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Abstract 

 
This paper presents a comprehensive investigation of the Self Organizing Map (SOM) classification 

process of good and defective power distribution transformers. Three main features were extracted from 

the numerical calculation method of the Sweep Frequency Response Analysis (SFRA) signals acquired 
from the transformers. These features are the input vectors for the SOM classification. Analysis of the 

results has shown the capability of the features and the SOM classification method to differentiate 

between good and defective transformers.  
 

Keywords: Self Organizing Maps (SOM); power transformer; classification; SFRA 
 

Abstrak 

 
Dalam kertas penyelidikan ini pengkajian yang komprehensif tentang kemampuan Peta Penyusunan 

Kendiri (SOM) dalam mengklasifikasi alatubah kuasa pembahagian berada dalam baik atau bermasalah. 

Tiga ciri utama yang diekstraks dari kaedah pengiraan berangka melalui isyarat Analisis Tindak balas 
Frekuensi Sapuan (SFRA) yang diperolehi dari alat ubah. Ciri-ciri ini akan dijadikan sebagai vektor input 

untuk pengklasifikasi SOM. Hasil analisis menunjukkan yang ciri utama dan kaedah pengklasifikasi SOM 

mampu untuk membezakan antara alatubah yang baik dan yang bermasalah. 
 

Kata kunci: Peta Penyusunan Kendiri (SOM); alat ubah kuasa; pengklasifikasi; SFRA 
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1.0  INTRODUCTION 

 

SOM is one type of artificial neural networks (ANNs). This 

methodology introduce by Kohonen in 1989.1 Basically ANNs are 

mathematical model that being designed based on human brains. 

ANNs contains group of interconnected neurons or nodes. ANN is 

widely used to find patterns or fingerprint between input and 

output data.2  

  Unsupervised learning (learning by observation) refer to the 

method that learns by itself according to input attributes and also 

apply competitive learning that made the output nodes to compete 

to be activated. Only one of the node will activated at any one 

time or we called winning neuron.2-3 The node competition can be 

induced through negative feedbacks between neurons. The system 

is called Self Organizing Map (SOM) because all nodes are forced 

to be self organized through the feedback path.   

Based on neurological studies, all human sensory inputs are 

mapped onto certain areas at the cerebral cortex that form a map 

called Topographic Map.2 It has two most important principals; 

 

 At each stage of processing, every each information is 

reserved in its proper environment. 

 Close related information nodes will be close to each 

other to ensure short synaptic connections. 

 

  SOM primary purpose is to transform incoming input 

patterns into a one or two dimensional discrete map. This process 

must be performing in orderly approach. 

  In this research, SOM is applied to classify the parameters 

between good and defective power distribution transformers. The 

SOM classification process is applied to SFRA data acquired from 

twelve transformers at twelve different substations.  
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Figure 1  Test leads connection from the FRAnalyzer to a transformer5 

 

 

 
 

Figure 2  Graphical representation of SFRA results (y-axis: magnitude, x-axis: frequency in Hz) 

 

 

2.0  THE TEST SETUP 

 

The SFRA results utilized in the study were obtained from twelve 

33/11kV transformers with ten transformers in good condition and 

two transformers were in defective condition. The SFRA 

measurement was conducted on HV winding. The whole 

experiment was setup at twelve different air insulated substation 

(AIS) and gas insulated substation (GIS). SFRA measurement has 

the ability to determine abnormality happen at transformer 

winding.8-9 

  There are four different types of SFRA measurement setup. 

These measurements can be defined as end to end open circuit, 

end to end short circuit, capacitive and inductive interwinding 

measurement.4-5 The test configuration used in this test is the end 

to end open circuit. Test leads connection between FRAnalyzer 

and transformer as depicted (Figure 1).  

  The measured data can be compared to other measurement 

results (history, pair, twin or phase data) to determine variations 

or differences.4 The most ideal method is to compare the 

measured results with the health of same units (twin or pair 

transformer).4 In case of unavailability of same transformer, we 

often compare with twin or sister unit, phase to phase end to end 

open or short circuit measurement. In this research work, phase to 

phase comparisons are employed as in Table 1. Each 
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measurement will produce SFRA traces that are manipulated as an 

input in SOM clustering process. Each traces produced data in 

both magnitude and phase value (Figure 2).  
 

Table 1 Transformer winding configuration and phase to phase 

comparison method 

 

Winding 

Data Description 

Transformer Winding Code 
Phase to Phase 

Comparison 

HV 

H1H2 phase (red phase) H1H2 to H2H3 phase 

H2H3 phase (yellow phase) H1H2 to H3H1 phase 

H3H1 phase (blue phase) H2H3 to H3H1 phase 

 

 

3.0  SELF ORGANIZING MAPS METHODOLOGY 

 

3.1  Architecture of SOM Network 

 

A typical SOM structure built from two main layers; input and 

output layer that array in two-dimensional preposition is shown in 

Figure 3. SOM algorithms resemble Learning Vector 

Quantization (LVQ). In LVQ all neurons are arranged on a grid 

together with selected neurons whereas SOM has a feed-forward 

structure with a single computational layer arranged in rows and 

columns. Each neuron is fully connected to all the source nodes in 

the input layer. Neighbouring nodes will be updated to perform 

neurons order. This indicates that SOM as a multidimensional 

scaling method from input space to two-dimensional output space. 

Visual format of SOM help researcher to define clusters, relations 

and structures in complex input database. 

 

 
Figure 3  SOM basic architecture 

 

 

3.2  Best Matching Unit (BMU) 

 

Number of neuron may vary from a few dozen up to several 

thousands. Each neuron is represented by a d-dimensional weight 

vector (prototype vector, codebook vector) m = [m1,....,md], where 

d is dimension of input vectors. Neurons connected to the adjacent 

neurons through neighbourhood relation that dictates its topology.  

  SOM is then subjected to iteration for training the network. 

Each iteration has one sample vector s from the input data will be 

selected randomly, and the distances between all the nodes are 

then calculated by particular distance measures. The neurons that 

have closest weight vector to the selected sample s is called best 

matching unit (BMU) (Fig. 2) and denoted by c 

 

                    ‖𝑠 − 𝑚𝑐‖ = 𝑚𝑖𝑛𝑖‖𝑠 − 𝑚𝑖‖                          (1) 

 

where c is referred to Euclidean distance measure.2  

 

 
 

Figure 4  Updated the BMU and its neighbourhood. Input sample marked 
as s. Solid line referring to origin situation and dashed line represent 

updated condition3 

 

 

  Upon determining BMU, SOM weight vectors are updated so 

that the BMU will be closer to the input vector in input space. 

This adaptation process will stretch the BMU and its topological 

neighbours towards the sample vector (Figure 4).  

 

The SOM update rule for the weight vector m of unit i is 

 𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 𝛼(𝑡)ℎ𝑐𝑖(𝑡)[𝑠(𝑡) − 𝑚𝑖(𝑡)]   (2) 

 

  where t denotes times, s(t) is random selected input vector 

from set of input data at time t, hci(t) the neighbourhood kernel 

around winner c, and α(t) the learning rate at time t. The 

neighbourhood kernel defines the region of influence that the 

input sample has on the SOM. 

 

 

4.0  FEATURE EXTRACTION 

 

In this research work, the measurement results from SFRA traces 

are converted into CSV 2.0 format. The retrieved raw data are 

then used to calculate the numerical parameters. There are three 

type of parameters as shown in Table 2 that are selected for 

feature extraction of the SFRA data which are the Cross-

Correlation Coefficient Function (CCF) , Standard Deviation (SD) 

and Absolute Sum Logarithmic Error (ASLE).6-7  

 
Table 2  Numerical parameters and its equations7 

 

No

. 

Table Column Head 

Numerical 

Parameters 
Equations 

1. 

 
Cross-

Correlation 

Coefficient 
Function (CCF) 

 

𝐶𝐶𝐹(𝑥,𝑦) =
∑ (𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)𝑁

𝑖=1

√∑ (𝑋𝑖 − �̅�)2(𝑌𝑖 − �̅�)2𝑁
𝑖

 

2. 
Standard 

Deviation (SD) 𝑆𝐷(𝑥,𝑦) = √
∑ (𝑌𝑖 − 𝑋𝑖)2𝑁

𝑖=1

𝑁
 

3. 

 

Absolute Sum 
of Logarithmic 

Error (ASLE) 

 

𝐴𝑆𝐿𝐸(𝑥,𝑦) =
∑ (20 log10 𝑌𝑖 − 20 log10 𝑌𝑖)𝑁

𝑖=1

𝑁
 

 

 

  The related formula for numerical calculation of Xi and Yi 

refer to SFRA measurement data of the reference phase and 

adjacent phase respectively. N is number of frequency samples 
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used in the measurement. Only the magnitude response data from 

SFRA measurements are used to compute the numerical features. 

These features are used as the input vectors for the SOM 

classification. 

 

 

5.0  RESULTS AND DISCUSSION 

 

Four sets of SOM parameters (normalization methods and number 

of neurons) need to be applied and optimized for SOM 

classification of the numerical features. Below, the results are 

presented and discussed.  

 

5.1  SOM Parameters Optimization 

 
Each simulation consists of the combination between various 

normalization method (‘var’, ‘range’, ‘log’, or ‘logistic’) and 

optimum number of neurons (from 120 to 340 neurons). For ‘var’ 

data input, it will be normalized to unity and means to zero while 

‘range’ input data will be normalized between zero and one. For 

‘log’, natural logarithm as in the equation below is applied.  

 

                     Xnew = log(X-m+1); m=min X                                (3) 

 

while ‘logistic’ or softmax transformation scales all possible 

values between zero and one.3 

 

  Data normalization is very vital in forming the maps to 

present higher values to dominate map topology and hide other 

components. Table 3, 4, 5 and 6 used the same data inputs from 

SFRA numerical calculated features which are CCF, SD and 

ASLE with different types of normalization method for SOM 

classification. All tables have shown that all normalization 

methods achieve very small quantization and topographic error 

using 340 neurons except for Table 5 (‘log’ normalization 

method) that manage to reach low value using only 300 neurons. 

Low quantization and topographic indicates that good and smooth 

classification is achieved through hexagonal lattice for all 

normalization method.  

  Training time for all classification is achieved by less than or 

equal five second. Short training time referred to good mapping 

capability and quality especially for classification process. Upon 

comparing the least value of quantization and topographic error 

and also training time, Table 6 or ‘range’ normalization is the best 

selection. Therefore, for the SOM classification map, ‘range’ 

normalization with 340 neurons is selected. 
 

Table 3  Result from MATLAB simulation using hexagonal topology and 

‘var’ normalization method 

 

No. of 

Neurons 

Simulation Result 

Map Size 
Quantization 

error 

Topographic 

Error 

Training 

Time 

(sec) 

120 [17, 7] 0.157 0.046 1 

140 [18, 8] 0.126 0.028 1 

160 [18, 9] 0.117 0.028 1 

180 [20, 9] 0.109 0.009 1 

200 [20, 10] 0.108 0.009 1 

220 [22, 10] 0.097 0.009 1 

240 [24, 10] 0.085 0.028 2 

260 [24, 11] 0.083 0.028 3 

No. of 

Neurons 

Simulation Result 

Map Size 
Quantization 

error 

Topographic 

Error 

Training 

Time 

(sec) 

280 [25, 11] 0.075 0.028 2 

300 [25, 12] 0.072 0.019 2 

320 [27, 12] 0.066 0.000 3 

340 [28, 12] 0.063 0.000 3 

 

Table 4  Result from MATLAB simulation using hexagonal topology and 

‘range’ normalization method 

 

No. of 

Neurons 

Simulation Result 

Map Size 
Quantization 

error 

Topographic 

Error 

Training 

Time 

(sec) 

120 [17, 7] 0.020 0.037 0 

140 [18, 8] 0.018 0.028 0 

160 [20, 8] 0.017 0.019 1 

180 [20, 9] 0.015 0.009 1 

200 [22, 9] 0.014 0.028 2 

220 [22, 10] 0.013 0.009 1 

240 [24, 10] 0.012 0.019 2 

260 [24, 11] 0.011 0.037 2 

280 [25, 11] 0.010 0.028 2 

300 [27, 11] 0.010 0.037 2 

320 [27, 12] 0.009 0.019 2 

340 [28, 12] 0.009 0.009 4 

 
Table 5  Result from MATLAB simulation using hexagonal topology and 

‘log’ normalization method 
 

No. of 

Neurons 

Simulation Result 

Map Size 
Quantization 

error 

Topographic 

Error 

Training 

Time 

(sec) 

120 [17, 7] 0.043 0.056 1 

140 [20, 7] 0.039 0.056 0 

160 [20, 8] 0.035 0.019 1 

180 [23, 8] 0.030 0.056 1 

200 [22, 9] 0.028 0.046 1 

220 [24, 9] 0.027 0.056 3 

240 [27, 9] 0.022 0.037 1 

260 [26, 10] 0.023 0.065 2 

280 [28, 10] 0.021 0.037 2 

300 [27, 11] 0.018 0.009 3 

320 [29, 11] 0.017 0.028 10 

340 [31, 11] 0.017 0.037 3 
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Table 6  Result from MATLAB simulation using hexagonal topology and 

‘logistic’ normalization method 

 

No. of 

Neurons 

Simulation Result 

Map Size 
Quantization 

error 

Topographic 

Error 

Training 

Time 

(sec) 

120 [20, 6] 0.034 0.065 2 

140 [20, 7] 0.030 0.037 1 

160 [23, 7] 0.028 0.019 1 

180 [23, 8] 0.025 0.037 1 

200 [25, 8] 0.023 0.019 1 

220 [24, 9] 0.021 0.009 2 

240 [27, 9] 0.020 0.009 2 

260 [29, 9] 0.018 0.009 2 

280 [28, 10] 0.017 0.019 2 

300 [30, 10] 0.015 0.009 4 

320 [32, 10] 0.014 0.009 2 

340 [31, 11] 0.014 0.000 5 

.  

 

5.2  The U Matrix Classification 

 

For U Matrix classification map, hexagonal topology was chosen 

to get higher resolution and faster result because rectangular 

topology needed lesser number of neurons to achieve low 

quantization and topographic error. The U Matrix result (Figure 5) 

from the selected SOM parameters. The accuracy of classification 

via BMUs in the U Matrix is considered as almost precise and 

produces good and smooth mapping quality. 

 

 
 

Figure 5  The U Matrix for the ‘range’ normalization for the 
classification, using Hexagon lattice, with 340 neurons. Both quantization 

error and topographic error are at 0.009 

In the map units or neurons of the U Matrix (Figure 5) shown are 

labeled by their respective substation with alphabetical order from 

A to M where each neuron is represented by the vectors of the 

numerical features. Clearly, the clustering process is achieved by 

inspecting the data components that are grouped together and 

place inside a lighter color border that that signifies higher 

distances and inside darker color border for shorter distances. 

  It is proven that from the U Matrix visualization, abnormality 

that happen in a transformer can be analyzed through SOM. 

Numerical calculated data produced from SFRA signal raw data 

can be used as an input in clustering to separate between normal 

(good transformer) and abnormal (defective transformer) data. 

 

5.3  Analysis of Extracted Feature 

 

Component plane representation (Figure 6) for the U Matrix 

(Figure 5) is presented. Observe that, there are three main 

component planes that represent the numerical calculated features 

such as CCF, ASLE, and SD that are being used as the SOM 

classification input data. Each plane portrays the values and 

patterns of the respective numerical features from the lowest to 

the highest values as indicated by the indicator on the right of 

every component plane. The darkest colour corresponds to the 

lowest values while the lightest colour corresponds to the highest 

values. 

 

 
 
Figure 6  The Plane Representation Showing Data Contribution of Three 

Numerical Calculated Data for the SOM Classification 

 

 

  The plane representation in Figure 6 also demonstrated that 

each component projects different pattern and no uniform 

distribution are found throughout the plane. Hence each plane is 

unique and all the three numerical features are very important 

features to contribute to the classification process through the U 

Matrix classification in Figure 5 and none of the features is 

needed to be removed.  

 

 

6.0  CONCLUSION 

 

SFRA raw traces from twelve power distribution transformers are 

manipulated using three numerical parameters (CCF, SD and 

ASLE) as an input data for SOM clustering to separate defect data 

 

 

Features from 
Defective 
Transformers 

Features from 
Good 
Transformers 
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from normal data. SOM visualizations depicted that data that have 

the same characteristics or conditions are mapped close together.  

Hence, the numerical features from the good transformers are 

separated from the defective transformers in the SOM U-Matrix 

classification. The analysis signifies that the methodology carried 

out in this research work is an effective way to evaluate the 

transformer condition from the SFRA traces. 
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