Aerodynamic Pitching Stability of Sedan-type Vehicles Influenced by Pillar-shape Configurations

See Yuan Cheng Universiti Teknikal Malaysia Melaka

Makoto Tsubokura Hokkaido University

Yoshihiro Okada Mazda Motor Corporation

Takuji Nakashima Hiroshima University

Takahide Nouzawa Mazda Motor Corporation

ABSTRACT

The present study investigated the aerodynamic pitching stability of sedan-type vehicles under the influence of A- and C-pillar geometrical configurations. The numerical method used for the investigation is based on the Large Eddy Simulation (LES) method. Whilst, the Arbitrary Lagrangian-Eulerian (ALE) method was employed to realize the prescribed pitching oscillation of vehicles during dynamic pitching and fluid flow coupled simulations. The trailing vortices that shed from the A-pillar and C-pillar edges produced the opposite tendencies on how they affect the aerodynamic pitching stability of vehicles. In particular, the vortex shed from the A-pillar edge tended to enhance the pitching oscillation of vehicle, while the vortex shed from the C-pillar edge tended to suppress it. Hence, the vehicle with rounded A-pillar and angular C-pillar exhibited a higher aerodynamic damping than the vehicle with the opposite A- and C-pillars configurations. The underlying aerodynamic damping mechanism has been verified through flow visualization of phase-averaged results.