
network (ANN) is employed. This ANN approach has been
applied in a spark ignition engine to provide good estimation
of the desired output parameters when sufficient experimen-
tal data were provided [15-25]. The ANN can create a model
of physical behavior in a complex system without requiring
explicit mathematical models.

2. Experimental Setup and Testing Procedures

The experiment was performed on a Toyota vehicle having 1.6
liter in-line four-cylinder gasoline engine. Table 1 shows the
specification of the test engine.

A schematic diagram of the experimental setup is shown
in Figurel. A 75 Watt bulb was used as a load causing
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TABLE 2: Details of the instrumentation used in the experiment.

Measured variable Instrument Brand Range Uncertainty
Air volume flow rate [m*/min] Pitot tube anemometer Extech 0-99,999 +3% rdg
Throttle angle [degree] Existing throttle sensor — — —
Engine speed [rpm] Optical tachometer Compact 100-60,000 rpm +0.5%
WHRM turbine speed [rpm] Optical tachometer Compact 100-60,000 rpm +0.5%
Voltage [V] USB multimeter Pros’Kit 0-600V +(0.5% + 4d)
Current [A] USB multimeter Pros’Kit 0-10 A +(1.2% + 10 d)
Hidden layer g 5
= g T T T T T T T T T
LINVRY T
) ~
Air flow rate T o A AL TMA f’\/‘/\f\/\ AN,
= Output layer ZE 70 20 40 60 80 100 120 140 160 180 200
Pattern
Throttle angle =| = Current
O O 5
S T T T T T T T T T
Engine secd=() O=vasee 280 b o LA Y
e~ 0 : . y . :
WHRM turbine speed => = 0 20 40 60 80 100 120 140 160 180 200
Pattern

FIGURE 2: The architecture of the ANN.
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FIGURE 3: Detailed structure of the ANN.

the DC generator to produce an output current and voltage
which were recorded in a computer through USB digital
multimeter. The air duct to the intake manifold of engine was
equipped with a pitot tube digital anemometer to measure
the volume flow rate of the intake air. The engine speed
and the WHRM turbine speed were continuously monitored
using an optical tachometer allowing the digital data to
be recorded in a computer through USB data acquisition
module. This was also applied for the data of the throttle
position for intake air captured using the existing throttle
sensor in the experimental vehicle. The test was conducted
on the road with variable vehicle speed up to 70 km/h with
normal driving. Some features of the instrumentation are
summarized in Table 2.

3. Artificial Neural Networks (ANN)

Artificial neural networks (ANN) have been used in a broad
range of applications, including identification, optimization,
prediction, and control processes [15-25]. The ANN basically
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FIGURE 4: The measure data from experimental vehicle.

uses the data input and data output to generate algorithm
that consists of interconnected processing nodes known as
neuron. Each neuron accepts a weighted set of inputs and
responds with an output.

The data in this study were obtained from the experimen-
tal results with 235 measurements (termed here as pattern).
The ANN is used to model the output voltage and current
produced from the WHRM. The inputs for the ANN network
are the air volume flow rate, throttle angle, engine speed,
and WHRM turbine speed, while the outputs are voltage and
current produced from WHRM.

The data from the experimental tests were used to train
and test the ANN algorithm. As many as 199 patterns
were employed as the data sets to train the network, while
the remaining 36 patterns were used as the test data. The



architecture of ANN is 4-5-2 corresponding to 4 input values,
5 hidden neurons on one hidden layer with the tan-sigmoid
(tansig) transfer function, and output layer with purelin
transfer function for 2 output values as shown in Figure 2.

The back-propagation learning algorithm was used in a
feed-forward network where the training procedure adjusted
the weighting coefficients using Levenberg-Marquardt algo-
rithm (LM). This learning algorithm has also been employed
in [19-25].

The structure of the ANN is shown in Figure 3. The com-
puter program was performed under MATLAB environment.
In the training, increasing number of hidden neuron (5, 6,
10, 20, and 30) was implemented in the hidden layer. When
the network training was completed, the network was tested
with the train patterns and the test patterns. The statistical
methods of correlation coefficient (R) and root mean square
error (RMSE) were implemented for comparison.

4. Results and Discussion

Figure 4 shows the measured data of the air volume flow
rate, throttle angle, engine speed, WHRM turbine speed, and
the output voltage and output current from the experiment.
Note that the results were taken in the actual measurement.
Therefore all the measured parameters are in full dynamic
condition, meaning that none of the parameters was under
control. Correlations between all the parameters can be
clearly observed, for example, those between the 160th and
180th patterns. The change of throttle angle affects directly to
the air flow rate, engine speed, and WHRM turbine speed,
which eventually changes the output current and voltage
accordingly.

From Figure 4, it can be seen that the maximum current
produced by the DC generator can reach up to 3.5 A and the
output voltage of up to 24 V. Note that the experiment tests
were conducted in the residential area with limited straight
line road. The output current and voltage might be greater if
the test is performed on a full straight road and with optimum
load.

These results were used as the data input and output for
the ANN. All these input and output values were prepro-
cessed to weight the data to have values between —1 and 1.
The simulation was performed with a fast training, which was
located around 50 epochs to observe the simulation results
with fast iterations.

Table 3 summaries the error values of the train and the
test from the ANN. It shows that increasing the hidden
neuron increases the values of R training and decreases those
of RMSE training. This means that the network was able to
accurately learn the training data sets. However, due to the
lack of number of data sets for the training, the RMSE of
the test values increases leading to greater error. This means
that the present data sets for the training were not sufficient
to handle the data test. As the results from the experimental
vehicle were obtained from a dynamic, nonlinear condition,
which might lead to greater uncertainty in the measured
results; thus, sufficient data set for the training is highly
important in this case.
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FIGURE 5: Comparisons of simulation train data and experimental
results for current and voltage in 5 hidden neurons.

TABLE 3: Error values of the ANN approch for the output current
and voltage used in training and test.

Neuron R training RMSE training RMSE test
5 0.91777 2.164879 2.02931
6 0.924 2.09122 2.576063
10 0.9452 1.750057 4.447449
20 0.97384 1.087244 9.648938
30 0.98225 0.791896 19.30999

Comparisons between experimental results and ANN
simulation for the output current and voltage in the data train
sets using 5 hidden neurons are presented in Figure 5. It can
be seen that the ANN simulates the two parameters for the
entire range of the patterns with good agreement, although
the number of the data training sets is only 199 patterns.

For the data test sets, comparisons between experimental
results and ANN prediction for the output current and
voltage using 5 hidden neurons are presented in Figure 6. The
simulation can be seen to follow the trend of the experimental
data, although disagreement can be observed for example
between the 25th and 30th pattern, particularly for the output
current in Figure 6(a) where the simulation overestimates the
experimental result. To improve the prediction result, more
date sets are therefore required.
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FIGURE 6: Comparisons of ANN predictions (test data) and experi-
mental results for current and voltage in 5 hidden neurons.

5. Conclusions

Utilization of waste heat energy from the exhaust gas using a
WHRM system in a spark ignition engine has been reported.
The system has been proven to produce current up to
3.5A and voltage up to 24V at normal driving in rural
environment. As many as 235 test data were used as the input
for the ANN network where the ANN prediction has been
shown to give reasonably good agreement with the measured
data, although more data sets are required to improve the
simulation. The proposed system could become a potential
energy recovery that can be stored in the auxiliary battery
to be used for electrical purposes such as air conditioning,
power steering, or other electrical/electronic devices in an
automotive vehicle.
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