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Abstract 

The  characteristic  that   determines  a  green  data center is low amount  of carbon  footprint produced  by its physical data  storages.  
Increasing  demand  of data volumes in many  data intensive  applications   call  for  additional physical  data  storages that   are   not   
only   impractically  large   to  maintain,   but   also contribute  to  the  amount   of  carbon   footprint  produced.   It   is argued in this 
paper that, if storage space can be optimised to gain free spaces, the  storage  space  requirement can  be reduced. In  this  paper,  a model  
to optimize  database storage  space  by  mining  functional dependencies   that   are  present   among   data   sets  is  proposed. Sample  
data   sets  from  the  microbial   domain  have  been  used where  data  of large  data  volume  raises  storage  space  concern. The  initial  
results of the  implementation of the  model  that  is necessary  in designing  a complete  space  optimization  algorithm are presented. 
 
 
© 2013 The Authors. Published by Elsevier Ltd.  
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1. Introduction 

One prominent concern in the establishment of green data centers is to decrease carbon footprint and operating costs 
(e.g. cooling systems for data centers) by reducing the amount of physical data storages required. Scientific applications 
which rely on large of data volumes require physical data storages that are not only impractically large to maintain, but also 
contribute to inefficient power consumption.Within the context of scien- tific applications that require access to scientific 
databases, data volumes often be large enough for storage space requirements to become an issue that must be dealt by 
scientific data center providers. Expanding database storage is an option that data center providers could take in order to 
address the space issue, however  this option leads to an increase in the amount of physical data storages (data servers) 
required. As more data servers  are  added,  more  electrical power  is  needed  to  run the additional data servers and to 
cooling-off those servers. The issue concerning data centers has been raised in a recent estimation which stated that the 
worlds data centers currently consume about 330 billion kWh of electricity every year, which is almost equal to the entire 
electricity demand of the UK [1]. In addition, power consumption that exceeds 100 billion kWh generate approximately 40, 
568, 000 tons of CO2 emissions [2], [3], [4]. Thus, in establishing successful green data centers, adding more data servers is 
not an interesting option to choose in dealing with the storage space issue as this option leads to undesirable increase in  
power  consumption and  in  CO2 emissions. 

By optimising the available database storage required to store large data volumes, the requirements for physical data 
storages can be reduced. One way to reduce storage space requirement is by optimising the available database space. In fact, 
the need to optimise space is not new, as tools and techniques for this purpose provided by enterprise data storage vendors 
(such as Oracle [5], [6] and DB2 [7]) have been available in the market for about a decade. At the relational table level, data 
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compression tools, for example, apply a repeated values removal technique to gain free space [6]. In addition, data 
deduplication techniques remove duplicate records in the table to gain storage space [8].  The  idea behind  these  space  
optimisation solutions is  to  exploit  the presence  of  overlaps  (of  values  or  records)  within  tables. Both of these 
techniques are performed at the level of whole tables. A key (though often unstated) assumption behind these optimisation 
techniques is that all columns can be exploited for space optimisation. Because of this assumption, knowledge of semantics 
of applications (i.e., how the columns are used) is ignored and as the consequence, data center providers need to bear 
unnecessary query processing overhead for frequent compression (and decompression) of heavily queried data. 

The key lesson learnt from space optimisation techniques that are available in the market to date is that, space optimi- 
sation techniques that achieve space saving at both schema level and whole tables level are limited. In addition, space op- 
timisation techniques that consider knowledge of semantics of applications have not been studied in depth. Because of these 
limitations, the two techniques described above unfortunately do not fully support solving the storage space issue faced by 
data center providers, where knowledge of how database is used must be considered for space optimisation. Therefore, an 
alternative space optimisation technique is needed to address the limitations of the existing techniques. This new, alternative 
technique is crucial to support data center providers in dealing with high storage space requirements that eventually call for 
unnecessary additional physical data storage. 

Space optimisation will be useful in a data-intensive domain where  storage  space  and  establishing  green  data  center  
is of concerned. Storage space requirement in the microbial genomics domain for example is driven by the need to con- duct  
various  analyses  (with  a  range  of  subjects  coverage) and  advancement  in  experimental  tools  provides  a  hint  on the  
storage  space  issue  faced  by  data-intensive  application providers. Storing large data sets is not an issue if additional 

However, under a strict budget, purchasing new disks might not be feasible especially if frequent space expansion is 
required (i.e., due to the frequent addition of newly discovered data sets).  Under these circumstances, if  storage space can 
be optimized so that free space can be gained, the requirement for storage space can be reduced. 

Space optimisation provides benefits not only when space is highly constrained, such as for handheld devices [9] but 
also when the concern is to optimise query response time. By reducing the space needed to store the data, we can reduce the 
time taken for input/output operations for the query, as data are stored in fewer blocks on the disk [10], [11]. In addition, 
space optimisation could ease the task of administering space expansion that usually requires new infrastructure, increased 
demand for utilities (for power and cooling), extra floor space, as well as additional staff [12]. 

In  fact,  the  need  to  optimise  the  space  is  not  new,  as tools and techniques for this purpose, provided by enterprise 
data storage vendors (such as Oracle [13], [6] and DB2 [7]), have  been  available  in  the  market  for  about  a decade.  At 
the relational table level, data compression tools, for exam- ple, apply a repeated values removal technique to gain free 
space [6]. In addition, data deduplication techniques remove duplicate records in the table to gain storage space [8]. The 
idea behind these space optimisation solutions is to exploit the presence of overlaps (of values or records) within tables. 
Both of these techniques are performed at the level of whole tables. A key (though often unstated) assumption behind these 
optimisation techniques is that all columns can be exploited for space optimisation. Because of this assumption, knowledge 
of semantics of applications (i.e., how the columns are used) is ignored. As a result, optimisation is usually performed at a 
whole table level. 

The key lesson we learnt from these optimisation techniques is that, space optimisation techniques that achieve space 
saving at both schema level and whole tables level are limited. In ad- dition, space optimisation techniques that consider 
knowledge of semantics of applications are also limited. Because of these limitations, the two techniques described above 
unfortunately do not fully support solving the storage space constraint issue faced  by  data-intensive applications providers  
(such  as  the microbial  genomics domain), where knowledge of how the data sets are used for the analyses must be 
considered for space optimisation. Therefore, in this paper, we set to propose a space optimisation technique that addresses 
the limitations which are barriers to deal with storage space issue which, the details of the technique will be presented in the 
next section. 

2. The proxy-based approach 

We propose a space optimisation technique called the proxy- based approach. Basically, the proxy-based approach 
method offers space saving through database schema modification, in particular by dropping attributes from the schema 
under consideration. The removal of the attributes, of course, will cause information loss and consequently will affect the 
queries that rely on those attributes. However, if the missing information can be retrieved from other attribute(s), the queries 
could still be  computed using the  smaller database. We  use  the  term es 
in the schema, which is inspired by proxies in other contexts with similar roles (e.g., in voting, a proxy is a person 
authorised to act on behalf of another [14]). We identified the proxies based on functional dependency relationship that can 
be observed among  attributes  in  relational  tables.  An  understanding  of the space-accuracy trade-offs that the proxies 
could offer is required to facilitate the decisions in selecting which attributes can be deleted from the universe schema. 
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Therefore, answering the following questions regarding proxies are crucial before we can decide on its applicability: 
 

 How do proxies contribute to space saving? 
 How do we select the attributes to drop from the schema? 
 What determines the amount of space saving that can be offered by proxies? 

 
The idea behind the technique we propose is to achieve space saving through both database schema modification and 

exploitation of the presence of overlaps. Specifically, space saving through schema modification is achieved by dropping 
some attributes from the schema. If some attributes are dropped from the schema, the amount of space saved is roughly 
determined by the number of attributes being dropped and the number of tuples the table contains. For example, consider a 
table which consists of 100 tuples, with several attributes in its schema. If we drop an attribute from the schema, then the 
amount of space saved is 100 units of instances*  (which is of course, is convertible to disk storage unit in bytes). 

The  question that  arises  is  whether  all  attributes  in  the schema  are  droppable.  To answer this question we need to 
understand the semantics of the application. As for the microbial genomics application, we need to understand how the data 
set is used in answering data set requests for the analyses. In particular, we need to know how attributes in the schema of the 
microbial database tables are used. 

Consider the subject of interest in a microbial analysis gathered from their contributing sources is grouped into its 
population that is stored as a table. We define the generic schema of the population table as P  = <I , source, A>, where I is 
the set of identifier attributes, source  is the attribute used to express the query predicates needed to extract individual record 
that is originated from specific microbial database and A is the set of attributes other than I and source. 

Essentially, the identifier attribute is used in every query that retrieves the population individuals. The identifier 
attribute has an essential role in identifying population individuals. If we substitute the identifier attribute with a proxy, we 
need to assume that the same proxy is available in the source from which the person issuing the query extracted his/her data 
set under measure. However, in the situation where there is a lack of overlaps between the source from which the data set 
under measure is extracted and the integrated database, substituting the identifier attribute  with  a  proxy  will  create  a  
barrier  to  answer  the queries. Therefore, because there is uncertainty as to whether the same proxy for the identifier 
attribute will be available in the source where the data sets is gathered, we regard identifier attributes as not droppable from 
the schema. This leaves the options of droppable attributes to those other than the identifier attribute. 

Dropping attributes from their schema will cause informa- tion loss. Therefore, we must find other attributes that we 
refer to as proxies to substitute for the droppable attributes. The proxy and the droppable attribute must be related in some 
way to compensate for the information loss. A particular kind of relationship that can be observed among attributes in 
relational tables is a functional dependency (FD). In the literature, FD is described as a unique-value constraint, commonly 
used for relational schema design [15]. If an FD applies to a table, the value of an attribute on the table can be uniquely 
determined by the values of some other attributes [16]. An FD over a relation schema R is denoted 
where X  R and A  R. X in the expression represents the set of attributes, 
can uniquely determine the values of A. The rule regarding FDs states that with schema R, 
provided that for all pairs of tuples t, u  r we have: 

t[X[ = u[X] => t[A] = u[A] where A, X  R                                                      [1] 

the information loss caused by 
dropping A from the schema can be compensated in full. 

Therefore, based on our observations on the properties of FD, we say that, proxies for the droppable attributes can be 
found by discovering the relationships among attributes in the population tables where FD is present. 

Discovering proxies based on FD is quite straightforward as  they are usually key attributes within a  relational table, 
 defined on the table is available. 

However, in the absence of the information about the types of constraints defined on the table; or in the case where FD- 
based proxies do not fall under the key attributes category, we need a way to discover them. An algorithm called TANE 
proposed by Huhtale et al.  [16] is useful in our context to discover FDs. TANE was used in several applications such as  
semantic queries for query evaluation  optimisation [17], accessing deep web results by relaxing the queries that fail to 
produce satisfactory results due to the constraints of web query interfaces [18] and, query rewriting that deals with nulls in 
query answers [19], [20]. 

The question that arises if proxies are accepted to substitute the droppable attributes is, how information loss as the 
result of dropping the droppable attributes can be compensated by the proxies? Space optimisation techniques described 

 

 
1 We regard each cell in a common relational table as an instance 



486   Nurul A. Emran et al.  /  Procedia Engineering   53  ( 2013 )  483 – 490 

earlier (e.g., based on compression) store the details of the removed overlaps in the meta-data in order to compensate 
information loss. These techniques implement algorithms that will retrieve the removed overlaps from the meta-data, every 
time a query is submitted against the compressed (or deduplicated) tables. To answer the question just raised, we adopted a 
similar way to compensate information loss where we use a proxy map to store the mappings between the values of the 
droppable attributes and the values of their proxies. For example, consider a and b are the values of a droppable attribute. A 
proxy map consists of the following mappings: 

 
 

relationship. Therefore, every time a query is submitted against a pop
retrieved from the proxy map (for the query that has the dropped attribute in its predicate(s)). 
 
2.1. Implementation Options of Proxy Maps 

As storing the proxy map requires some space, the amount of space used by the proxy map must be taken into 
account, rather than considering space saving by the droppable attributes alone. Therefore, we define space saving as: 

 
                                                                                        dro  

                                                         SpaceSaving =         droppableAttrSize           × 100,   (2) 
 

where droppableAttrSize  is  the  size of  the  droppable at- tribute, proxyMapSize is the size of the proxy map. The number 
of instances is used to represent the size of these variables, that is independent of any specific storage and file organisation 
system. One key criterion of a useful proxy, in terms of space saving, is that the amount of space required for the proxy map 
is smaller than the amount of space saved by dropping the attribute it substitutes for. Therefore, space saving through 

 is how 
can we minimise the space required to store the proxy map? To answer this question, we need to identify the possible 
structures of a proxy map and compare them in terms of their size. Essentially, each proxy map must consist of the values of 
the droppable attributes and the values of the proxies that map to the values of the droppable attribute. We identified two 
possible structures for a proxy map as follows: 
 

 A pure  relational table:  in its simplest form, a proxy map  is  in  pure  relational  table  structure  for  
schema:<droppableAttr, proxy>. For this structure, each value of the droppable attribute will be mapped to exactly 
one value of the proxy. Because of this characteristic, each droppable attribute value that is substituted by multiple 
proxy values will be stored repeatedly in the table. For example, Table I shows an artificial proxy map in pure 
relational structure where, A is the droppable attribute and B is the proxy. Based on the table, 16 instances are 
stored within the proxy map. 

 A  multi-valued   table:  like  the  pure  relational  table, a  proxy map in a multi-valued table structure has the 
schema:  <droppableAttr, proxy>.  However,  unlike  the pure relational table, each value of the droppable 
attribute will be mapped to a set of proxy values (that may be a sin- gleton set). Because of this characteristic, each 
droppable attribute value that is substituted by multiple proxy values will be stored only once in the table. This 
structure is also called as Vectorised dictionary based minimal DSM (VDMDSM) proposed by Rahman, Schallehn 
and Saake [21], which is a by-product of the decomposition storage model  (DSM) by  Copeland and  Khoshafian 
[22].  The essence of this form of table structure in those works is to store all values of the same attribute of the 
relational conceptual  schema relation together, for the advantage of performance (e.g., less database tuning 
required) and increased data independence and availability [22], [21]. For example, Table II shows an artificial 
proxy map in a multi-valued table structure, where A is the droppable attribute  and  B is  the  proxy.  Based  on  
the  table,  10 instances are stored within the proxy map. 

 
In comparison, the example shows that the size of proxy map in the multi-valued table structure (in terms of the number of 
instances stored) is smaller than the size of the proxy map stored in the pure relational structure. By adopting a multi- valued 
table structure in this example, we optimise the proxy table  as a  whole, by removing the repeated values (of the droppable 
attribute) which, if readers may notice, is a similar approach used by space optimisation techniques described earlier. 
Therefore, in the example, the space required to store the proxy map can be minimised by storing the proxy map in a multi-
valued table structure. By minimising the storage requirement for the proxy map, we gain the benefit of space saving, which 
in the example above, is a saving of 6 instances. From the example, we say that storing the proxy map using a multi-valued 
table is useful in the situation where the droppable attribute values are mapped to multiple values of the proxy. To see 
whether a multi-valued table is useful by examining the size of proxy maps using real data sets, we conducted a small case 
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study in the microbial domain as presented in the next section. 
 

Table 1. A proxy map in pure relational table 
 

A B 
a 1 
a 2 
a 3 
a 4 
b 5 
b 6 
b 7 
b 8 

 
Table 2. A proxy map in a multi-valued table 

 
 
 

 
 

3. Results of a case study of proxy maps implementation 

We use microbial data sets taken from the Comprehensive Microbial Resources (CMR)2 that were  downloaded  in  the 
form of SQL dumps. In particular, we used three tables, namely evidence, taxon and bug attribute to represent our sample 
population tables. For brevity, we assume that the individuals of each population come from a single source (CMR). The 
schemas of these tables are as follows: 
 
 Table 1: Evidence = <id, ev type, method,assign by>, 
 Table 2: Taxon = <uid, genus, species, kingdom, ir1>, 
 Table 3: Bug attribute = <id, att type, assignby>. 

  
Evidence consists of the idence  population, in  which  information about  the  type  of 
evidence found about the presence of microbes, the method used to discovered them and the person (laboratory) who 

rded; bug attribute consists of the 
individuals of insects/bugs population where microbes were found, in which information about how the information is 
retrieved (attribute type) and the person (laboratory) who discovered them are stored. The underlined attributes are the keys 
for the tables. Each key attribute has been selected as the proxy (based on the presence of an FD) for all non-key attributes. 
The schema of the proxy tables are: 
 
 from evidence: 

- <ev_type, id>, <method, id>, <assignby, id>. 
 from taxon: 

- <genus, uid>, <species, uid>, <kingdom, uid>,<ir1, uid>. 
 from bug_attribute: 

- <att type, id>, <assignby, id>. 
 

We compared the size of proxy maps that are stored using a pure relational table structure and a multi-valued table 
structure. The sizes of the proxy maps were determined by counting the number of instances they contain.  We use a 

population table, p: 
 

workProxyMap = SELECT  DISTINCT   droppableAttr, 
proxy 

FROM  p;,                                      (3) 
 
where workProxyMap  is the working proxy map, droppableAttr   is  the  droppable  attribute  and  proxy   is the 
proxy attribute. 
 

A B 
a 1,2,3,4 
b 5,6,7,8 
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The number of instances of the proxy map stored in the pure relational structure is counted based on the number of 
instances  in  the  droppable attribute  column  and  the  proxy column retrieved by issuing the following queries: 
 

droppableAttrInst   = SELECT COUNT(droppableAttr) 
FROM  workProxyMap; 

 
proxyInst    = SELECT COUNT(proxy) 

FROM  workProxyMap;,                                                (4) 
  
where, droppableAttrInst  is the number of instances in the droppable column of the proxy map, while proxyInst  is the 
number of instances in the proxy column of the proxy map. 
  

To count the number of instances of the proxy map stored in the multi-valued table schema, we issue the following 
queries against the working proxy map to get the number of instances in the droppable attribute column and in the proxy 
column: 
 

droppableAttrInst  = SELECT  COUNT  DISTINCT 
(droppableAttr) 

FROM workProxyMap; 
proxyInst  = SELECT  COUNT(proxy) 

FROM workProxyMap                                                          (5) 
 

where, droppableAttrInst  is the number of distinct (i.e., non- repeated) instances in the droppable column of the proxy map, 
and proxyInst  is the number of instances in the proxy column of the proxy map. 
  
Thus, the size of the proxy map in both table structures is computed as: 
 

proxyMapSize = droppableAttInst + proxyInst,                                                 (6) 
 
where proxyMapSize is the size of the proxy map. 
 
Unlike  droppableAttrInst   for  a  pure  relational  proxy map  (see  Equation  (3)),  repeated  droppable  attribute  val- ues 
are removed through the DISTINCT  operator for droppableAttrInst   in  the  proxy  map  stored  in  the  multi- valued table 
(see Equation (4)). This is the distinguishing characteristic between the proxy map stored in a pure relational table and the 
proxy map stored in a multi-valued table. 
 
Figure  1(a),  Figure  1(b)  and  Figure  1(c)  illustrate  the size of proxy maps by attributes in Evidence,  Taxon and 
Bug_attribute respectively. These figures show a common result, which is the size of all proxy maps that are stored in a 
multi-valued table are smaller than the size of proxy maps in a pure relational structure. In addition, we can also see that for 
proxy maps in a  pure relational table, the size of the proxy maps are the same for all attributes that belong to the same table. 
This shows that the size of proxy maps in pure relational tables is insensitive to the number of repeated droppable attribute 
values that map with multiple values of the proxy. 
 

 
(a) Proxy map size by attributes from Evidence                                       (b)  Proxy map size by attributes from Taxon 
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(c)  Proxy map size by attributes from Bug_attribute 
 

Fig. 1. A Comparison of Proxy Map Size by Table Structure. 
 

In contrast, the size of proxy maps stored in multi- valued table is sensitive to the amount of repeated droppable 
attribute values that map with multiple values of the proxy. This means with a multi-valued table, the benefit of space 
saving is gained by removing the repeated droppable attribute values. Therefore, the result of this case study suggests the 
multi-valued table structure as a better structure to adopt than the pure relational table structure to store instances in the 
proxy maps. 

4. Conclusion and future work 

We presented an initial exploration of the proxy-based approach  in  which  we  answered  the  question  of  how  the 
proxies could save storage space that will be of benefit for the establishment of green data centers. The results of a small 
case study using samples from the microbial genomics domain provide a comparison of the implementation options to store 
the proxy maps, which is crucial as an input in designing a complete algorithm for proxies selection in our future work. We 
would like to continue the work presented in this paper by answering other questions such as how proxies can be assessed, 
how can we correlate reduction in power consumption (and thus the amount of carbon footprint) and space saving; and how 
proxies can be implemented in systems where space optimisations and reducing carbon footprint are the goal. 
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