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Speedy derivative-corrective mass spring
algorithm for adaptive impedance matching
networks

Y.C. Wong, T. Arslan, A.T. Erdogan, N. Haridas and
A.O. El-Rayis

Adaptive impedance matching algorithms are used to preserve the link
quality of mobile phones, under fluctuating user conditions. It is highly
desirable to reduce the search time for minimising the risk of data loss
during the impedance tuning process. Presented is a novel technique to
reduce the search time by more than an order of magnitude by exploit-
ing the relationships among the mass spring’s coefficient values
derived from the matching network parameters, thereby significantly
reducing the convergence time of the algorithm.

Introduction: The demand for small size antennas is increasing for the
next generation wireless devices. However, a small size antenna inher-
ently has impedance that varies rapidly with frequency and the user’s
environment. This can cause substantial impedance variations over
time, for instance the proximity of a mobile phone handset’s antenna
to the user’s body. For this reason, an adaptive impedance matching
network (AIMN) is required to correct antenna impedance mismatches
and maximise the transmission power. Linear correlation methods,
such as linear mean square (LMS), have been reported for tuning the
real [1] and imaginary [2] parts of the antenna impedance. However,
these methods are able to match either the real or imaginary part of
the impedance but not both parts simultaneously owing to the nonlinear
correlation of the tuner components. To correct both real and reactive
mismatches, researchers applied a specific genetic algorithm (GA)
[3, 4]. However, GAs are computationally very expensive and exhibit
slow convergence speed. The tuning process of the adaptive impedance
matching network changes the amplitude and phase of the signal
radiated, hence transmitted data may be corrupted if tuning happens
during transmission. Therefore, it is desirable to perform tuning
during very limited idle periods in order to minimise the risk of data
loss. This shows the need for a fast and computationally less complex
algorithm to correct both real and reactive parts of antenna impedance
mismatches. In this Letter, we propose a novel speedy derivative-
corrective mass spring (DCMS) algorithm for adaptive impedance
matching networks. The performance of the proposed algorithm is eval-
uated by simulations, demonstrating shorter convergence time compared
to the GA and better accuracy compared to LMS based methods.

Derivative-corrective mass spring (DCMS) algorithm: An adaptive
impedance matching network consists of tunable impedance that
couples a load to a resistive generator over a frequency band of interest,
as shown in Fig. 1a. Tunable impedance networks are mostly based on
LC- or Pi-networks, as shown in Fig. 1b.
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Fig. 1 Block diagram of adaptive impedance matching network

a Matching network parameters
b Common impedance networks: LC-network and Pi-network

The input impedance (Zin) is a function of the load (ZLoad) and an array
of tunable network parameters with N elements (Xi,t

N) [5]. The voltage
standing wave ratio (VSWR) is used as a measure of impedance mismatch
based on the reflection coefficient (G), as shown by (1) and (2).

G =
fZin {ZLoad,X N

i,t } − 1

fZin {ZLoad,X N
i,t } + 1

(1)

VSWR = 1 + |G|
1 − |G| ≥ 1 (2)
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The evolution of the proposed DCMS algorithm is governed by the
fundamental second-order numerical differential method for a basic
mass spring (BMS) [6]. The force exerted by the spring (F) is
proportional to the stiffness of the spring (k) and the vicious damping
coefficient (r), as shown by (3). Applying a finite-difference approxi-
mation for the BMS in (3), and incorporating the related network
parameters in (1) and (2), we derive the next step velocity (Vi,t+1

N ) and
the displacement (Xi,t+1

N ) of the spring, as shown by (4) and (5):
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In the BMS algorithm, a uniform r is used. However, in our proposed
DCMS algorithm, parameter r is controlled by the VSWR while the
VSWR is determined by G and Zin, which are derived from the
current displacement (Xi,t

N). Zin, which is closer to the co-ordinate of
the Smith chart, has lower VSWR; while Zin, which is far from the
centre of the Smith chart, exhibits higher VSWR. The parameter r is
incorporated with Vi,t+1

N and Xi,t+1
N , as shown in (4) and (5). A higher

velocity is imposed on individuals which are located far from the
centre of the Smith chart, as shown in Fig. 2a. Whereas, the velocity
decays towards the centre of the Smith chart, making the individuals
exploiting their current locations better. This enhances the convergence
speed of the DCMS significantly compared to the BMS, as shown in
Fig. 2a.
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Fig. 2 Comparison of proposed DCMS with BMS for different mismatches

a Based on velocities and current locations of individuals in phase-plane plot
b Based on complex input impedances (Zin) in Smith chart

The BMS will always be trapped in local optimum when the mismatch
impedance is located at the edge of the Smith chart, as shown in Fig. 2b.
For the proposed DCMS, an external random force (0 , gext , 1)
is applied to re-tune the direction of convergence when the individuals
go out of user-defined boundaries (e.g. |imag(Zin)| . 100 V) or the
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potential tuning parameters are invalid (Xi,t
N , 0). This external force in

the DCMS circumvents the limitation of the numerical method which is
sensitive to the initial values and enables better extrapolation to its
neighbourhood.

Results and discussion: The DCMS algorithm was tested with two
topologies, i.e. LC- and Pi-network. The algorithm stops as soon as a
user-defined threshold for the VSWR is reached (e.g. VSWR , 2) or
the maximum number of iterations (48) is exceeded. The results show
that the DCMS outperforms both the LMS and the GA with its very
fast convergence speed and high accuracy, see Figs. 3a and b. The
LMS shows a moderate convergence speed compared to the DCMS
owing to its constant step size. However, the LMS is unable to converge
when both real and imaginary parts are involved in the tuning process, as
shown in Table 1. The GA and the DCMS have close average conver-
gence rates, although the GA’s convergence rate could be improved
further by allowing longer simulation time and increasing the number
of chromosomes. However, the GA has the longest average CPU time
which is more than 40 times slower compared to the DCMS.
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Fig. 3 Convergence of LMS, GA and DCMS

a Based on VSWR over number of iterations
b Based on complex input impedances (Zin) in Smith chart

Table 1: Average VSWR and CPU time for DCMS, LMS and
GA in 1000 runs based on LC- and Pi-network for
mismatches involving both real and imaginary part of
ZLoad (15 + j15.6) and solely the imaginary part
of ZLoad (50 + j15.6)

Adaptive
algorithm

AIMN Elements in ZLOAD

to be corrected
Average
VSWR

CPU
time (ms) Comments

DCMS

LC
Real and imaginary 1.7643 2.9

Fast and good
convergence rate

Imaginary only 1.2134 2.8

Pi
Real and imaginary 1.4561 12.4

Imaginary only 1.2053 13.1

LMS

LC
Real and imaginary 6.3731 16.4 Unable to converge

(VSWR . 2) for
mismatches involving

both real and imaginary
parts

Imaginary only 1.4539 18.9

Pi
Real and imaginary 3.6866 20.4

Imaginary only 1.0979 20.3

GA

LC
Real and imaginary 1.3258 539.7

Slow CPU time
Imaginary only 1.0879 536.9

Pi
Real and imaginary 1.3921 544.6

Imaginary only 1.2028 556.8
ELECTRO
Conclusion: For adaptive impedance matching networks, we have
presented a novel derivative-corrective mass spring (DCMS) algorithm
which has faster convergence speed and is more robust than existing
algorithms, i.e. the LMS and the GA. The proposed DCMS algorithm
can intelligently increase diversity and escape from local optimum
traps, enabling it to converge to solutions faster. Moreover, it can
adaptively determine the next step velocities and displacements, which
significantly reduce the number of searching steps required. The
reduction in search time is very important for reducing the risk of data
loss and achieving better link quality for next generation green mobile
applications.
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