
Australian Journal of Basic and Applied Sciences, 7(10): 490-499, 2013
ISSN 1991-8178

Corresponding Author: Hamzah Asyrani Sulaiman, Faculty of Electronic and Computer Engineering, Universiti Teknikal
Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

490

Measuring Distance between Nearly Intersected Objects in Narrow Phase Collision
Detection

1Hamzah Asyrani Sulaiman, 2Mohd Azlishah Othman, 3Ridza Azri Ramlee, 4Muhammad Harris

Misran, 5Muhammad Noorazlan Shah Zainudin, 6Muhammad Harris Misran, 7Abdullah Bin Bade,
8Mohd Harun Bin Abdullah

1-6Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, 76100

Durian Tunggal, Melaka, Malaysia
7,8School of Science and Technology, Universiti Malaysia Sabah, 88440 Kota Kinabalu, Sabah,

Malaysia

Abstract: Calculating the distance between two or more object primitives (or triangles) in virtual
environment application before collision occurs is important elements in narrow phase collision
detection system. Given pairs of nearly colliding objects, their triangles must be checked one by one
until the most shortest distance is founded and thus the computation cost for checking collision
reduced by checking the nearest triangles that possible to collide. Hence, in this research, we used
Heron’s formula for calculating the distance between objects that nearly collide and compared it using
vector-based calculation. We have found that the formula increased the speed of distance computation
slightly faster compared to the vector-based calculation for single triangle checking with minimum
memory requirements. In this paper, we explained the procedures of using Heron’s Formula and
vector-based techniques for computing distance and the experimental results between those two
techniques. It is believed that it could help to speed up the process of determine the precise contact
between colliding objects while maintaining the accuracy of the collision checking.

Key words: Collision detection, Heron’s formula, distance computation, virtual environment.

INTRODUCTION

 In virtual environment application, performing collision detection is one of the important elements for
computer graphics and visualization research area. Considering application such as computer games and medical
simulation, detecting possible area that object most likely to collide is always a continuing problem exists from
decades ago. Each collision detection technique develop by programmers and researchers only coupe a certain
specific application where the targeting application must consider either to speed up the process or measure the
accuracy of the detection. Most computer games at earlier age used collision detection technique that fast enough
to give appropriate response to the users or games. However, today computer games concentrate on using real
physics and real mathematical calculation in order to increase the realism in the eyes of most users. Hence, it is
essential to develop and perform research studies in order to increase the realism of playing computer games and
the simulation itself (Sulaiman, H.A., et al., Sulaiman, H.A., et al., 2013; Sulaiman, H.A., et al., 2010; Sulaiman,
H.A., et al., 2009; Suaib, N.M., et al., 2009).
 Collision detection technique consisting two major parts mainly broad phase collision detection and narrow
phase collision. At first, the object is undergoing broad phase collision detection whereas the object is been
realized as a simple object that answer the easy question whether they are colliding or not. In most cases,
Bounding-Volume (BV) is used for this simple task. More complicated version used Bounding-Volume
Hierarchies (BVH) whereas the BV itself is representing as a big BV and then enclosing a smaller BV until the
end of the hierarchy (Qu, H. and W. Zhao, 2012; Arcila, O., S. Dinas and J.M. Banon, 2012; Wei, Z. and S. Jing,
2012; Rui, H., 2012; Sulaiman, H.A., et al., 2010; Sulaiman, H.A., et al., 2010; Suaib, N.M., et al., 2009;
Sulaiman, H.A., et al., 2009; Nguyen, A., 2006; Klosowski, J.T., et al., 1998). Bounding-Volume Hierarchies of
k-DOPs has been proposed by Klosowski et al (1998) in 1998 by using a convex polytopes with some
orientations of k value. By implemented this technique, their algorithm showed promising results that could
benefits in complex static environment with collision detection algorithm. Other researchers also used various of
BVs for the BVH such as boxtrees (Okada, K., et al., 2005; Wang, X.P., et al., 2010), Axis-Aligned Bounding-
Box (AABBs) (Okada, K., et al., 2010; Zhiwen, Y. and W. Hau-San, 2006; Feixiong, L., et al., 2009; Hanwen, L.
and W. Yi, 2011; Gong, J., J. An and L. Cui, 2011; Yi-Si, X., et al., 2010; Tu, C. and L. Yu, 2009; Zhang, X. and
Y.J. Kim, 2007; Weller, R.E., et al., 2006), Oriented Bounding-Box (OBB) (Zhiwen, Y. and W. Hau-San, 2006;
Feixiong, L., et al., 2009; Tu, C. and L. Yu, 2009; Chun-yan, Y., et al., 2005; Zhao, W. and L. Wang, 2011;
Yanchun, S. and S. Xingyi, 2011; Chang, J.W., et al., 2010; Lu, C. and Q. Guofeng, 2010; Zhou, X., 2010; Shen,
X.L. and J.S. Zhang, 2010; Chang, J.W., et al., 2009; Gottschalk, S., et al., 1996), k-Dop (Zhang, P. and G.L. Du,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka (UTeM) Repository

https://core.ac.uk/display/235647469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aust. J. Basic & Appl. Sci., 7(10): 490-499, 2013

491

2011) Oriented-Dops (Yanchun, S. and S. Xingyi, 2011; Chang, J.W., et al., 2009; Bade, A., et al., 2006) and
convex hulls (Zhang, X., et al., 2006; Cameron, S., 1997; Quinlan, S., 1994; Gilbert, E.G. and C.P. Foo, 1990).
 Distance Computation Algorithm for collision detection has been studied for the past three decades ago
where M. Orlowski (1985) published a paper of “The Computation of the distance between polyhedra in 3-
space”, E.G. Gilbert, D.W. Johnson, and S.S. Keerthi (1988) published “A fast procedure for computing the
distance between objects in three-dimensional space” and M.C. Lin (1991) published a popular paper of “A Fast
Algorithm for Incremental Distance Calculation”. Based on this paper, distance computation is mainly a method
to determine the approximately high precision distance between pair of convex polyhedra. Distance computation
algorithm is highly depends on the smallest step of object movement toward another objects as all computer
simulation consists of coordination system. Thus, it has been used in another type of collision detection technique
that focused on accuracy which is Continuous Collision Detection (CCD). Compared to Discrete Collision
Detection (DCD), CCD provides a sequence of small, discrete steps that looks like a continuous movement.

Vector-Based Calculation:
A. Distance between Vertices:
 In order to perform vector-based calculation for nearly intersected triangles, first we must recognized the
potential individual triangle for each object that most likely to have the nearest possible distance with another
object triangle. Once the potential triangle that close to another object triangle has been identify, we will proceed
by checking the nearest distance between all vertices of each one triangle to another triangle. Figure 1 shows an
example with two-dimensional (2D) triangle that we used to calculate the distance between both triangles. Thus,
only vertex-to-vertex and edge-to-vertex testing is required. However, edge-to-edge test is not accounted in this
procedure as it produces the same result as vertex to vertex distance if the edge of one triangle is parallel with
edge of another triangle.

Fig. 1: Two nearly intersected triangles.

 From figure 1, each triangle is bounded with an AABB in order to find the Dynamic Origin Point (DyOP)
that represented by “+” symbol [Reference]. The DyOP technique is used in order to find the nearest edge or
vertices and thus minimizing the efforts of testing all triangles vertices for the nearest distance. Once the DyOP
(“+” sign) has been founded, we only need to calculate for the selected vertices and edges that near to the DyOP.
Figure 2 illustrates the potential vertices that need to be checked for the distance and the edge-to-edge distance
between both triangles in this 2D example.

Fig. 2: Nearest possible distance using DyOP technique. Each connected lines (blue, purple, white and yellow

line) represented the shortest two vertices towards the DyOP.

Aust. J. Basic & Appl. Sci., 7(10): 490-499, 2013

492

 Based on the selected vertices and edges using DyOP technique, we need to find the distance between each
vertex of first object with the vertices of second object. Let the small triangle denoted as “A_Tri” while the bigger
one as “B_Tri” triangle. For A_Tri, two nearest vertices named “𝐴𝐴𝑣𝑣𝑣𝑣1” and “𝐴𝐴𝑣𝑣𝑣𝑣2” while B_Tri has nearest
vertices of “𝐵𝐵𝑣𝑣𝑣𝑣1” and “𝐵𝐵𝑣𝑣𝑣𝑣2”. All vertices are stored in vector based format that contains 𝑥𝑥,𝑦𝑦, and 𝑧𝑧 coordinates.
The vertices is continuously updated if there is a movement using matrix transformation. Thus, the distance
between vertices𝐴𝐴𝑣𝑣𝑣𝑣1 and 𝐵𝐵𝑣𝑣𝑣𝑣1of of A_Tri and B_Tri is depicts in equation 1:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝑣𝑣𝑣𝑣1𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐵𝐵𝑣𝑣𝑣𝑣1 = �((𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑥𝑥 − 𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑥𝑥)2 + (𝐴𝐴𝑣𝑣𝑣𝑣1.𝑦𝑦 − 𝐵𝐵𝑣𝑣𝑣𝑣1.𝑦𝑦)2 + (𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑧𝑧 − 𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑧𝑧)2)
Eq. 1
 The calculation must be done for 𝐴𝐴𝑣𝑣𝑣𝑣1 with 𝐵𝐵𝑣𝑣𝑣𝑣2, 𝐴𝐴𝑣𝑣𝑣𝑣2 with 𝐵𝐵𝑣𝑣𝑣𝑣1, and 𝐴𝐴𝑣𝑣𝑣𝑣2 with 𝐵𝐵𝑣𝑣𝑣𝑣2. Once all the distance
between vertices has been calculated, we keep the shortest distance between vertices in the computer memory and
continue with edge-to-vertex test.

B. Distance Edge-to-Vertex:
 The distance from a vertex to an edge is determined by the perpendicular distance between the vertex and the
corresponding edge. Let say 𝑃𝑃𝑜𝑜(𝑥𝑥𝑜𝑜 ,𝑦𝑦𝑜𝑜 , 𝑧𝑧𝑜𝑜) is a vertex point, 𝑠̅𝑠 = {𝑚𝑚;𝑛𝑛;𝑝𝑝} is representing an line for
corresponding edge and 𝑄𝑄1(𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1) is a coordinate on that edge or line 𝑠̅𝑠. Then the distance of 𝑃𝑃𝑜𝑜 and line 𝑠̅𝑠 can
be found using the formula below:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
|𝑃𝑃𝑜𝑜����𝑄𝑄1����� × 𝑠̅𝑠|

|𝑠̅𝑠|

Eq. 2
Figure 3 illustrates how the distance is found using the formula above.

Fig. 3: Edge to vertex distance computation.

 In our implementation, since the edge has been determined using DyOP technique, our job is to find the
vector for edge of 𝐴𝐴𝑣𝑣𝑣𝑣1 and 𝐴𝐴𝑣𝑣𝑣𝑣2 and the vector for edge of 𝐵𝐵𝑣𝑣𝑣𝑣1 and 𝐵𝐵𝑣𝑣𝑣𝑣2. Figure 4 shows the corresponding
vector for each triangle. Each edge will be named as 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 .

Fig. 4: Black line represented edge for A_Tri and B_Tri.

The vector for both edges can be defined as follow in equation 3 and 4 below:

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 𝑥𝑥 = 𝐴𝐴𝑣𝑣𝑣𝑣2. 𝑥𝑥 − 𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑥𝑥
𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 .𝑦𝑦 = 𝐴𝐴𝑣𝑣𝑣𝑣2.𝑦𝑦 − 𝐴𝐴𝑣𝑣𝑣𝑣1.𝑦𝑦
𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 𝑧𝑧 = 𝐴𝐴𝑣𝑣𝑣𝑣2. 𝑧𝑧 − 𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑧𝑧

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Aust. J. Basic & Appl. Sci., 7(10): 490-499, 2013

493

Eq. 3
𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 𝑥𝑥 = 𝐵𝐵𝑣𝑣𝑣𝑣2. 𝑥𝑥 − 𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑥𝑥
𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 .𝑦𝑦 = 𝐵𝐵𝑣𝑣𝑣𝑣2.𝑦𝑦 − 𝐵𝐵𝑣𝑣𝑣𝑣1.𝑦𝑦
𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 𝑧𝑧 = 𝐵𝐵𝑣𝑣𝑣𝑣2. 𝑧𝑧 − 𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑧𝑧

Eq. 4
 Once the vector for each edge has been calculated, we need to use 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 as vector 𝑠̅𝑠 in the formula
from equation 2. Hence, 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 could be represented as 𝐴̅𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒������� = {𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 𝑥𝑥;𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 .𝑦𝑦;𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 𝑧𝑧} and 𝐵𝐵�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒������� =
{𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 𝑥𝑥;𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 .𝑦𝑦;𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 𝑧𝑧}.
 Next, we need to find dot product of 𝐴𝐴𝑣𝑣𝑣𝑣1 and 𝐴𝐴𝑣𝑣𝑣𝑣2 with 𝐵𝐵�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒������� and 𝐵𝐵𝑣𝑣𝑣𝑣1 and 𝐵𝐵𝑣𝑣𝑣𝑣2 with 𝐴̅𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒������� . Since the
vertex point at 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is known, based on the formula at equation 2, we could find dot product between
both vertices. Figure 5 shows the corresponding calculation between edge and vertex between each triangle.
Using 𝐴𝐴𝑣𝑣𝑣𝑣1 as point on line 𝐴̅𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒������� with 𝐵𝐵𝑣𝑣𝑣𝑣1 and 𝐵𝐵𝑣𝑣𝑣𝑣2 as the required distance from the B_Tri triangle:-

𝐵𝐵𝑣𝑣𝑣𝑣1�����������𝐴𝐴𝑣𝑣𝑣𝑣1����������� = {𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑥𝑥 − 𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑥𝑥;𝐴𝐴𝑣𝑣𝑣𝑣1.𝑦𝑦 − 𝐵𝐵𝑣𝑣𝑣𝑣1.𝑦𝑦;𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑧𝑧 − 𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑧𝑧}
Eq. 5

𝐵𝐵𝑣𝑣𝑣𝑣2�����������𝐴𝐴𝑣𝑣𝑣𝑣1����������� = {𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑥𝑥 − 𝐵𝐵𝑣𝑣𝑣𝑣2. 𝑥𝑥;𝐴𝐴𝑣𝑣𝑣𝑣1.𝑦𝑦 − 𝐵𝐵𝑣𝑣𝑣𝑣2.𝑦𝑦;𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑧𝑧 − 𝐵𝐵𝑣𝑣𝑣𝑣2. 𝑧𝑧}
Eq. 6
and using 𝐵𝐵𝑣𝑣𝑣𝑣1 as point on line 𝐵𝐵�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒������� with 𝐴𝐴𝑣𝑣𝑣𝑣1 and 𝐴𝐴𝑣𝑣𝑣𝑣2 as the required distance from the A_Tri triangle:-

𝐴𝐴𝑣𝑣𝑣𝑣1�����������𝐵𝐵𝑣𝑣𝑣𝑣1����������� = {𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑥𝑥 − 𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑥𝑥;𝐵𝐵𝑣𝑣𝑣𝑣1.𝑦𝑦 − 𝐴𝐴𝑣𝑣𝑣𝑣1.𝑦𝑦;𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑧𝑧 − 𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑧𝑧}
Eq. 5

𝐴𝐴𝑣𝑣𝑣𝑣2�����������𝐵𝐵𝑣𝑣𝑣𝑣1����������� = {𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑥𝑥 − 𝐴𝐴𝑣𝑣𝑣𝑣2. 𝑥𝑥;𝐵𝐵𝑣𝑣𝑣𝑣1.𝑦𝑦 − 𝐴𝐴𝑣𝑣𝑣𝑣2.𝑦𝑦;𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑧𝑧 − 𝐴𝐴𝑣𝑣𝑣𝑣2. 𝑧𝑧}
Eq. 6

Fig. 5: Based on extended vector line, the perpendicular distance between vertices of corresponding triangle to

the edge of triangle will be calculated. However, the calculation will not be done if the vertex fall
outside the range of the normal vector line.

 In our implementation, the extended vector line is used to calculate the perpendicular distance between each
vertex to the edge of another triangle. However, we do not perform any distance computation between vertex
and edge if their perpendicular point fall into the outside range of the normal vector line. It is crucial to set up
the implementation so that the vertex of corresponding triangle is exactly perpendicular to the edge of vector
line. Otherwise, vertex-to-vertex point is consider as the nearest distance.
 When the dot product has successfully calculated, we performed cross product with the directing vector of
line of corresponding triangle and then find their magnitude. Finally, we need to divide with the directing vector
of line magnitude in order to find the distance.

Distance between 𝐴𝐴𝑣𝑣𝑣𝑣1 with𝐵𝐵𝑣𝑣𝑣𝑣1 and 𝐵𝐵𝑣𝑣𝑣𝑣2 using 𝐴̅𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒������� as directing vector of line:-

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴𝑣𝑣𝑣𝑣1 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝑣𝑣𝑣𝑣1 =
�𝐵𝐵𝑣𝑣𝑣𝑣1�����������𝐴𝐴𝑣𝑣𝑣𝑣1����������� × 𝐴̅𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��������

�𝐴̅𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��������

Eq. 7

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴𝑣𝑣𝑣𝑣1 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝑣𝑣𝑣𝑣2 =
�𝐵𝐵𝑣𝑣𝑣𝑣2�����������𝐴𝐴𝑣𝑣𝑣𝑣1����������� × 𝐴̅𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��������

�𝐴̅𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��������

Eq. 8

Aust. J. Basic & Appl. Sci., 7(10): 490-499, 2013

494

and distance between 𝐵𝐵𝑣𝑣𝑣𝑣1 with𝐴𝐴𝑣𝑣𝑣𝑣1 and 𝐴𝐴𝑣𝑣𝑣𝑣2 using 𝐵𝐵�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒������� as directing vector of line:-

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐵𝐵𝑣𝑣𝑣𝑣1 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝑣𝑣𝑣𝑣1 =
�𝐴𝐴𝑣𝑣𝑣𝑣1�����������𝐵𝐵𝑣𝑣𝑣𝑣1����������� × 𝐵𝐵�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��������

�𝐵𝐵�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��������

Eq. 9

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐵𝐵𝑣𝑣𝑣𝑣1 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝑣𝑣𝑣𝑣2 =
�𝐴𝐴𝑣𝑣𝑣𝑣2�����������𝐵𝐵𝑣𝑣𝑣𝑣1����������� × 𝐵𝐵�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��������

�𝐵𝐵�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��������

Eq. 10

Heron’s Formula Implementation:
 Heron’s formula is named after Heron of Alexandria, centuries ago that can be used to calculate area of
triangle using a formula below:-

𝑇𝑇 = �𝑠𝑠(𝑠𝑠 − 𝑎𝑎)(𝑠𝑠 − 𝑏𝑏)(𝑠𝑠 − 𝑐𝑐)
where a,b,c is the length of each edge for the triangle and s is the semiperimeter triangle:-

𝑠𝑠 =
𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐

2

 We extend this Heron’s formula in order to find the distance between vertex point to the edge of the
corresponding triangle by multiplying it by two and divide it by the length between vertex that perform the line
for corresponding triangle. Thus the formula becoming:-

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
��𝑠𝑠(𝑠𝑠 − 𝑎𝑎)(𝑠𝑠 − 𝑏𝑏)(𝑠𝑠 − 𝑐𝑐)� ∗ 2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 In order to implement Heron’s formula into the program, we first find out the corresponding vertex and edge
to create a virtual triangle (or temporary triangle region/area). Figure 6 shows one example to find the distance
between 𝐴𝐴𝑣𝑣𝑣𝑣1 and 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 .

Fig. 6: Virtual triangle or temporary triangle created by using 𝑨𝑨𝒗𝒗𝒗𝒗𝒗𝒗and𝑩𝑩𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆

 From figure 6, let’s denote 𝐻𝐻𝑎𝑎1𝑏𝑏1, 𝐻𝐻𝑎𝑎1𝑏𝑏2, and 𝐻𝐻𝑏𝑏1𝑏𝑏2as length for each edge of virtual triangle:-

𝐻𝐻𝑎𝑎1𝑏𝑏1 = �(𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑥𝑥 − 𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑥𝑥)2 + (𝐴𝐴𝑣𝑣𝑣𝑣1.𝑦𝑦 − 𝐵𝐵𝑣𝑣𝑣𝑣1.𝑦𝑦)2 + (𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑧𝑧 − 𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑧𝑧)2
Eq. 11

𝐻𝐻𝑎𝑎1𝑏𝑏2 = �(𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑥𝑥 − 𝐵𝐵𝑣𝑣𝑣𝑣2. 𝑥𝑥)2 + (𝐴𝐴𝑣𝑣𝑣𝑣1.𝑦𝑦 − 𝐵𝐵𝑣𝑣𝑣𝑣2.𝑦𝑦)2 + (𝐴𝐴𝑣𝑣𝑣𝑣1. 𝑧𝑧 − 𝐵𝐵𝑣𝑣𝑣𝑣2. 𝑧𝑧)2
Eq. 12

𝐻𝐻𝑏𝑏1𝑏𝑏2 = �(𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑥𝑥 − 𝐵𝐵𝑣𝑣𝑣𝑣2. 𝑥𝑥)2 + (𝐵𝐵𝑣𝑣𝑣𝑣1.𝑦𝑦 − 𝐵𝐵𝑣𝑣𝑣𝑣2.𝑦𝑦)2 + (𝐵𝐵𝑣𝑣𝑣𝑣1. 𝑧𝑧 − 𝐵𝐵𝑣𝑣𝑣𝑣2. 𝑧𝑧)2
Eq. 13

Based on the equation 11 to 13, the s parameter for all three are:-

𝑠𝑠 =
𝐻𝐻𝑎𝑎1𝑏𝑏1 + 𝐻𝐻𝑎𝑎1𝑏𝑏2 + 𝐻𝐻𝑏𝑏1𝑏𝑏2

2

Eq. 14

and then we put into parameter T, area:-

𝑇𝑇 = �𝑠𝑠(𝑠𝑠 − 𝐻𝐻𝑎𝑎1𝑏𝑏1)(𝑠𝑠 − 𝐻𝐻𝑎𝑎1𝑏𝑏2)(𝑠𝑠 − 𝐻𝐻𝑏𝑏1𝑏𝑏2)

Aust. J. Basic & Appl. Sci., 7(10): 490-499, 2013

495

Eq. 15

The distance between vertex 𝐴𝐴𝑣𝑣𝑣𝑣1 and 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 can be concluded as follows:-

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
��𝑠𝑠(𝑠𝑠 − 𝐻𝐻𝑎𝑎1𝑏𝑏1)(𝑠𝑠 − 𝐻𝐻𝑎𝑎1𝑏𝑏2)(𝑠𝑠 − 𝐻𝐻𝑏𝑏1𝑏𝑏2)� ∗ 2

𝐻𝐻𝑏𝑏1𝑏𝑏2

 Once all the distance has been found, we only requires to obtain the shortest distance among vertices and
edges. In the next section, we described our initial setup for the experiment using 2D triangle with ten different
types of triangle. All experiments is undergoing under the same circumstance in order to obtain fine comparison
result between vector-based calculation and Heron’s formula.

Experiments and Analysis:
 The experiments consisting three phases which are the first one is to calibrate the distance between the first
triangle and the second triangle with the static movement, the second one is to use rotation, and the last one is to
calculate total times to check for distance between all vertices and edges using all ten different types of triangle.

C. Calibrating Distance Between Vector-Based Technique and Heron’s Formula:
 In order to determine the data that has been provided by the program works perfectly, we perform a
calibration testing between the vector-based technique and Heron’s formula technique. By selecting two
different types of triangle for the calibration, we could determine whether both technique could provide
approximately the same distance. The test requires the program to compute nearly intersecting triangle with six
different location. From this test, it also helps to recognize the efficiency in calculating distance accurately
between vector-based calculation and Heron’s formula. All tests is undergone using Windows 8 Operating
systems with optimal graphics card in OpenGL environment compiled in Visual C++ 2012 Professional Edition
and program is made using C++ language with an OpenGL library. Figure 7 shows the corresponding triangle
with appropriate distance and the result is depict in Table 1.

Fig. 7: Six possible static nearly intersecting test for calculating the minimum distance between two triangles.

Table 1: Calibration data of six different location of nearly intersected triangle.

 Vector-based distance Heron’s Formula
Figure 5a1 (a) 0.0859907 0.0859835
Figure 5a1 (b) 0.0500157 0.0500232
Figure 5a1 (c) 0.0700004 0.0700134
Figure 5a1 (d) 0.0679097 0.0679067
Figure 5a1 (e) 0.0606312 0.0606284
Figure 5a1 (f) 0.0599999 0.0600008

Aust. J. Basic & Appl. Sci., 7(10): 490-499, 2013

496

 Based on figure 7, both triangle did not undergone any rotation to switch vertex point and thus it is consider
as static triangle testing between two nearly intersecting triangles. From table 1, we could see the calibration
data between vector-based distance computation and Heron’s Formula. Since the margin is too little between
those two techniques, we consider the resulting shows a promising data that both almost show the same exact
value. The known possible for the slightly different is might because of the usage of square root for computing
distance between those two techniques. In the next sub-section, we measure the random distance between
rotated triangles for another six random movement.

D. Random Distance for Rotated Triangle:
 Instead of performing calibration data with static triangle, we conduct an experiment of using rotated
triangles and then measure the distance between all vertices of corresponding triangle with another triangle
edge. In this case, we run ten possible randomize position to calculate the distance between these nearly
intersected triangles. Table 2 shows the data for the distance between those two techniques.

Table 2: Calibration data of six different location of nearly intersected triangle.

 Vector-based distance Heron’s Formula
Random 1 0.9873790 0.9873830
Random 2 0.0895392 0.0895405
Random 3 0.0928680 0.0928632
Random 4 0.0760477 0.0763010
Random 5 0.0414124 0.0414956
Random 6 0.0926698 0.0926732
Random 7 0.0551529 0.0551470
Random 8 0.0754026 0.0753153
Random 9 0.00175346 0.00241474
Random 10 0.00999012 0.00902168

 Based on randomize rotation that have been done by the program, we captured several distance for
illustration purpose in order to detect any possible error that might occurs if logic error is found in the program.
From the data captured, it seems that both achieved almost the same data value up to three to four floating
points. Thus, we consider that both method can be used for calculating the distance between vertex and the edge
of the triangle. Figure 8 shows randomize position when undergone rotation experiments.

Fig. 8: Six randomize nearly intersecting test for calculating the minimum distance between two triangles.

E. Total Times for Distance Computation for 10 Randomize Sizes and Types of Triangle:
 Final testing involving checking for distance between ten randomize sizes and types of triangle in static
triangle mode. Each triangle will be tested against another nine triangle and repeated for another nine triangle.
Thus, a total of 90 tests for different sizes and types of triangle and never be tested against the own size and type
of triangle. Figure 9 shows the corresponding graph for the experiments.

Aust. J. Basic & Appl. Sci., 7(10): 490-499, 2013

497

Fig. 9: Vector-Based versus Heron's Formula for Distance Computation

 From the figure, the data shows that Heron’s Formula is slightly faster than the vector-based method. Since
the triangle involves in this experiments consisting ten types of triangles, thus total times per milliseconds for all
90 tests are 1701 milliseconds for vector-based and 1607 milliseconds for Heron’s Formula. Thus, it is more
than 5% increment of speed using Heron’s Formula compared to the vector-based for just ten types of triangle.
In virtual environment world, most of applications consisting more than thousands or millions of triangles for
calculation where every small increment lead to a lot of increase speed for distance computation.

Conclusion and Future Work:
 As a conclusion, our research shows premilinary investigation result based on initial experiment setup in
order to show the differences between vector-based technique and Heron’s formula in computing distance
between nearly intersected triangles. Even though there is only slightly increase of speed for Heron’s formula, it
still does not yet tested with high complexity objects that might contains more than hundreds to thousands of
triangles. Our work is still an ongoing research concentrating on creating a new narrow phase collision detection
system starting with distance computation algorithm, determine the precise point of contact for intersecting
triangles and calculating penetration depth between intersected triangles.

ACKNOWLEDGMENT

 We would like to thanks to Universiti Teknikal Malaysia Melaka for give support and commitment to this
research projects especially to Universiti Malaysia Sabah for giving support and research advice through direct
and indirect supervision.

REFERENCES

 Sulaiman, H.A., M.A. Othman, M.M. Ismail, M.H. Misran, M.A.B.M. Said, R.A. Ramlee, et al., "Quad
separation algorithm for bounding-volume hierarchies construction in virtual environment application," Journal
of Next Generation Information Technology, 4: 63-73.
 Sulaiman, H.A., M.A. Othman, M.M. Ismail, M.A. Meor Said, A. Ramlee, M.H. Misran, et al., 2013.
"Distance computation using Axis Aligned Bounding Box (AABB) parallel distribution of dynamic origin
point,".
 Sulaiman, H.A., A. Bade and N.M. Suaib, 2010. "Fast traversal algorithm for detecting object interference
using hierarchical representation between rigid bodies," pp: 7-11.
 Sulaiman, H.A., A. Bade and N.M. Suaib, 2009."Bounding-volume hierarchies technique for detecting
object interference in urban environment simulation," pp: 436-440.

Aust. J. Basic & Appl. Sci., 7(10): 490-499, 2013

498

 Suaib, N.M., A. Bade, D. Mohamad and H.A. Sulaiman, 2009. "On faster bounding volume hierarchy
construction for avatar collision detection,", pp: 430-434.
 Qu, H. and W. Zhao, 2012. "Fast Collision Detection of Space-Time Correlation," in Computer Science and
Electronics Engineering (ICCSEE), 2012 International Conference on, pp: 567-571.
 Arcila, O., S. Dinas and J.M. Banon, 2012. "Collision detection model based on Bounding and containing
Boxes," in Informatica (CLEI), 2012 XXXVIII Conferencia Latinoamericana En, pp: 1-10.
 Wei, Z. and S. Jing, 2012. "Collision Detection Research for Deformable Objects," in Computer Science
and Electronics Engineering (ICCSEE), 2012 International Conference on, pp: 557-561.
 Rui, H., 2012. "Optimizing collision detection in 3D games with model attribute and Bounding Boxes," in
Electrical & Electronics Engineering (EEESYM), 2012 IEEE Symposium on, pp: 589-591.
 Sulaiman, H.A., A. Bade and N.M. Suaib, 2010. "Balanced hierarchical construction in collision detection
for rigid bodies," in Science and Social Research (CSSR), 2010 International Conference on, pp: 1132-1136.
 Sulaiman, H.A., A. Bade, D. Daman and N.M. Suaib, 2009. "Collision Detection using Bounding-Volume
Hierarchies in Urban Simulation," presented at the The 5th Postgraduate Annual Research Seminar, Faculty of
Computer Science & Information System, UTM.
 Suaib, N.M., A. Bade, D. Daman and H.A. Sulaiman, 2009. "Bounding Volume Hierarchy For Avatar
Collision Detection: Design Considerations," presented at the The 5th Postgraduate Annual Research Seminar,
Faculty of Computer Science & Information System, UTM.
 Sulaiman, H.A., A. Bade and N.M. Suaib, 2009. "Bounding-Volume Hierarchies Technique for Detecting
Object Interference in Urban Environment Simulation," in Second International Conference on Environmental
and Computer Science, 2009. ICECS '09, pp: 436-440.
 Nguyen, A., 2006. "IMPLICIT BOUNDING VOLUMES AND BOUNDING VOLUME HIERARCHIES,"
Doctor of Philosophy, Stanford University.
 Klosowski, J.T., M. Held, J.S.B. Mitchell, H. Sowizral and K. Zikan, 1998. "Efficient Collision Detection
Using Bounding Volume Hierarchies of k-DOPs," IEEE Transactions on Visualization and Computer Graphics,
4: 21-36.
 Okada, K., M. Inaba and H. Inoue, 2005. "Real-time and Precise Self Collision Detection System for
Humanoid Robots," in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on, pp: 1060-1065.
 Wang, X.P., X.C. Dong, H.B. Wang, H.C. Zheng, and S.F. Gu, 2010. "Solution to collision detection based
on bounding box in Vega Prime," in Future Information Technology and Management Engineering (FITME),
2010 International Conference on, pp: 113-116.
 Zhiwen, Y. and W. Hau-San, 2006. "GPCD: Grid-based Predictive Collision Detection for Large-scale
Environments in Computer Games," in Multimedia and Expo, 2006 IEEE International Conference on, pp:
1025-1028.
 Feixiong, L., Z. Ershun, H. Yuefeng, G. Hui and C. Junlai, 2009. "Real-time collision detection and
response in virtual global terrain environments," in Computer-Aided Industrial Design & Conceptual Design,
2009. CAID & CD 2009. IEEE 10th International Conference on, pp: 2257-2262.
 Hanwen, L. and W. Yi, 2011. "Coherent hierarchical collision detection for clothing animation," in Haptic
Audio Visual Environments and Games (HAVE), 2011 IEEE International Workshop on, pp: 129-134.
 Gong, J., J. An and L. Cui, 2011. "Research and Application for Collision Detection Algorithm in Virtools,"
in Business Computing and Global Informatization (BCGIN), 2011 International Conference on, pp: 457-460.
 Yi-Si, X., X.P. Liu and X. Shao-Ping, 2010. "Efficient collision detection based on AABB trees and sort
algorithm," in Control and Automation (ICCA), 2010 8th IEEE International Conference on, pp: 328-332.
 Tu, C. and L. Yu, 2009. "Research on Collision Detection Algorithm Based on AABB-OBB Bounding
Volume," in First International Workshop on Education Technology and Computer Science, 2009. ETCS '09.
pp: 331-333.
 Zhang, X. and Y.J. Kim, 2007. "Interactive Collision Detection for Deformable Models Using Streaming
AABBs," IEEE Transactions on Visualization and Computer Graphics, 13: 318-329.
 Weller, R.E., J. Klein and G. Zachmann, 2006. "A Model for the Expected Running Time of Collision
Detection using AABB Trees," in Eurographics Symposium on Virtual Environments (EGVE), Lisbon, Portugal.
 Chun-yan, Y., Y. Dong-yi, W. Ming-Hui and P. Yun-he, 2005. "A new horizontal collision detection
scheme for avatar with avatar in collaborative virtual environment," in Machine Learning and Cybernetics,
2005. Proceedings of 2005 International Conference on, 8: 4961-4966.
 Zhao, W. and L. Wang, 2011. "A fast collision detection algorithm suitable for complex virtual
environment," in Transportation, Mechanical, and Electrical Engineering (TMEE), 2011 International
Conference on, pp: 502-505.
 Yanchun, S. and S. Xingyi, 2011. "Research and improvement of collision detection based on oriented
bounding box in physics engine," in Communication Software and Networks (ICCSN), 2011 IEEE 3rd
International Conference on, pp: 73-76.

Aust. J. Basic & Appl. Sci., 7(10): 490-499, 2013

499

 Chang, J.W., W. Wang and M.S. Kim, 2010. "Efficient collision detection using a dual OBB-sphere
bounding volume hierarchy," Computer-Aided Design, 42: 50-57.
 Lu, C. and Q. Guofeng, 2010. "Optimization of the collision detection technology in 3D skeleton
animation," in Computer Application and System Modeling (ICCASM), 2010 International Conference on,
V10-539-V10-543.
 Zhou, X., 2010. "Research of collision detection based on OBB in skinned mesh," in Computer Application
and System Modeling (ICCASM), 2010 International Conference on, pp: V6-643-V6-645.
 Shen, X.L. and J.S. Zhang, 2010. "Research of collision detection algorithm based on particle swarm
optimization," in Computer Design and Applications (ICCDA), 2010 International Conference on, pp: V1-60-
V1-63.
 Chang, J.W., W. Wang and M.S. Kim, 2009. "Efficient collision detection using a dual OBB-sphere
bounding volume hierarchy," Computer-Aided Design, vol. In Press, Corrected Proof.
 Gottschalk, S., M.C. Lin and D. Manocha, 1996. "OBBTree: a hierarchical structure for rapid interference
detection," presented at the Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques.
 Zhang, P. and G.L. Du, 2011. "A fast continuous collision detection algorithm based on K_DOPs," in
Electronics, Communications and Control (ICECC), 2011 International Conference on, pp: 617-621.
 Bade, A., N. Suaib, M.Z.A. and T.S.T.M., 2006. "Oriented convex polyhedra for collision detection in 3D
computer animation," presented at the Proceedings of the 4th international conference on Computer graphics
and interactive techniques in Australasia and Southeast Asia, Kuala Lumpur, Malaysia.
 Zhang, X., M. Lee and Y.J. Kim, 2006. "Interactive continuous collision detection for non-convex
polyhedra," Vis. Comput., 22: 749-760.
 Cameron, S., 1997. "A comparison of two fast algorithms for computing the distance between convex
polyhedra," Robotics and Automation, IEEE Transactions on, 13: 915-920.
 Quinlan, S., 1994. "Efficient distance computation between non-convex objects," in Robotics and
Automation, 1994. Proceedings., 1994 IEEE International Conference on, pp: 3324 - 3329.
 Gilbert, E.G. and C.P. Foo, 1990. "Computing the distance between general convex objects in three-
dimensional space," Robotics and Automation, IEEE Transactions on, 6: 53-61.

	Distance between Vertices:
	Distance Edge-to-Vertex:
	Calibrating Distance Between Vector-Based Technique and Heron’s Formula:
	Random Distance for Rotated Triangle:
	Total Times for Distance Computation for 10 Randomize Sizes and Types of Triangle:

