
 

 

  

Abstract—This paper presents application artificial intelligent 

(AI) techniques, namely artificial neural network (ANN), adaptive 

neuro fuzzy interface system (ANFIS), to estimate the real power 

transfer between generators and loads. Since these AI techniques 

adopt supervised learning, it first uses modified nodal equation 

method (MNE) to determine real power contribution from each 

generator to loads. Then the results of MNE method and load flow 

information are utilized to estimate the power transfer using AI 

techniques. The 25-bus equivalent system of south Malaysia is 

utilized as a test system to illustrate the effectiveness of both AI 

methods compared to that of the MNE method. The mean squared 

error of the estimate of ANN and ANFIS power transfer allocation 

methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, 

when compared to MNE method, ANN and ANFIS methods 

computes generator contribution to loads within 20.99 and 

39.37msec respectively whereas the MNE method took 360msec for 

the calculation of same real power transfer allocation. 

 

Keywords—Artificial intelligence, Power tracing, Artificial 

neural network, ANFIS, Power system deregulation. 

I. INTRODUCTION 

HE introduction of electricity privatization becomes an 

important issue under electric industry restructuring. In 

open access environment, implementing transparent rules that 

allocate transmission use fulfill the concept of fairness in the 

industry.  Fairness can only be achieved by adopting a fair and 

transparent usage allocation methodology acceptable to all 

parties. In view of market operation, it is vital to know the role 

of individual generators and loads to transmission wires and 

power transfer between individual generators to loads. This is 

necessary for the restructured power system to operate 

economically, efficiently and ensure open access to all system 

users [1]. Several schemes have been developed to solve the 

allocation problem in the last few years.  Methods based on the 

Y-bus or Z-bus system matrices have recently received great 
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attention since these methods can integrate the network 

characteristics and circuit theories into line usage and loss 

allocation. The method reported in [2] was based on 

Kirchhoff's current law (KCL), equivalent linear circuit that 

reaches all lines and loads. Based on the stated assumptions, a 

recursive procedure was used to construct the equivalent 

circuit for each bus. Another circuit concept method was 

proposed by Chang and Lu [3]. It was based on the system Y-

bus matrix and Z- bus modification. Starting from the load 

flow solution, branch current are determined as a function of 

generators’ injected current. Similarly, contribution to bus 

voltages was computed as a function of each generator current 

injection by decomposing the network into different networks.  

Then by using approximate formulation it calculates the 

unbundled loss components. Teng [4], proposed a systematic 

method, very similar to that presented in [3], to allocate the 

power flow and loss for deregulated transmission systems. 

Using similar concept, the authors of this paper introduce a 

modified nodal equation (MNE) method for real and reactive 

power allocation [5], [6] in which the load buses powers are 

represented as a function of the generators’ current and 

voltage.  

The tracing methods [1], [7]-[10] based on the actual power 

flows in the network and the proportional sharing principles 

were effectively used in transmission usage allocation. The 

methods reported in [1] are based on tracing the current and 

complex power from individual power sources to system 

loads. Based on solved load flow, the method converts power 

injections and line flows into real and imaginary current 

injections and current flows. This method has a clear physical 

meaning. Bialek [7] proposed a novel power tracing method. 

However this method requires inverting a large matrix. F.F Wu 

et al. [8] proposed a graph theory to calculate the contribution 

factor of individual generators to line flows and loads and the 

extraction factor of individual loads from line flows and 

generators, which is theoretically efficient. This method cannot 

handle loop flows and losses must be removed initially. 

Reference [10] was based on the concept of generator 

‘domains’, ‘common’ and ‘links’. The disadvantage of this 

method is that the share of each generator in each ‘common’ is 

assumed to be same. Furthermore, the ‘commons’ concept can 

lead to problems since the topology of a ‘common’ could 

radically change even in the case of slight change in power 

flows. 

Since the meshed and nonlinear nature of power system, the 

applications of Artificial Intelligence (AI) to power system 
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become a great potential to explore, especially in power 

tracing problem. Mustafa et al. [11] incorporated an Artificial 

Neural Network (ANN) to reactive power allocation in 

deregulated power system. It uses modified nodal equation [5] 

results to train ANN. Similarly, research has been carried out 

by applying feed forward ANN for energy loss problem [12]. 

This method is relatively simple, and easy to apply for loss 

allocation problem. Optimization technique also has been 

explored in solving the power allocation problem [13]. The 

authors proposed a tracing compliant that minimizes overall 

deviation from the postage stamp allocation. Nevertheless, the 

approach treats the power tracing problem as a linear 

constraint optimization problem. In a related work, a 

continuous genetic algorithm (GA) for real power tracing has 

been proposed in [14]. The problems of this technique are that 

it produces multi solution results and requires long time for 

computation.  

Basically, support vector machine (SVM) is designed to 

solve the classification problem [15]. Then, it is extended for 

the case of nonlinear function estimation. Reference [16] uses 

SVM for detection of abnormalities and electricity theft by 

incorporating the genetic algorithm to SVM. Using similar 

concept, the authors of this paper also adopts the hybridization 

of GA and least square SVM (LS-SVM) into reactive power 

tracing problem [17]. The new reactive power tracing method 

is based on manipulation of proportional sharing method [7] 

and application of GA to tune the performance parameters of 

LS-SVM.  

To overcome the parameter selection problems in LS-SVM 

method, other AI techniques such as adaptive neuro-fuzzy 

interface system (ANFIS) can be used. For example, adaptive 

neuro-fuzzy inference system (ANFIS) approach was used to 

define fault location in a transmission line. Wavelet signal with 

and without power swing were trained to predict km distance 

from feeding substation [18]. Same ANFIS approach with 

series-parallel design was used in [19] to predict the power 

transfer allocation from generators to load. The designed 

method relies on the trained ANFIS blocks for the simulated 

distribution network. ANFIS with enhanced feature extraction 

technique was found to be superior compared to SVM method 

[19]. However, this method requires considerable training time 

and additional feature reduction methods such as principle 

component analysis.   

Therefore in order to avoid feature reduction and obtain fast 

and accurate results, a statistical method known as 

multivariable regression (MVR) approach is proposed in [20] 

for power tracing.  The proposed method considers almost all 

system variables obtained from load flow solutions as 

dependent variables. The independent variables of the MVR 

model correspond to the real power transfer allocation results 

obtained from MNE method. Other several possible 

applications of regression analysis include prediction of future 

observations, assessment of the effect of relationship and 

general description of data structure [21]-[22]. 

This research deals mainly with investigation of ANN and 

ANFIS power transfer allocation methods and identify most 

appropriate AI technique that can be used in power tracing by 

critically comparing the qualitative and quantitative 

performance of various methods. The rest of the paper is 

organized as follows. First, a brief review of modified nodal 

equation (MNE) method which was used as a teacher in 

training all AI methods is presented in Section II. Then the 

concepts of ANN and ANFIS method are highlighted in 

Section III. The modeling and the structure of each AI power 

transfer allocation method are illustrated in Section IV. Results 

and evaluation of computer simulation studies is illustrated in 

Section VII. Finally, conclusions are given in Section VIII. 

II. MODIFIED NODAL EQUATIONS METHOD 

The derivation, to decompose the load real powers 

intocomponents contributed by specific generators starts with 

basic equations of load flow. Applying Kirchhoff’s law to each 

node of the power network leads to the equations, which can 

be written in a matrix form as in (1) [5]: 

 

I YV=  (1) 

 

where V is a vector of all node voltages in the system, I is a 

vector of all node currents in the system, Y is the Y-bus 

admittance matrix. 

The nodal admittance matrix of the typical power system is 

large and sparse, therefore it can be partitioned in a 

systematicway. Considering a system in which there are G 

generator nodes that participate in selling power and remaining 

L= n-G nodes as loads, then it is possible to re-write (1) into 

its matrix form as shown in (2): 

 

G GG GL G

L LG LL L

  VI Y Y

  VI Y Y

     
=     

     
 (2) 

 

Solving (2) for IL, the load currents can be presented as a 

function of generators’ current and load voltages as shown in 

(3): 

 
1 1

L LG G LL LG GL LGG GG( )VI Y I Y Y YY Y
− −= + −  (3) 

 

Then, the total real power PL of all loads can be expressed 

as shown in (4): 

 

L L LRe( )VP I
∗=  (4) 

 

where ( ∗ ) means conjugate,  
Substituting (3) into (4) and solving for PL the relationship 

as shown in (5) can be found; 
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nG: number of generators 

A possible way to deduce load node voltages as a function 

of generator bus voltages is to apply superposition theorem 

and replace all load bus current injections into equivalent 

admittances in the circuit. After adding these equivalences to 

the diagonal entries of Y-bus matrix, (1) can be rewritten as in 

(6): 

 

1
GV Y I

−=     (6) 

 

where Y’ is the modified Yof (1).  

Next, adopting (6) and taking into account each generator 

one by one, the load bus voltages contributed by all generators 

can be expressed as in (7): 

 
nG

G
L

i 1

IVV L
∗

=
= ∆∑    (7) 

 

It is now, simple mathematical manipulation to obtain the 

required relationship as a function of generators dependent 

terms. By substituting (7) into (5), the decomposed load real 

powers can be expressed as depicted in (8): 

 
nG nG

GG
L L

i 1 i 1

II 1
L L LL LG GL LGG

Re{ }VP VI (( ) )VY Y YY
∗∗∗

= =

−= ∆ + ∆∑ ∑ −  (8) 

 

This equation shows that the real power of each load bus 

consists of two terms by individual generators. The first term 

relates directly to the generators’ current and the second term 

corresponds to their contribution to the load voltages. This 

allocation method has clear physical meaning as it take into 

account the interaction between real and reactive power flows. 

Vector PL is used as a teacher in all the AI methods in this 

paper. A more detailed derivation of MNE method is given in 

[5], [6].  

III. INTELLIGENT METHODS USED FOR REAL POWER 

ALLOCATION 

The following section describes an overview of the existing 

artificial intelligence power transfer allocation methods, 

namely ANN method [11] and the ANFIS method [19]. 

A. Function Estimation Using Radial Basis Function 

Artificial Neural Network (ANN) 

The Radial basis function (RBF) ANN was first used to 

design artificial neural network by Broomhead and Lowe [23]. 

Radial basis function offer several advantages compared to 

multilayer perceptron (MLP) ANN. Firstly, they can be trained 

using fast two stages training algorithm without the need for 

time consuming non-linear optimization techniques. Secondly, 

the RBFN possesses the property of best approximation [24]. 

The network consists of three layers namely, an input layer, a 

hidden layer and an output layer. The output of the RBF ANN 

network simply sums the weighted basis function without 

using any activation function. Assuming a single neuron at the 

output layer, the output of the RBF network is calculated using 

(9), 

 
S

1k k 2
k 1

kη( x,w ) ( x )w C
=

= −φ∑  (9) 

where 2kcx −
 denotes the Euclidean distance between the 

input vector x and the center  kc
, ( ).kφ is a basis function, 

k1w
are the weights in the output layer , S  is the number of 

neurons (and centers) in the hidden layer 

The output of the neuron in a hidden layer is a non-linear 

function of the distance. In this work, the functional form of 

Gaussian basis function is defined as in (10), 

 

( ) 22

2
--

2
-

βφ kcx

kk ecx =  (10) 

 

Note that the Gaussian basis function is most commonly 

used where the parameter β control the width of the RBF ANN 
and is commonly referred to as the spread parameter. In 

practice, the value of β  that is too big or too small will cause 
degradation in the performance of the RBFN. The centers ck 

are defined points that are assumed to perform an adequate 

sampling of the input space. Common practice is to select a 

relatively large number of input vectors as the centers to 

ensure an adequate input space sampling. RBF ANN performs 

two major functions which are training and testing. Testing is 

an integral part of the training process since a desired response 

to the network must be compared to the actual output to create 

an error function. 

B. Function Estimation Using Adaptive Neuro-Fuzzy 

Inference System (ANFIS) 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is 

developed from Sugeno-type fuzzy inference system (FIS) for 

effective data processing. The development is a simple data 

learning technique by using configuration of neuro-fuzzy 

model with hybrid learning rule. FIS processes a given input 

mapping to get a target output. The ANFIS defines five layers 

which perform the function of fuzzification of the input values, 

aggregation of membership degree, evaluation of the bases, 

normalization of the aggregated membership degree and 

evaluation of function output values [25], [26]. 

The first layer is the input layer which receives input data 

that are mapped into membership functions so as to determine 

the membership of a given input. In this fuzzification process 

the following equations are utilized. 
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where, Xi and Yi are fuzzyfied input values, whereas ai, bi and 

ci are the parameter sets from the Gaussian input membership 

function. 

The second layer of neurons represents association between 

input and output, by means of fuzzy rules. Application of 

fuzzy operators involves the use of the product (AND) to the 

fuzzified input. Equation (13) represents the fuzzy relations 

obtained from the product fuzzy operators.  

 

)y(Y)x(XR iii +=  (13) 

 

In the third layer, the output are normalized and then passed 

to the fourth layer. Here, the activation degree and 

normalization is implemented by using the following equation:  

 

∑=
n

i
1ii R/RG  (14) 

 

Then the output data are mapped in the fourth layer to give 

output membership function based on the pre-determined 

fuzzy rules. Aggregation of all outputs are obtained by using 

(15) which is the product of the normalized activation degree 

and individual output membership function, 

 

)ryqxp(GO iiiii ++= i=1,2,3,…n (15) 

 

where, pi, qi and ri are the parameters from the output 

membership function, 

Finally the outputs are summed up in the fifth layer to give a 

single valued output. The ANFIS has the constraint that it can 

only be designed as a single output system and the system must 

be of unity weights for each rule [27]. 

 

∑=
=

n

1i
iOO     (16) 

IV. ANN MODEL FOR REAL POWER ALLOCATION  

In this work, 1 RBF ANN with one hidden layer and one 

output layer has been chosen. The ANN power transfer 

allocation method is elaborated by designing an appropriate 

RBF ANN for the practical 25-bus equivalent power system of 

south Malaysia region as shown in Fig. 1. This system consists 

of 12 generators located at buses 14 to 25 respectively. They 

deliver power to 5 loads, through 37 lines located at buses 1, 

2, 4, 5, and 6 respectively. The input samples for training is 

assembled using the daily load curve and performing load flow 

analysis for every hour of load demand. Similarly the target 

vector for the training is obtained from the MNE method. 

Input data (D) for developed ANN contains variables such as 

load bus voltage magnitude (V1, V2, V4 to V6), real power of 

loads (P1, P2, P4 to P6), reactive  power of loads (Q1, Q2, Q4 

to Q6), real power of generators (P14 to P25), reactive  power 

of generators (Q14 to Q25)  and line real power (Pline1 to 

Pline37) flows, and the target/output parameter (T) which is 

the real power transfer between generators and loads placed at 

buses 1, 2, 4 to 6. Hence the networks have 60 output neurons. 

Fig. 2 summarizes the description of inputs and outputs of the 

training and testing for ANN for real power allocation. 

 

 

Fig. 1 Single line diagrams for the 25- bus equivalent practical power 

system 

 

 

Fig. 2 Description of inputs and outputs of the training and 

simulation data for ANN real power allocation method 

A. Training 

After the input and target for training data is created, it can 

be made more efficient by scaling the network inputs and 

targets so that they always fall within a specified range. In this 

case the minimum and maximum value of input and output 

vectors is used to scale them in the range of -1 and +1. Next 

step is to divide the data (D and T) up into training. In this 

case 100 samples (60%) of data are used for the training. 

The training of the RBF ANN consists of two separate 

stages. First step is to find the centers parameter by using the 

k-means clustering algorithm. After number of trials, k is taken 
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as 14 and the β as 17. These values give reasonable accuracy 
during training. In the second training stage, the second layer 

weights in connections between the hidden layer and the 

output layer are determined using the least squares based on 

minimization of quadratic errors of RBF ANN network output 

values over the set of training input-output vector pairs. The 

training performance is shown in Fig. 3. From Fig. 3, it can 

also be seen that the training goal is achieved in 2 epochs with 

performance equal to 3.13E-6. The training time taken by the 

RBF ANN is 232msec using an Intel Core 2 Duo, 2GHz 

computer. 
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Fig. 3 Training performance of RBF ANN 

V. PRE-TESTING AND SIMULATION 

After the networks have been trained, next step is to 

simulate the network. The entire training data is used in pre 

testing. After simulation, the obtained result from the trained 

network is evaluated with a linear regression analysis. In real 

power allocation scheme, the regression analysis for the 

trained network is shown in Fig. 4. The correlation coefficient, 

(R) in this case is very close to one which indicates perfect 

correlation between proposed method and output of the neural 

network. 
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Fig. 4 Regression analysis between the ANN output and the 

corresponding target for real power allocation 

VI. ANFIS DESIGN FOR REAL POWER ALLOCATION 

In this work, 12 ANFIS blocks are created and arranged as a 

hierarchical distribution ANFIS network to obtain real power 

transfer allocation results for the  practical 25-bus shown in 

Fig. 5. 

The same data used to develop RBF ANN power transfer 

allocation obtained from load flow and MNE method is again 

utilized here. Input data (D) for developed ANN contains 

variables such as load bus voltage magnitude (V1, V2, V4 to 

V6), real power of loads (P1, P2, P4 to P6), reactive  power of 

loads (Q1, Q2, Q4 to Q6), real power of generator (Pi), 

reactive  power of generators (Qi) corresponding to that 

particular ANFIS block and line real power (Pline1 to Pline37) 

flows, and the target/output parameter (T) which is the 

contributions from a generator placed at particular bus to 

loads. This is considered as a single output from each ANFIS 

block for real power transfer allocation. This complete input 

data set (D) is too large for any effective ANFIS 

implementation and therefore, the training data must be 

reduced to a smaller number of useful information [28] using 

some sort of transformation. In general, the reduced set of 

features must represent the original set of features, since a loss 

of information in the reduced set results in loss of performance 

and accuracy of the ANFIS. The common methods for feature 

extraction are the linear discriminant analysis (LDA) and 

principle component analysis (PCA) [29]. In this work, PCA is 

used for feature extraction.  

 

 

Fig. 5 ANFIS design for real power transfer allocation for the 25- bus 

A. Training 

ANFIS is sensitive to the number of input features. Too 

many input features increases training time. Therefore number 

of input features is selected by conducting PCA to eliminate 

those principle components that contribute less than 2% to the 

total variation in the original data set. After the PCA is 

applied, it is found that the total of input features can be 

reduced from 54 to only 3 input features without severely 

affecting the accuracy of the results. Fig. 5 shows complete 

ANFIS design for real power transfer allocation for the 25- bus 

equivalent practical power system. 

After the reduced input features and target for training data 

is created, the data (D and T) is divided into training, test 

subsets. In this case same 60% of sample data are used for the 

training. Fig. 6 shows the performance of the training for 
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individual ANFIS blocks representing each generator. From 

Fig. 6, it can also be seen that the training goal is achieved in 4 

epochs with a root mean square error less than 0.2E10-4. It 

took about 729.23 sec to train all 12 ANFIS blocks using the 

same computer. 
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Fig. 6 Training performance of ANFIS 

B. Pre-Testing and Simulation 

Similar to case of ANN, after the ANFIS have been trained, 

the entire test sample data is used in pre testing. The regression 

analysis for the trained ANFIS block that referred to 

contribution of generator at bus 14 to loads is shown in Fig. 7. 

The correlation coefficient, (R) in this case is equal to one 

which indicates perfect correlation between MNE method and 

output of the ANFIS block.  
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Fig. 7 Regression analysis between the ANFIS output and the 

corresponding target for real power allocation 

VII. RESULTS AND ANALYSIS 

A number of simulations have been carried out to exhibit 

the accuracy of the developed AI power transfer allocation 

methods with the same 25-bus equivalent system of south 

Malaysia. The scenario is a decrement by 5% of the real and 

reactive load demand from the nominal trained pattern for 1 

week (168 hours). Besides it also assumed that all generators 

also decrease their production proportionally according to this 

variation in the load demands. This assumption is being made 

to ensure that all real power generation of generator at buses 

14 to 25 varies in respond the varying daily load pattern of the 

loads. Fig. 8 shows the absolute deterrence in real power 

transfer allocation result for generator located at bus 14 

calculated by both AI method along with the result obtained 

through MNE method for loads at buses 1, 2, 4,5 and 6 for 

hours 25 to 48 and 121 and 144. From Fig. 8, it can be 

observed that most of the developed AI methods can allocate 

real power transfer between generators and load with very 

good accuracy, with absolute deference less than 0.01 MW in 

the case of ANN method. However, a relatively large 

difference is noted for the case of ANFIS method where the 

absolute deference between MNE method and ANFIS reach to 

0.03 MW when allocating real power from generator to loads 

at Buses 2 and 5 during peak load hours. 

To further evaluate the quantitative performance, mean 

square error (MSE) and sum of square error (SSE) observed 

by individual generator allocations and overall MSE and SSE 

encountered by ANN and ANFIS method is obtained. Fig. 9 

shows the MSE and SSE values introduced by each intelligent 

method they are subjected to untrained data. It can be observed 

that MSE and SSE errors are little bit high for ANFIS method 

compared to ANN method. In addition, it can also be noted 

that error differences between generator allocations in case 

ANN method is minimum which ranges between 1.71E-05 and 

4.86E-06 for MSE error and 0.0143 and 0.0041 for SSE error. 

Individual generator contribution MSE and SSE errors in 

ANFIS method are reasonably low but vary largely between 

1.88E-04 for MSE error and 0.1576 for SSE error. 
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TABLE I 

QUALITATIVE AND QUANTITATIVE COMPARISON OF ANN AND ANFIS POWER TRANSFER ALLOCATION METHODS 

Metho

d 
Model type Training time (sec)  Simulation time (msec) Overall MSE error for new data Overall SSE error for new data 

ANN Multi output 0.2321 21.99 1.19E-05 0.1203 

ANFIS Single output 12 x 60.77 39.37 2.97E-05 0.2997 

MNE mathematical - 360 - - 

 

Finally the overall comparison of ANN and ANFIS method 

that is used in power transfer allocation is exhibited in Table I. 

It can be noted that single output model types such as ANFIS 

takes much longer time for training all thought the simulation 

times are comparable with ANN model type. When comparing 

with overall MSE and SSE errors encountered during data 

simulation, the best performance is provided by ANN method 

whose MSE and SSE are found to be 1.19E-5 and 0.1203 

respectively. All in all, it can be concluded that ANN method 

is the best to use for power transfer allocation because it takes 

very short training time in model development and provides 

more accurate results in less simulation time as shown in Table 

I. 
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(a) Contribution to load at Bus 1 
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(b) Contribution to load at Bus 2 
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(c) Contribution to load at Bus 4 
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(d) Contribution to load at Bus 5 

 

25 30 35 40 45 122 127 132 137 142
0

1

2

3

4

5

6

7

8

9

10

Hours

C
o
n
tr
ib
u
ti
o
n
 o
f 
G
e
n
e
ra
to
r-
1
4
 t
o
 L
o
a
d
-6
 i
n
 (
M
W
)

 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

A
b
s
o
lu
te
 d
if
fe
re
n
c
e
 |
M
N
E
 m
e
th
o
d
-A
I 
m
e
th
o
d
|i
n
 (
M
W
) 

 

 

Target (MNE) ANN

ANFIS

Contribution Absolute difference

 

(e) Contribution to load at Bus 6 

Fig. 8 Distribution of real power from generator at bus 14 to loads 

within hours 25 to 48 and 121 and 144. 
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(a) MSE errors in power transfer all 
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(b) SSE errors in power transfer allocation of individual generators 

Fig. 9 Quantitative performance of various AI methods for untrained 

data 

VIII. CONCLUSION 

This paper has presented two AI methods that can be used 

to identify the real power transfer between generators and 

load. The developed intelligent method adopts real power 

allocation outputs determined by MNE technique as the trainer 

during the model development phase. The robustness of the 

both methods has been demonstrated on the 25-bus equivalent 

system of south Malaysia. From the results, the following 

conclusions can be attained. The AI power transfer allocation 

methods provide the results in a faster and convenient manner.  

1. Among both methods, ANN method provides the most 

accurate results.  

2. In terms of training, multi output model types such ANN 

require less training time compared to single output model 

types.  

3. The ANN based method is most suitable to adapted in true 

application of real power allocation. 

4. The proposed AI method can resolve some of the difficult 

real power pricing and costing issues to ensure fairness 

and transparency in the deregulated environment of power 

system operation. 
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