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ABSTRACT    

 

 The current collection system consists of a pantograph placed on the roof top of a trains’ 

vehicle and overhead contact wire supported by evenly spaced vertical holders which supply the 

current to the pantograph from the electric power grid. Most of the pantographs produce averagely 

good performances at low and medium speeds, approximately less than 250 km/h. However, at 

higher speeds, the response of the pantographs is distorted. Thus the stability of the current collection 

is in peril. In addition, due to vertical vibration of the car body during high speed, contact force 

variation occurs between the pantograph and overhead wire. Therefore, it is necessary to maintain 

the contact between pantograph and overhead wire. In this study, the multi-body dynamics analysis 

is used to model the flexible body of overhead wire. An excitation experiment is performed in order 

to determine the parameters of pantograph. With consideration of vertical body vibration, an active 

pantograph control is developed to eliminate the effect of vibration to contact force, reduce the 

maximum peaks and avoid contact loss.   

 
Keywords: Multi-body Dynamic Analysis; Active Pantograph; Interaction; Active Control.   

 

I.  INTRODUCTION   
  

In recent years, high speed railway vehicle technologies have been studied and investigated in 

order to develop their performances with the objectives of improving riding comfort, reducing noise 

and increasing efficiency from an environmental perspective. One of the essential performances is 

current collection stability. Operating at a high speed condition, the current collection system which 

consists of contact wire and pantograph suffers from contact force variation. In order to understand 
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the contact force variation, a study of the dynamic interaction between contact wire and pantograph 

is essential.  

 The current collection system consists of a pantograph placed on the roof top of a trains’ 

vehicle and overhead contact wire supported by evenly spaced vertical holders which supply the 

current to the pantograph from the electric power grid. Most of the pantographs produce moderately 

good performances at low and medium speeds, approximately less than 250 km/h. However, at 

higher speeds, the response of the pantographs is distorted by the irregularities of the contact wire. 

Thus, the stability of the current collection is in peril. In addition, due to vibration of the car body 

and external drag force produced during high speed and the dynamics performance of the railway 

vehicle [1][2], contact force variation occurs between the pantograph and overhead wire [3]. In the 

field on electromagnetic interference due to the contact variation, the subject has been discussed 

widely by researchers. The sliding contact of the pantograph and overhead wire results in unwanted 

radiated fields [4] at the contact area. The electric arcs generated from losing mechanical contact 

between the pantograph and the overhead wire cause electromagnetic emission [5]. The change of 

pantograph static parameters in improving the contact also affect the electromagnetic radiation level 

[6][7]. At speeds of more than 300 km/h, the main problems for the current collection systems are: 

the increment of the rate of pantograph bounce from the overhead wire; the increment of the wear of 

the contact slip and overhead wire; and the increment of the noise levels [8]. 

 In order to ensure adequate current supply to the train, it is necessary to modify or control the 

response of the pantograph. At static conditions, the pantograph should be designed to provide a 

constant nominal contact force of about 54 N [9] between the contact strip and the overhead contact 

wire. While in dynamic conditions, the contact force should never drop to zero to prevent contact 

loss. The variation of the contact force between pantograph and overhead wire is acceptable at a 

certain range. As long as there is no contact loss and the utmost contact is supportable by the system, 

the current collection system can perform desirably. This is the aim of the control approaches in the 

development of active control pantograph [10-13]. Within the acceptable range, the contact force 

data perhaps can be utilized for other purposes. The overhead wire unevenness can be measured and 

estimated using the data [14]. The overhead wire strain and diagnosis are also performable by means 

of contact force [15][16].   

 It has been also estimated that 30 % of the contact force variation is contributed by the 

vertical body vibration at frequency of lower than 16 Hz [17]. Therefore, this study will discuss the 

relationship between contact force and the vertical vibration of the railway vehicle body and the 

attempts to control the force. In actual field test, due to its constraint, the vertical vibration can be 

observed using accelerometer which measures the vertical acceleration of the car body [18-20]. The 

acceleration is then probably converted to velocity and displacement in time historical data with 

standard filters which eliminate unfeasible noises. In simulation, conveniently, either vertical 

acceleration or force with random frequencies can be applied to represent the vertical body vibration. 

Within reasonable amplitude, stationary and non-stationary pantograph simulations are performable 

to analyze the effect of vertical body vibration to the contact force variations. Furthermore, 

incorporating the vibration in the multi-body dynamics analysis of the contact wire and pantograph 

interaction will strengthen the approach of the analysis and the attempt to control the force 

discrepancy.   

 

II.  CONTACT WIRE AND PANTOGRAPH MODELING   
  

The flexible body modelling approach using multi-body dynamics analysis, absolute nodal 

coordinate formulation (ANCF) [21-23] accompanied with damping force formulation [24][25] is 

used to model the overhead contact wire (Fig. 1). An asymmetrical z-shape pantograph unit with two 
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contact points was utilized as shown in Fig. 2. The contact wire and pantograph parameters (Table 1 

and 2) are taken from the previous published researches [21][26]. 

 

 
FIGURE 1: Structure of contact wire system 

 

 

 

 
 

FIGURE 2: Pantograph physical model 
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TABLE 1: Contact wire parameters 

Parameter Symbol Value and unit 

Length of span s 50 m 

Number of span ns 2 

Number of holder nh 10/span 

Wire diameter d 15.49x10
-3

 m 

Young’s modulus E 130x10
9
 Ns/m

2
 

Mass density ρ 8920 kg/m
3
 

Damping parameter D 3.239 x 10
7
 

Drag coefficient  CD 0.8 

Fluid density ρf 1.2929 kg/m
3
 

Gravity g 9.8 m/s
2
 

Wire tension T 19600 N 

 
TABLE 2: Pantograph parameters 

Parameter Symbol Value and unit 

Mass of contact strip m1T 12 kg 

Mass of pan head m2 5 kg 

Contact spring kc 39000 N/m 

Contact strip spring k1T 32992 N/m 

Pan head spring k2 14544 N/m 

Contact damper cc 120 Ns/m 

Contact strip damper c1T 12.31  Ns/m 

Pan head damper c2 0.11 Ns/m 

Mass of frame m3 10.38 kg 

Frame spring k3 611.85 N/m 

Frame damper c3 50.92 Ns/m 

 
 

III.  CONTACT WIRE AND PANTOGRAPH ANALYSIS   
  

In order to study the interaction between contact wire and pantograph, one should give 

attention to the dynamic behaviors of both contact wire and pantograph. It has been observed that at 

high speed, short-period separations between pantograph and contact wire occur frequently and 

periodically [26][27]. The reasons for these separations have been investigated and the dynamic 

behavior of the current collection system has also been improved.  

 The pantograph model and contact wire model interact together to generate contact force. The 

contact force acts on a point on top of the contact strip, with spring and damper models. This contact 

point moves together with the pantograph. Due to the relative displacement and relative speed of the 

top and bottom of the wear plate as well as flexible body of contact wire, contact force occurs. If the 

relative speed is less than zero, then the pantograph is considered in bounce condition and is 

restrained with the spring and damper. Considering the contact point between pantograph and contact 

wire, the force equation can be written as,  

 

 ( ) ( ) cpccpc cyykyyf 111
&& −+−=       (1) 

  

Where f1 is the contact force, yc is the contact point displacement, yp1 is the contact strip 

displacement, kc and cc are the contact spring stiffness and damping parameter respectively. The 



International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 

6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 6, November - December (2013) © IAEME 

267 

 

effect of vertical body vibration (yB) to the contact force is also considered. The analysis o the flow 

of contact wire and pantograph system is shown in Fig. 3. Traveling speed v for the analysis is set at 

100, 150, 200, 250, 300, 350 and 400 km/h. The displacement yc is produced from the multi-body 

dynamic analysis and yB is the random frequency constant amplitude of vertical body vibration. The 

output of the system is the contact force f1. The evaluation of control force is calculated using cost 

function (CF) with formulation of the sum of area under the graph of contact force about the nominal 

contact force (f1N) of 54 N.  

 

 ( )∑ 







−+−







∆
= +

dn

i

NiNi ffff
tv

CF 11111
26.3

      (2) 

 

 Where nd is the number of data sampling, i is the current data, v is the speed (km/h) and ∆t is 

the time interval between data which is equal to 0.02 s.  

 

 
FIGURE 3: Contact wire and pantograph interaction system with active control 
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IV.  ACTIVE PANTOGRAPH CONTROL   
  

With the intension to minimize the vibration, the vibration cancellation control is applied. 

Based on transfer function (TF), the controller is designed to produce displacement which is equal 

but opposite to the one that is produced by the pantograph due to the vertical vibration. The torque τ 

occurs at the lower frame caused by main spring k3 and damper c3 installed in the framework which 

produces the upward force. The damper in the actual design pulls the brake for the framework when 

the pantograph descends to a certain point. The control force fC is applied to the lower frame,  

 

 ( ) 2fc lf=τ       (3) 

 

 Where lf2 is the length of the lower pantograph frame, which is equal to 1 m. The pantograph 

is controlled using vibration cancellation (VC) (Fig. 4). In this control scheme, the controller uses the 

vibration as the input and feeds to the actuator. The actuator then produces the same magnitude of 

vibration at different direction to cancel the vibration itself. Fig. 5 shows the transfer function block 

diagram of the controller design with controller K(s), the pantograph G1(s) and actuator G2(s). The 

vibration cancellation control force is denoted as fcVC. 

 

 
FIGURE 4: Block diagram for vibration cancellation control 

 

 
FIGURE 5: Block diagram of VC with transfer function 

 

The equations of motion for the pantograph system are shown in Eqn. (4), (5) and (6). 
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( ) cppppp fyykykycym +−=++ 322333333 &&&     (6)  

 

The above equations can be simplified using transfer function for block analysis and controller 

design. By neglecting the f1 and assuming fc = 0, the transfer function for input yB and output yp1 is, 

 

 ( )
( )

( )sY

sY
sG

B

p1

1 =      (7)  

 

The detail transfer function of G1(s) is, 

 

 (8) 

  

And, assuming yB = 0, the transfer function for input fc and output yp1 is, 

 

 ( )
( )

( )sF

sY
sG

C

p1

2 =      (9) 

  

The detail transfer function of G2(s) is, 

 

 (10) 

  

The numerator and denominator constants of G1(s) and G2(s) are summarized in Table 3. With the 

intention of zeroing the total displacement yp1, the controller K(s) is derived by, 

 

 G1(s)-K(s)×G2(s)=0     (11)  

 

 ( )
( )
( )sG

sG
sK

2

1=      (12)  

 

The detail TF of K(s) is, 

 

  (13) 

 

The numerator and denominator constants of controller K(s) are summarized in Table 4.  
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TABLE 3: Numerators and denominators for G1(s) and G2(s) 

Constant Value Constant Value 

N4G1 5.76 x10
8
 N3G2 2.88 x10

6
 

N3G1 4.61 x10
11

 N2G2 1.87 x10
9
 

N2G1 1.35 x10
14

 N1G2 2.96 x10
11

 

N1G1 1.73 x10
16

 N0G2 2.70 x10
13

 

N0G1 8.10 x10
17

 D7G2 7.34x10
4
 

D7G1 7.34x10
4
 D6G2 2.52 x10

7
 

D6G1 2.52 x10
7
 D5G2 3.12 x10

9
 

D5G1 3.12 x10
9
 D4G2 4.10 x10

11
 

D4G1 4.10 x10
11

 D3G2 2.01 x10
13

 

D3G1 2.01 x10
13

 D2G2 1.44 x10
15

 

D2G1 1.44 x10
15

 D1G2 1.73 x10
16

 

D1G1 1.73 x10
16

 D0G2 8.10 x10
17

 

D0G1 8.10 x10
17

   

 

 

TABLE 4: Numerators and denominators for K(s) 

Constant Value Constant Value 

N11K -4.23 x10
13

 D12K 2.12 x10
11

 

N10K -4.83 x10
16

 D11K 6.33 x10
14

 

N9K -2.34 x10
19

 D10K 7.17 x10
10

 

N8K -6.35 x10
21

 D9K 4.00 x10
20

 

N7K -1.12 x10
24

 D8K 1.26 x10
23

 

N6K -1.40 x10
26

 D7K 2.48 x10
25

 

N5K -1.30 x10
28

 D6K 3.34 x10
27

 

N4K -8.83 x10
29

 D5K 3.33 x10
29

 

N3K -4.39 x10
31

 D4K 2.41 x10
31

 

N2K -1.58 x10
2
 D3K 1.24 x10

33
 

N1K -2.80 x10
34

 D2K 4.89 x10
34

 

N0K -6.56 x10
35

 D1K 8.31 x10
35

 

  D0K 2.19 x10
37

 

 

 

V.  RESULTS AND DISCUSSIONS   
  

Table 5 summarizes the force abbreviations. Fig. 6 to 8 show the graphical results of the 

dynamic analysis at speed of 300, 350 and 400 km/h. In the VC control approach, the control force is 

applied in order to minimize the effect of vertical vibration. The VC control system has consistently 

reduced the CF and CL for all speeds (Fig. 9 and 10).  
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TABLE 5: Contact forces abbreviations 

Abbreviations Description 

f1V Contact force of system with vibration but without control 

f1VC Contact force of system with vibration and vibration cancellation control 

f1N Nominal contact force of 54 N 

 

 

 
FIGURE 6: Contact forces at v = 300km/h 

 

 

  
FIGURE 7: Contact forces at v = 350km/h 
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FIGURE 8: Contact forces at v = 400km/h 

 

 
FIGURE 9: Contact force controls evaluation 

 

  
FIGURE 10: Contact loss ratio 
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VI.  CONLCUSION   

 
The practical application of multi-body scheme, ANCF was used to model the interaction 

between contact wire and pantograph with the consideration of vertical body vibration. The design of 

active pantograph controls via simulation was also investigated. In an attempt to eliminate contact 

loss between contact wire and pantograph, the control approaches have been tested at high speeds. 

The active controls are designed with the application of the multi-body dynamic analysis. The 

development of the active pantograph control depends on the availability of the active damper with 

high frequency response to produce such control forces.    
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