
 Procedia Engineering 53 (2013) 483 – 490

1877-7058 © 2013 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of the Research Management & Innovation Centre, Universiti Malaysia Perlis
doi: 10.1016/j.proeng.2013.02.062

Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012
 Part 4 - Information And Communication Technology

Storage Space Optimisation for Green Data Center
Nurul A. Emranª, Noraswaliza Abdullaha, Mohd Noor Mat Isab

aCenter for Advanced Computing Technology (C-ACT), Universiti Teknikal Malaysia Melaka,
Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia

bMalaysia Genome Institute,
Ministry of Science, Technology and Innovation, Selangor, Malaysia.

Abstract

The characteristic that determines a green data center is low amount of carbon footprint produced by its physical data storages.
Increasing demand of data volumes in many data intensive applications call for additional physical data storages that are not
only impractically large to maintain, but also contribute to the amount of carbon footprint produced. It is argued in this
paper that, if storage space can be optimised to gain free spaces, the storage space requirement can be reduced. In this paper, a model
to optimize database storage space by mining functional dependencies that are present among data sets is proposed. Sample
data sets from the microbial domain have been used where data of large data volume raises storage space concern. The initial
results of the implementation of the model that is necessary in designing a complete space optimization algorithm are presented.

© 2013 The Authors. Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of the Research Management & Innovation Centre, Universiti Malaysia
Perlis.
Keywords: space-optimisation; functional dependency; green data centers.

1. Introduction

One prominent concern in the establishment of green data centers is to decrease carbon footprint and operating costs
(e.g. cooling systems for data centers) by reducing the amount of physical data storages required. Scientific applications
which rely on large of data volumes require physical data storages that are not only impractically large to maintain, but also
contribute to inefficient power consumption.Within the context of scien- tific applications that require access to scientific
databases, data volumes often be large enough for storage space requirements to become an issue that must be dealt by
scientific data center providers. Expanding database storage is an option that data center providers could take in order to
address the space issue, however this option leads to an increase in the amount of physical data storages (data servers)
required. As more data servers are added, more electrical power is needed to run the additional data servers and to
cooling-off those servers. The issue concerning data centers has been raised in a recent estimation which stated that the
worlds data centers currently consume about 330 billion kWh of electricity every year, which is almost equal to the entire
electricity demand of the UK [1]. In addition, power consumption that exceeds 100 billion kWh generate approximately 40,
568, 000 tons of CO2 emissions [2], [3], [4]. Thus, in establishing successful green data centers, adding more data servers is
not an interesting option to choose in dealing with the storage space issue as this option leads to undesirable increase in
power consumption and in CO2 emissions.

By optimising the available database storage required to store large data volumes, the requirements for physical data
storages can be reduced. One way to reduce storage space requirement is by optimising the available database space. In fact,
the need to optimise space is not new, as tools and techniques for this purpose provided by enterprise data storage vendors
(such as Oracle [5], [6] and DB2 [7]) have been available in the market for about a decade. At the relational table level, data

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of the Research Management & Innovation Centre, Universiti Malaysia
Perlis

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka (UTeM) Repository

https://core.ac.uk/display/235647631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

484 Nurul A. Emran et al. / Procedia Engineering 53 (2013) 483 – 490

compression tools, for example, apply a repeated values removal technique to gain free space [6]. In addition, data
deduplication techniques remove duplicate records in the table to gain storage space [8]. The idea behind these space
optimisation solutions is to exploit the presence of overlaps (of values or records) within tables. Both of these
techniques are performed at the level of whole tables. A key (though often unstated) assumption behind these optimisation
techniques is that all columns can be exploited for space optimisation. Because of this assumption, knowledge of semantics
of applications (i.e., how the columns are used) is ignored and as the consequence, data center providers need to bear
unnecessary query processing overhead for frequent compression (and decompression) of heavily queried data.

The key lesson learnt from space optimisation techniques that are available in the market to date is that, space optimi-
sation techniques that achieve space saving at both schema level and whole tables level are limited. In addition, space op-
timisation techniques that consider knowledge of semantics of applications have not been studied in depth. Because of these
limitations, the two techniques described above unfortunately do not fully support solving the storage space issue faced by
data center providers, where knowledge of how database is used must be considered for space optimisation. Therefore, an
alternative space optimisation technique is needed to address the limitations of the existing techniques. This new, alternative
technique is crucial to support data center providers in dealing with high storage space requirements that eventually call for
unnecessary additional physical data storage.

Space optimisation will be useful in a data-intensive domain where storage space and establishing green data center
is of concerned. Storage space requirement in the microbial genomics domain for example is driven by the need to con- duct
various analyses (with a range of subjects coverage) and advancement in experimental tools provides a hint on the
storage space issue faced by data-intensive application providers. Storing large data sets is not an issue if additional

However, under a strict budget, purchasing new disks might not be feasible especially if frequent space expansion is
required (i.e., due to the frequent addition of newly discovered data sets). Under these circumstances, if storage space can
be optimized so that free space can be gained, the requirement for storage space can be reduced.

Space optimisation provides benefits not only when space is highly constrained, such as for handheld devices [9] but
also when the concern is to optimise query response time. By reducing the space needed to store the data, we can reduce the
time taken for input/output operations for the query, as data are stored in fewer blocks on the disk [10], [11]. In addition,
space optimisation could ease the task of administering space expansion that usually requires new infrastructure, increased
demand for utilities (for power and cooling), extra floor space, as well as additional staff [12].

In fact, the need to optimise the space is not new, as tools and techniques for this purpose, provided by enterprise
data storage vendors (such as Oracle [13], [6] and DB2 [7]), have been available in the market for about a decade. At
the relational table level, data compression tools, for exam- ple, apply a repeated values removal technique to gain free
space [6]. In addition, data deduplication techniques remove duplicate records in the table to gain storage space [8]. The
idea behind these space optimisation solutions is to exploit the presence of overlaps (of values or records) within tables.
Both of these techniques are performed at the level of whole tables. A key (though often unstated) assumption behind these
optimisation techniques is that all columns can be exploited for space optimisation. Because of this assumption, knowledge
of semantics of applications (i.e., how the columns are used) is ignored. As a result, optimisation is usually performed at a
whole table level.

The key lesson we learnt from these optimisation techniques is that, space optimisation techniques that achieve space
saving at both schema level and whole tables level are limited. In ad- dition, space optimisation techniques that consider
knowledge of semantics of applications are also limited. Because of these limitations, the two techniques described above
unfortunately do not fully support solving the storage space constraint issue faced by data-intensive applications providers
(such as the microbial genomics domain), where knowledge of how the data sets are used for the analyses must be
considered for space optimisation. Therefore, in this paper, we set to propose a space optimisation technique that addresses
the limitations which are barriers to deal with storage space issue which, the details of the technique will be presented in the
next section.

2. The proxy-based approach

We propose a space optimisation technique called the proxy- based approach. Basically, the proxy-based approach
method offers space saving through database schema modification, in particular by dropping attributes from the schema
under consideration. The removal of the attributes, of course, will cause information loss and consequently will affect the
queries that rely on those attributes. However, if the missing information can be retrieved from other attribute(s), the queries
could still be computed using the smaller database. We use the term es
in the schema, which is inspired by proxies in other contexts with similar roles (e.g., in voting, a proxy is a person
authorised to act on behalf of another [14]). We identified the proxies based on functional dependency relationship that can
be observed among attributes in relational tables. An understanding of the space-accuracy trade-offs that the proxies
could offer is required to facilitate the decisions in selecting which attributes can be deleted from the universe schema.

485 Nurul A. Emran et al. / Procedia Engineering 53 (2013) 483 – 490

Therefore, answering the following questions regarding proxies are crucial before we can decide on its applicability:

 How do proxies contribute to space saving?
 How do we select the attributes to drop from the schema?
 What determines the amount of space saving that can be offered by proxies?

The idea behind the technique we propose is to achieve space saving through both database schema modification and

exploitation of the presence of overlaps. Specifically, space saving through schema modification is achieved by dropping
some attributes from the schema. If some attributes are dropped from the schema, the amount of space saved is roughly
determined by the number of attributes being dropped and the number of tuples the table contains. For example, consider a
table which consists of 100 tuples, with several attributes in its schema. If we drop an attribute from the schema, then the
amount of space saved is 100 units of instances* (which is of course, is convertible to disk storage unit in bytes).

The question that arises is whether all attributes in the schema are droppable. To answer this question we need to
understand the semantics of the application. As for the microbial genomics application, we need to understand how the data
set is used in answering data set requests for the analyses. In particular, we need to know how attributes in the schema of the
microbial database tables are used.

Consider the subject of interest in a microbial analysis gathered from their contributing sources is grouped into its
population that is stored as a table. We define the generic schema of the population table as P = <I , source, A>, where I is
the set of identifier attributes, source is the attribute used to express the query predicates needed to extract individual record
that is originated from specific microbial database and A is the set of attributes other than I and source.

Essentially, the identifier attribute is used in every query that retrieves the population individuals. The identifier
attribute has an essential role in identifying population individuals. If we substitute the identifier attribute with a proxy, we
need to assume that the same proxy is available in the source from which the person issuing the query extracted his/her data
set under measure. However, in the situation where there is a lack of overlaps between the source from which the data set
under measure is extracted and the integrated database, substituting the identifier attribute with a proxy will create a
barrier to answer the queries. Therefore, because there is uncertainty as to whether the same proxy for the identifier
attribute will be available in the source where the data sets is gathered, we regard identifier attributes as not droppable from
the schema. This leaves the options of droppable attributes to those other than the identifier attribute.

Dropping attributes from their schema will cause informa- tion loss. Therefore, we must find other attributes that we
refer to as proxies to substitute for the droppable attributes. The proxy and the droppable attribute must be related in some
way to compensate for the information loss. A particular kind of relationship that can be observed among attributes in
relational tables is a functional dependency (FD). In the literature, FD is described as a unique-value constraint, commonly
used for relational schema design [15]. If an FD applies to a table, the value of an attribute on the table can be uniquely
determined by the values of some other attributes [16]. An FD over a relation schema R is denoted
where X R and A R. X in the expression represents the set of attributes,
can uniquely determine the values of A. The rule regarding FDs states that with schema R,
provided that for all pairs of tuples t, u r we have:

t[X[= u[X] => t[A] = u[A] where A, X R [1]

the information loss caused by
dropping A from the schema can be compensated in full.

Therefore, based on our observations on the properties of FD, we say that, proxies for the droppable attributes can be
found by discovering the relationships among attributes in the population tables where FD is present.

Discovering proxies based on FD is quite straightforward as they are usually key attributes within a relational table,
 defined on the table is available.

However, in the absence of the information about the types of constraints defined on the table; or in the case where FD-
based proxies do not fall under the key attributes category, we need a way to discover them. An algorithm called TANE
proposed by Huhtale et al. [16] is useful in our context to discover FDs. TANE was used in several applications such as
semantic queries for query evaluation optimisation [17], accessing deep web results by relaxing the queries that fail to
produce satisfactory results due to the constraints of web query interfaces [18] and, query rewriting that deals with nulls in
query answers [19], [20].

The question that arises if proxies are accepted to substitute the droppable attributes is, how information loss as the
result of dropping the droppable attributes can be compensated by the proxies? Space optimisation techniques described

1 We regard each cell in a common relational table as an instance

486 Nurul A. Emran et al. / Procedia Engineering 53 (2013) 483 – 490

earlier (e.g., based on compression) store the details of the removed overlaps in the meta-data in order to compensate
information loss. These techniques implement algorithms that will retrieve the removed overlaps from the meta-data, every
time a query is submitted against the compressed (or deduplicated) tables. To answer the question just raised, we adopted a
similar way to compensate information loss where we use a proxy map to store the mappings between the values of the
droppable attributes and the values of their proxies. For example, consider a and b are the values of a droppable attribute. A
proxy map consists of the following mappings:

relationship. Therefore, every time a query is submitted against a pop
retrieved from the proxy map (for the query that has the dropped attribute in its predicate(s)).

2.1. Implementation Options of Proxy Maps

As storing the proxy map requires some space, the amount of space used by the proxy map must be taken into
account, rather than considering space saving by the droppable attributes alone. Therefore, we define space saving as:

 dro

 SpaceSaving = droppableAttrSize × 100, (2)

where droppableAttrSize is the size of the droppable at- tribute, proxyMapSize is the size of the proxy map. The number
of instances is used to represent the size of these variables, that is independent of any specific storage and file organisation
system. One key criterion of a useful proxy, in terms of space saving, is that the amount of space required for the proxy map
is smaller than the amount of space saved by dropping the attribute it substitutes for. Therefore, space saving through

 is how
can we minimise the space required to store the proxy map? To answer this question, we need to identify the possible
structures of a proxy map and compare them in terms of their size. Essentially, each proxy map must consist of the values of
the droppable attributes and the values of the proxies that map to the values of the droppable attribute. We identified two
possible structures for a proxy map as follows:

 A pure relational table: in its simplest form, a proxy map is in pure relational table structure for
schema:<droppableAttr, proxy>. For this structure, each value of the droppable attribute will be mapped to exactly
one value of the proxy. Because of this characteristic, each droppable attribute value that is substituted by multiple
proxy values will be stored repeatedly in the table. For example, Table I shows an artificial proxy map in pure
relational structure where, A is the droppable attribute and B is the proxy. Based on the table, 16 instances are
stored within the proxy map.

 A multi-valued table: like the pure relational table, a proxy map in a multi-valued table structure has the
schema: <droppableAttr, proxy>. However, unlike the pure relational table, each value of the droppable
attribute will be mapped to a set of proxy values (that may be a sin- gleton set). Because of this characteristic, each
droppable attribute value that is substituted by multiple proxy values will be stored only once in the table. This
structure is also called as Vectorised dictionary based minimal DSM (VDMDSM) proposed by Rahman, Schallehn
and Saake [21], which is a by-product of the decomposition storage model (DSM) by Copeland and Khoshafian
[22]. The essence of this form of table structure in those works is to store all values of the same attribute of the
relational conceptual schema relation together, for the advantage of performance (e.g., less database tuning
required) and increased data independence and availability [22], [21]. For example, Table II shows an artificial
proxy map in a multi-valued table structure, where A is the droppable attribute and B is the proxy. Based on
the table, 10 instances are stored within the proxy map.

In comparison, the example shows that the size of proxy map in the multi-valued table structure (in terms of the number of
instances stored) is smaller than the size of the proxy map stored in the pure relational structure. By adopting a multi- valued
table structure in this example, we optimise the proxy table as a whole, by removing the repeated values (of the droppable
attribute) which, if readers may notice, is a similar approach used by space optimisation techniques described earlier.
Therefore, in the example, the space required to store the proxy map can be minimised by storing the proxy map in a multi-
valued table structure. By minimising the storage requirement for the proxy map, we gain the benefit of space saving, which
in the example above, is a saving of 6 instances. From the example, we say that storing the proxy map using a multi-valued
table is useful in the situation where the droppable attribute values are mapped to multiple values of the proxy. To see
whether a multi-valued table is useful by examining the size of proxy maps using real data sets, we conducted a small case

487 Nurul A. Emran et al. / Procedia Engineering 53 (2013) 483 – 490

study in the microbial domain as presented in the next section.

Table 1. A proxy map in pure relational table

A B
a 1
a 2
a 3
a 4
b 5
b 6
b 7
b 8

Table 2. A proxy map in a multi-valued table

3. Results of a case study of proxy maps implementation

We use microbial data sets taken from the Comprehensive Microbial Resources (CMR)2 that were downloaded in the
form of SQL dumps. In particular, we used three tables, namely evidence, taxon and bug attribute to represent our sample
population tables. For brevity, we assume that the individuals of each population come from a single source (CMR). The
schemas of these tables are as follows:

 Table 1: Evidence = <id, ev type, method,assign by>,
 Table 2: Taxon = <uid, genus, species, kingdom, ir1>,
 Table 3: Bug attribute = <id, att type, assignby>.

Evidence consists of the idence population, in which information about the type of
evidence found about the presence of microbes, the method used to discovered them and the person (laboratory) who

rded; bug attribute consists of the
individuals of insects/bugs population where microbes were found, in which information about how the information is
retrieved (attribute type) and the person (laboratory) who discovered them are stored. The underlined attributes are the keys
for the tables. Each key attribute has been selected as the proxy (based on the presence of an FD) for all non-key attributes.
The schema of the proxy tables are:

 from evidence:

- <ev_type, id>, <method, id>, <assignby, id>.
 from taxon:

- <genus, uid>, <species, uid>, <kingdom, uid>,<ir1, uid>.
 from bug_attribute:

- <att type, id>, <assignby, id>.

We compared the size of proxy maps that are stored using a pure relational table structure and a multi-valued table
structure. The sizes of the proxy maps were determined by counting the number of instances they contain. We use a

population table, p:

workProxyMap = SELECT DISTINCT droppableAttr,
proxy

FROM p;, (3)

where workProxyMap is the working proxy map, droppableAttr is the droppable attribute and proxy is the
proxy attribute.

A B
a 1,2,3,4
b 5,6,7,8

488 Nurul A. Emran et al. / Procedia Engineering 53 (2013) 483 – 490

The number of instances of the proxy map stored in the pure relational structure is counted based on the number of
instances in the droppable attribute column and the proxy column retrieved by issuing the following queries:

droppableAttrInst = SELECT COUNT(droppableAttr)
FROM workProxyMap;

proxyInst = SELECT COUNT(proxy)

FROM workProxyMap;, (4)

where, droppableAttrInst is the number of instances in the droppable column of the proxy map, while proxyInst is the
number of instances in the proxy column of the proxy map.

To count the number of instances of the proxy map stored in the multi-valued table schema, we issue the following
queries against the working proxy map to get the number of instances in the droppable attribute column and in the proxy
column:

droppableAttrInst = SELECT COUNT DISTINCT
(droppableAttr)

FROM workProxyMap;
proxyInst = SELECT COUNT(proxy)

FROM workProxyMap (5)

where, droppableAttrInst is the number of distinct (i.e., non- repeated) instances in the droppable column of the proxy map,
and proxyInst is the number of instances in the proxy column of the proxy map.

Thus, the size of the proxy map in both table structures is computed as:

proxyMapSize = droppableAttInst + proxyInst, (6)

where proxyMapSize is the size of the proxy map.

Unlike droppableAttrInst for a pure relational proxy map (see Equation (3)), repeated droppable attribute val- ues
are removed through the DISTINCT operator for droppableAttrInst in the proxy map stored in the multi- valued table
(see Equation (4)). This is the distinguishing characteristic between the proxy map stored in a pure relational table and the
proxy map stored in a multi-valued table.

Figure 1(a), Figure 1(b) and Figure 1(c) illustrate the size of proxy maps by attributes in Evidence, Taxon and
Bug_attribute respectively. These figures show a common result, which is the size of all proxy maps that are stored in a
multi-valued table are smaller than the size of proxy maps in a pure relational structure. In addition, we can also see that for
proxy maps in a pure relational table, the size of the proxy maps are the same for all attributes that belong to the same table.
This shows that the size of proxy maps in pure relational tables is insensitive to the number of repeated droppable attribute
values that map with multiple values of the proxy.

(a) Proxy map size by attributes from Evidence (b) Proxy map size by attributes from Taxon

489 Nurul A. Emran et al. / Procedia Engineering 53 (2013) 483 – 490

(c) Proxy map size by attributes from Bug_attribute

Fig. 1. A Comparison of Proxy Map Size by Table Structure.

In contrast, the size of proxy maps stored in multi- valued table is sensitive to the amount of repeated droppable
attribute values that map with multiple values of the proxy. This means with a multi-valued table, the benefit of space
saving is gained by removing the repeated droppable attribute values. Therefore, the result of this case study suggests the
multi-valued table structure as a better structure to adopt than the pure relational table structure to store instances in the
proxy maps.

4. Conclusion and future work

We presented an initial exploration of the proxy-based approach in which we answered the question of how the
proxies could save storage space that will be of benefit for the establishment of green data centers. The results of a small
case study using samples from the microbial genomics domain provide a comparison of the implementation options to store
the proxy maps, which is crucial as an input in designing a complete algorithm for proxies selection in our future work. We
would like to continue the work presented in this paper by answering other questions such as how proxies can be assessed,
how can we correlate reduction in power consumption (and thus the amount of carbon footprint) and space saving; and how
proxies can be implemented in systems where space optimisations and reducing carbon footprint are the goal.

Acknowledgment

The authors would like to thank the financial assistance provided by the Universiti Teknikal Malaysia, Melaka (UTeM)
and the Ministry of Higher Education, Malaysia during the course of this research. The authors also acknowledge
constructive comments received from Dr Suzanne Embury and the members of Information Management Group (IMG),
School of Computer Science, The University of Manchester, UK; Dr Paolo Missier from The University of Newcastle, UK.

References

[1] 11.
[2] -performance computing: A case study using the amazon elas

Proceedings of the 2008 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists on IT
Research in Developing Countries: Riding the Wave of Technology. ACM, 2008, pp. 94 103.

[3] -
Analysis Project, 1990.

[4] - AI Magazine, vol. 13, no. 1, pp. 32 44, 1992.
[5] - architecture-for-environmental-sustainability-

green-datacenters.aspx,2008, [Online; accessed 25-Jun-2012].
[6] compression as cheaper database scale-
[7] -comparison-to- oracle-and-

microsoft-8871, 2006, [Online; accessed 11-May-2011].
[8] - -beyond-the-

hype-evaluating-data-deduplication-solutions/1294015, 2007, [Online; accessed 11-May-2011].

490 Nurul A. Emran et al. / Procedia Engineering 53 (2013) 483 – 490

[9] - ings
of the 15th International Conference on Scientific and Statistical Database Management (SSDBM). IEEE Computer Society, 2003, pp.55 64.

[10] ACM, 2003, pp. 38
48.

[11] in International Conference on Database Theory, vol. 470. Springer, 1990,
pp. 499 513.

[12] http://www.ontrackdatarecovery.com/costs-increasing-data-storage/, 2006, [Online;
accessed 11-May-2011].

[13] http://www.oracle.com, 2009, [Online; accessed 11-May-2011].
[14] -democracy how to utilize web 2.0 for policy decision- - tional

Conference on Digital Government Research: Social Networks: Making Connections between Citizens, Data and Government. Digital Government
Society of North America, 2009, pp. 254 263.

[15] H. Molina, J. Ullman, and J.Widom, Database Systems: The Complete Book. Prentice Hall Press, 2008.
[16] pproximate depen-

111, 1999.
[17]

Proceedings of the 7th International Workshop on the Web and Databases (WebDB). ACM, 2004, pp. 73 78.
[18] - -Pacific Web Conference (APWeb).

Springer, 2008, pp. 649 659.
[19] in Proceed- ings

of the 33rd International Conference on Very Large Databases (VLDB). VLDB Endowment, 2007, pp. 651 662.
[20] over incomplete

67 1190, 2009.
[21] -

Lecture Notes in Computer Science. Springer, 2011, pp. 18 32.
[22] G. P. Copeland and S. N. Khoshafian SIGMOD Records, vol. 14, pp. 268 279, 1985.

