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Normal incidence of sound transmission loss of a double-leaf partition1

inserted with a micro-perforated panel2

A. Y. Ismail, A. Putra∗, R. Ramlan, Md. R. Ayob, M. S. Py3

Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka4

Hang Tuah Jaya, Durian Tunggal Melaka 76100, Malaysia5

Abstract6

A double-leaf partition in engineering structures has been widely applied for its advantages i.e. in

terms of its mechanical strength as well as its lightweight property. In noise control, the double-leaf

also serves to be an effective noise barrier. Unfortunately at low frequency, the sound transmission

loss reduces significantly due to the coupling between the panels and the air between them. This

paper studies the effect of a micro-perforated panel (MPP) inserted inside a double-leaf partition on

the sound transmission loss performance of the system. The MPP insertion is proposed to provide

a hygienic double-leaf noise insulator replacing the classical abrasive porous materials between the

panels. It is found that the transmission loss improves at the troublesome mass-air-mass resonant

frequency if the MPP is located closer to the solid panel. The mathematical model is derived for

normal incidence of acoustic loading.
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1. Introduction8

A double-leaf structure is a common structural design for many engineering applications. The9

vehicle body such as in cars, trains and airplanes, as well as the walls of a building are some examples10

of double-leaf partition in practice. From the acoustical engineering point of view, the double-leaf11

is proposed to be a better noise barrier compared to the single-leaf. However, there remains a12

problem on the double-panel which is the weak sound transmission loss (STL) performance at low13

frequency due to the ’mass-air-mass’ resonance. This causes the double-leaf loses its superiority14

over the single-leaf [1].15
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Several works have been established to solve this problem. This includes employing an ab-16

sorbtive materials inside the gap of a double-leaf e.g. fiberglass [2] and rockwool [3] which can17

effectively increase the STL due to additional damping to the air layer provided by the absorbent.18

Mao and Pietrzko [4] proposed a technique by installing the Hemholtz resonators at the air gap.19

The resonator acts like single-degree of freedom system of which its natural frequency depends on20

its geometry. In order to increase the STL at mass-air-mass resonance, the Hemholtz resonator is21

tuned to the same resonant frequency. Li and Cheng [5] used an active control system to control22

the acoustic modes in the gap by using a sound source and an actuator. The sound source reduces23

the transmission energy by suppressing certain acoustic modes in the air gap while the actuator24

reduces energy from the structural path by creating counter forces on the two panels to suppress25

the vibration. Similarly, Li et al. [6] used a long T-shaped resonators embedded along the edge26

of the double-panel. This is also aimed to actively control both acouctics and structural path in27

the gap. It is found that by varying the location of the resonators the STL at resonance can be28

significantly improved. Mahjoob et.al. [7] introduced the newtonian fluids to control the acoustic29

path inside the gap. Air, oil and ferromagnetic nano-particle fluid were used as a filler between the30

two panels. Although not practical, this method is also shown to increase the STL at resonance.31

However, use of acoustic absorbers, such as foam or fibrous type materials inside a double-panel32

are still the most cheapest and common practice to increase the sound insulation performance [2, 3].33

For noise control application where abrasive and polluting materials cannot be presented, such as34

in the food industry where hygienic condition is critical to be maintained around the processing35

machines, conventional synthetic fibrous materials are thus not the solution. Although it is hidden36

between the panels, a noise barrier panel which is easy to be cleaned, handled and is free from37

hazardous substances to health is therefore necessary.38

An alternative fiber-free absorber which has gained more popularity is a micro-perforated panel39

(MPP) absorber. MPP is a perforated panel with millimetric size holes backed by air cavity and40

rigid surface found by Dah You Maa in 1975. The hole diameter must be in the range between41

0.05−1 mm and the perforation ratio between 0.5−1.5% for optimum absorption [8]. As the MPP42

can be made from panel, it provides several advantages such as non-fibrous, non-abrasive, non-43

polluting and safer in case of fire hazard. Although the MPP is mainly applied for sound absorber,44

several works have also been published concerning its sound insulation performance.45
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Dupont et al. [9] investigated the sound transmission loss of a double-leaf structure where a46

MPP is backed by a solid panel. Toyoda and Takahashi [10] studied the sound transmission loss47

of a MPP by subdividing the air cavity behind the MPP to have the sound propagation in normal48

incidence in the cavity. The transmission loss is found to increase at mid-frequencies. Most recently,49

models of sound transmission loss for a multi-layer partition with a MPP are proposed by Mu et50

al. [11]. In their model, the MPP is located at the outer layer of the system.51

In this paper, similar multi-layer structure is proposed, but with the MPP inserted between52

two solid plates. Apart for hygienic purposes, the application can also be found for example a53

multi-layer window system where a transparent panel is required to improve the noise insulation.54

The next section describes the derivation of the mathematical model and presents the simulation55

results of the effect of the MPP insertion, in terms of its location in the gap as well as its hole56

size and perforation ratio, on the sound transmission loss. The derivation is conducted only for57

the sound field with normal incidence. Recent finding suggests that the effect of mass-air-mass58

resonance for an infinite double-panel system subjected to the diffuse field incidence is not correct59

due to the internal resonance in the cavity in the direction parallel to the panel [12]. Numerical60

modelling technique is required, but this is beyond the scope of this paper.61

2. Governing equations62

2.1. Propagating acoustic pressure63

A mechanical system of a double-leaf inserted with a MPP (abbreviated here as DL-MPP)64

under normal incidence of acoustic loading can be seen in Figure 1. The solid panels are separated65

by distance D and the MPP is located by distance l from the back soild plate. Each of the solid66

and the MPP panels has mass per unit area M and m, respectively and they are assumed to be67

supported on identical mountings having stiffness per unit area s and damping constant per unit68

area r. The incident pressure is expressed as69

pi(x) = Ae−jkx (1)

and the reflected pressure is given by70

pr(x) = Bejkx (2)

where k = ω/c for k represents the acoustic wavenumber, ω is the angular velocity and c is the71

sound speed in the air. Here and for the rest of the equations, time dependence ejωt is implicitly72
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assumed. At x = 0, the acoustic pressure acting on the incident side of the front panel can be73

written as74

p1 = pi(x = 0) + pr(x = 0) = A1 +B1 (3)

In the same way as in Eqs. 1 and 2, the total pressure on the other side of the front panel surface75

is thus76

p2 = A2 +B2 (4)

The relation between the average surface particle velocity v̄ and the sound pressure exciting77

the panel can be obtained by using Euler equation v̄ = −1/jρω(dp/dx) [13]. For both surfaces of78

each panel, at x = 0 for the front panel this gives79

zfvp1 = A1 −B1 (5)

80

zfvp1 = A2 −B2 (6)

while at x = D − l for the MPP81

zf v̄ = A2e
−jk(D−l) −B2e

jk(D−l) (7)

82

zf v̄ = A3e
−jk(D−l) −B3e

jk(D−l) (8)

and at x = D for the back panel83

zfvp3 = A3e
−jkD −B2e

jkD (9)

84

pt = zfvp3 (10)

where vp is the velocity of the panel, v̄ is the mean particle velocity over the MPP surface and85

zf = ρc is the acoustic impedance of air with ρ is the air density. Note that for the solid plate, the86

mean particle velocity on its surface equals to the velocity of the panel v̄ = vp. This is valid for87

light fluid such as air and not for heavy meadium such as water.88

For convenience, the distance between the panel is assumed much smaller compared to the89

acoustic wavelength (kD ≪ 1). The cavity pressures can therefore be assumed uniform between90

each gap91

p2 ≈ p3 = A2 +B2 = pb (11)
92

p4 ≈ p5 = A3 +B3 = pc (12)
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By substituting Eqs. (11) and (12) into Eqs. (7) and (8) yields93

zf v̄ = A2 −B2 − jk(D − l)pb (13)
94

zf v̄ = A3 −B3 − jk(D − l)pc (14)

Using the same way to the surface pressure on the back solid panel (x = D) gives95

zfvp3 = A3 −B3 − jkDpc (15)

As the cavity pressure is uniform, Eqs. (5) and (13) can be combined to give96

pb =
zf (vp1 − v̄)

jk(D − l)
(16)

while for Eqs. (14) and (15) , it yields97

pc =
zf (v̄ − vp1)

jkl
(17)

2.2. Hole impedance and mean particle velocity98

As the acoustic pressure impinges on the MPP, the air particles penetrate the holes and also99

excite the remaining solid surface of the panel. The combination between the panel velocity and100

particle velocity inside the holes creates the mean particle velocity given by [14]101

v̄ = vp (1− σ) + σvh (18)

where σ is the perforation ratio and vh is the particle velocity inside the holes. The motion of fluid102

inside the hole depends on the impedance of the hole which according to Maa [8] is given by103

Zo = Zo,R + Zo,I (19)

with104

Zo,R =
32vat

d2o

[

(

1 +
X2

o

32

)1/2

+

(√
2Xo

8

)

do
t

]

(20)

105

Zo,I = −jρωt

[

1 +

(

9 +
X2

o

2

)

−1/2

+

(

8

3π

)

do
t

]

(21)

whereXo = (do/2) (ωρ/va)
1/2, do is the hole diameter, t is the plate thickness and va is the viscosity106

of the air, i.e. 1.8× 10−5 Ns/m2. The real part of the impedance Zo,R represents the viscous effect107

responsible for the friction between the inner solid surface of hole and the air and the imaginary108
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part Zo,I represents the inertia of the air inside the holes of which the air moves like a piston. From109

these mechanisms, the net pressure ∆p on the surface of the MPP can be expressed as [14]110

Zo,R (vh − vp) + Zo,Ivh = ∆p (22)

Equation (22) can also be re-arranged as111

vh − vp =
∆p

Zo
−

Zo,I

Zo
vp (23)

By substituting this into Eq. (18), the mean particle surface velocity can also be expressed as the112

function of the net pressure given by113

v̄ = γvp +
σ∆p

Zo
(24)

where γ = 1− (σZo,I/Zo) is the complex non-dimensional terms.114

2.3. Sound transmission loss115

The equation of motion for the solid back panel is given by116

zp3vp3 = pc − pt (25)

where zp3 = zp1 = jωM + r − js/ω is the mechanical impedance of the panel. The damping117

constant can be written as r = ωnηM with ωn = (s/M)1/2 the natural frequency of the system118

and η the damping loss factor. Substituting Eqs. (10), (17) and (24) into Eq. (25) then dividing119

both sides with vp3 yields the panel velocity ratio120

vp2
vp3

=

1 + jkl

(

1 +
zp3
zf

)

γ +
zp2
Z

(26)

The equation of motion for the MPP is expressed as121

zp2vp2 = ∆p (27)

where zp2 = jωm+r−js/ω. Substituting Eqs. (16), (17) and (24) into Eq. (27) and again dividing122

both side with vp3 yields123

vp1
vp3

=

(

jk(D − l)
zp2
zf

)[

1 + jkl

(

1 +
zp3
zf

)]

+
(

γ +
zp2
Z

)

[

1 + jkD

(

1 +
zp3
zf

)]

γ +
zp2
Z

(28)
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It can be seen that the velocity ratio of the solid panels depends on the location of the MPP inside124

the gap. From the equation of motion of the front solid panel125

zp1vp1 = p1 − pb (29)

and using the relation between incident and reflected pressure in Eqs. (3) and (5) gives126

zp1vp1 = 2pi − zfvp1 −
zf (vp1 − v̄)

jk(D − l)
(30)

By dividing both side with pt = zfvp3 , the ratio of the incident and reflected pressure is given by127

pi
pt

=
1

j2k(D − l)

(

vp1
vp3

[

1 + jk(D − l)

(

1 +
zp1
zf

)]

−
vp2
vp3

(

γ +
zp2
Z

)

)

(31)

As for plane wave, the sound power W is proportional to the sound intensity I which is simply a128

ratio of squared magnitude sound pressure to the air impedance, I =
∣

∣p2
∣

∣ /zf . The transmission129

coefficient is therefore written as130

τ =

∣

∣

∣

∣

pt
pi

∣

∣

∣

∣

2

(32)

and the transmission loss in dB unit is131

STL = 10log10

(

1

τ

)

(33)

3. Analytical results132

3.1. Effect of MPP location, hole diameter and perforation ratio133

Figure 2 shows the transmission loss under normal incidence of acoustic loading for double-leaf134

(DL) [1], triple-leaf (TL) and double-leaf with MPP (DL-MPP) located exactly at the middle of135

the solid panels (l = 0.5D). All three panels have the same thickness of 1 mm made of aluminium136

(density 2700 kg/m3) with air gap D = 100 mm between the solid plates. Throughout the paper,137

the stiffness per unit area of the mounting used in the calculation is s = 100 N/m3 and the damping138

loss factor is η = 0.01. The graph is plotted from 50 Hz to 1 kHz to have better clarity around139

the resonance as well as for ease of analysis. The ’mass-air-mass’ resonance of the DL can be seen140

to occur around 170 Hz shown by the ’drop’ value of STL to 0 dB; a well-known phenomenon141

which occurs when the panels moves out-of-phase. It can also be seen that inserting another solid142

panel between the double-panels (TL) yields the second resonance at 280 Hz corresponding to143
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the gap between the middle and the back panel. This can be considered to worsen the problem144

although the STL at mid-high frequency significantly increases due to the increase of mass. The145

insertion of MPP between the DL (in the middle) overcomes the second resonance. However, the146

first resonance remain occurs corresponding to the gap of the solid plates.147

As the aim is to improve the STL of the conventional double-leaf at the resonance, Figure 3148

shows the results for the DL and DL-MPP for different distance l of the MPP to the solid plate.149

As in Figure 2 the resonance can be seen at 170 Hz for the DL and also for the DL-MPP with150

MPP at the middle of the gap. The presence of the MPP gives no effect to overcome the resonance151

in this case.152

For other locations of the MPP in Figure 3, as the MPP shifts closer to the solid panel,153

regardless the front or back solid panel, the STL can be observed to increase at the resonance.154

The additional damping due to the viscous force in the MPP holes influences the air layer in front155

of the solid plate which breaks the coupling between the solid panels and the air. It can also be156

seen that the position of the MPP in the gap also affects the STL at mid to high frequency in this157

case above 400 Hz. Contrary to the STL at resonance, the STL above the resonance increases as158

it moves away from the solid panel within halfway of the gap. The effect of MPP to breach the159

mass-air-mass resonance is also discussed by Mu et al. [11] where the MPP is located at the outer160

layer of the partition system. However, no detailed discussion is presented regarding the gap of161

the MPP.162

Figure 4 shows the effect of hole diameter of MPP to the STL for fixed MPP location, l = 0.1D.163

Around the resonance region up to 400 Hz, decreasing the hole diameter improves the STL as this164

increases the domination of the real part of the hole impedance which thus provides more viscous165

force or damping to the MPP.166

In Figure 5, the effect of the perforation ratio is investigated. It can be seen that increasing the167

perforation ratio does not give significant differences to the STL around the resonance. Therefore,168

to benefit with STL improvement at high frequency due to added mass in the system, the lowest169

perforation ratio for the MPP, i.e. τ = 0.5% is preferred.170

Increasing the air gap of the solid plate as in Figure 6 can be seen to shift the effect of the171

resonance to lower frequency. The improvement at the resonance due the MPP is the same.172
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3.2. STL improvement173

For clarity of analysis, it is of interest to quantify the level of improvement of the STL which174

is the dB difference after and before inserting the MPP to the double-leaf. This is also the same175

as the ratio of the transmitted sound power (represented by the power transmission coefficient)176

before (τb) to after (τa) the MPP insertion in dB unit which is given by177

Ω = 10log10

(

τb
τa

)

= STLa − STLb (34)

where STLa is the transmission loss of the DL-MPP and STLb is for the DL.178

Figure 7 presents the STL improvement, Ω of the DL-MPP system from results in Figures 3, 4, 5179

and 6 plotted up to 5 kHz to give clarity at high frequencies. In Figure 7(a), it can be seen that180

Ω can be achieved up to nearly 10 dB at the resonance for the MPP at l = 0.1D from the solid181

plate. These results also show that significant improvement of 5 dB or more can be achieved for182

hole diameter of 2 mm or less. At higher frequency above the resonance, Ω increases rapidly with183

frequency by more than 20 dB/decade resembling the ’mass-law’ trend.184

Figure 7(b) shows that smaller hole is preferred for good Ω. This could add the cost to the185

system as panel with smaller micro holes are more difficult to fabricate. However, this can be186

compromised with minimum perforation ratio as shown in Figure 7(c) where almost no further187

improvement is given to Ω around the resonance by varying the perforation ratio. Again the effect188

can only be seen above the resonance at high frequency (in this case above 70 Hz) where small189

perforation ratio provides greater Ω.190

Figure 7(d) shows the shift of the resonance area because of the change of the air gap distance.191

Different peak level of Ω in the results is due to different air gap D which also results in different192

distance l of the MPP to the solid panel. It is also interesting to note the deterioration of Ω193

just after the resonance (indicating by negative Ω) which can be seen to be greater as the air gap194

distance is increased. As this is due to the effect of the amount of solid part in the panel, this195

can be reduced by increasing the perforation ratio as shown in Figure 7(c). In this case, large196

perforation ratio is chosen if this reduction effect cannot be tolerated in the design.197

4. Experiment198

The experiment to measure the transmission loss of the proposed system was conducted using199

the impedance tube method where the specimen was located inside the tube and was excited by a200
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sound field from a loudspeaker. The tube has 50 mm diameter. Two GRAS acoustic microphones201

1/2 inch type 40AE were placed before the sample and the other two microphones were after the202

sample. The recorded signal from the microphones were then processed by a spectrum analyzer203

LDS Photon. The diagram of the measurement setup is shown in Figure 8.204

Three samples were prepared for the experiment where a sample consisted of three solid 1 mm205

thick and round aluminium plates with diameter of also 50 mm to properly fit inside the impedance206

tube. The samples were fitted in a sample holder. To hold the plate sample in its position, a light207

tape was used between the plate perimeter and the holder. This also was to ensure that the whole208

plate surface can have small movement when it was exposed by a plane wave acoustic loading209

to closely resemble the model in Figure 1. Use of light tape was to minimise additional mass210

introduced to the plate. One of the plates was then perforated with sub-millimetric holes having211

diameter of 0.3 mm, 0.4 mm and 0.5 mm for each sample. The gap between the solid plates is 70212

mm and the MPP was located at 5 mm from the back solid plate.213

The tube was fed with white noise up to 800 Hz to only focus the analysis at low frequency214

range where the effect of mass-air-mass resonance occurs (at around 200 Hz). In this frequency215

range the acoustic loading still have plane waves propagating along the tube. The signal processing216

technique for the transmission loss employed the wave decomposition method proposed by Salissou217

and Panneton [15]. This method applies two-load technique, which means it requires two different218

loadings for the termination conditions for the transmission coefficient formula to be assembled.219

In this experiment, the loads were made from glass wool and have two different shapes: conical220

and circular. The former shape is to provide an anechoic termination in the tube.221

Figure 9 shows the experimental results of the transmission loss for several hole diameters and222

perforation ratios. The measurement data is found to only valid from 400 Hz. This is due to the223

conical termination which is difficult to be anechoic at low frequencies. The reflected waves thus224

affect the recorded signal. This could be overcome by having a longer tube for the downstream225

part (i.e. the tube at the transmission region) to give the reflected waves more time to arrive at the226

microphone. However above 400 Hz, it can be seen that the measurement data shows reasonably227

good agreement with the theory.228
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5. Conclusions229

The sound transmission loss of a double-leaf partition system inserted with MPP under normal230

incidence of acoustic loading has been reported. It is found that the MPP insertion reduces the231

effect of mass-air-mass resonance found in the conventional double-leaf partition at low frequency.232

However, this is only effective when the MPP distance is less than half of the air gap of the solid233

panels and improves as it approaches the solid plate. Reducing the size of the hole improves the234

STL at resonance while varying the perforation ratio gives only small effect. Optimum effect of235

sound transmission loss improvement can therefore be achieved with small micro-hole diameter236

and small perforation ratio. At high frequency above the resonance, for any MPP parameters, the237

STL of the system increases dramatically due to added mass. The experimental result shows good238

agreement with the theory at the mass law region, but validation at low frequencies need to be239

improved to observe the phenomenon at the mass-air-mass resonance. Employing the MPP for a240

multi-layer structure is thus feasible, particularly for the system exposed with predominantly low241

frequency noise, for example a window system of a control room close to a stamping machine where242

the sound impinges at normal direction. The proposed model can be used as a design guide.243
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Figure 1: A schematic diagram of a DL-MPP system.
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Figure 2: Comparison of sound transmission loss of —DL, − · −TL and · · ·DL-MPP

(aluminium plate: t = 1 mm, D = 100 mm).
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Figure 3: Comparison of sound transmission loss of DL (—) with that of DL-MPP for different

locations in the gap (do = 0.1 mm, σ = 1.5%, D = 100 mm; ·� · l = 0.9D, −− l = 0.5D, − · −l = 0.2D,

· · · l = 0.1D)
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Figure 4: Comparison of sound transmission loss of DL (−) with that of DL-MPP for different hole

diameters (l = 0.1D, σ=1.5%, D = 100 mm; · · · do = 0.1 mm, − · −do = 0.2 mm and −− do = 0.4 mm)

17



10
2

10
3

0

10

20

30

40

50

60

70

Frequency [Hz]

T
ra

ns
m

is
si

on
 L

os
s 

[d
B

]

Figure 5: Comparison of sound transmission loss of DL (−) with that of DL-MPP for different

perforation ratios (l = 0.1D, do = 0.1 mm, D = 100 mm; −−σ = 0.5%, −·−σ = 1.0% and · · ·σ = 1.5%)
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Figure 6: Comparison of sound transmission loss of DL (−) with that of DL-MPP for different air

gaps (l = 0.1D, do = 0.1 mm, τ = 0.5%; —D = 50 mm, −−D = 100 mm and · · ·D = 200 mm)
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Figure 7: STL improvement of DL-MPP system with different MPP parameters:

(a) locations in the gap (do = 1 mm, τ = 1.5%, D = 100 mm), (b) hole diameters (l = 0.1D, τ = 1.5%,

D = 100 mm), (c) perforation ratio (l = 0.1D, do = 0.1 mm, D = 100 mm) and air gap (l = 0.1D,

do = 0.1 mm, τ = 1.5%).
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Figure 8: Diagram of the experimental setup for the sound transmission loss measurement.
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Figure 9: Transmission loss of DLMPP (D = 70 mm, l = 0.15D): (a) do = 0.3 mm, σ = 0.5%,

(b) do = 0.4 mm, σ = 1% and (c) do = 0.5 mm, σ = 1% (—theory (double-panel), · · · theory (DL-MPP),

−−measured).
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