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Abstract: This paper presents a study on the load-

compression and energy absorption characteristics of a 

laterally crushed across faces of hexagonal ring with 

constraints on expansion perpendicular to the loading 

axis. The theoretical analysis in compression across 

faces is developed using Equivalent Structure Technique. 

Experimental observations are compared with 

theoretical analyses and good agreements are seen. 

Keywords: Hexagonal ring, energy absorption, finite 

element analysis 
 

1. INTRODUCTION 

Much research and development has taken place in 

the area of impact energy absorbers. The energy 

absorption capacity of a circular ring under lateral 

compression was first addressed by Mutchler [1]. Two 

different kinematically admissible collapse mechanisms 

which result in same post-collapse load-deflection 

characteristic when employing a rigid perfectly-plastic 

material model were put forward by DeRuntz and Hodge 

[2] and Burton and Craig [3]. Careful and exhaustive 

experiments on the crushing of tubes and rings [4] led to 

the formation of a model that is based on the classical 

elastica theory that used a rigid linear strain hardening 

material behaviour [5]. However, by preventing the 

horizontal diameter of the ring from increasing, the 

formation of more plastic hinges is required. Reddy and 

Reid [6] examined the behaviour of laterally compressed 

tubes under transverse constraints and noticed that the 

collapse load increased by a factor approximately 2.4 and 

the energy absorbed increased by a factor of 3 in 

comparison with transversely unrestrained tubes. An 

excellent review of the energy absorbing systems, which 

use the lateral compression of metal tubes is given by 

Reid [7,8]. While, Leu [9] simulated aluminium tube 

under lateral compression using finite element 

modelling. 

Plastic collapse of square tubes compressed laterally 

between two plates was studied by Sinha and Chitkara 

[10] who produced plastic collapse mechanisms. Gupta 

and Ray [11] have performed experiments on thin-walled 

empty and filled square tubes laterally compressed by 

using a rigid platen. They analysed the problem with the 

Sinha and Chitkara [10] mechanisms and assumed plastic 

hinges occurred only at mid section of vertical side, 

while in horizontal side to be elastic bending. These 

analyses used plastic hinges and could be modified by 

replacing plastic hinges with plastic zones [12]. Johnson 

and Reid [13] cited the energy absorbing devices with 

hexagonal shapes referring to an article of Fuse and 

Fukuda [14] where in hexagonal tubes under quasi-static 

compression across faces were studied. The mechanism 

of collapse has hinges at the side corners and at the 

centres of loaded faces. Recently, Said and Reddy [15] 

developed a predicted load-displacement curve using 

upperbound analysis and found that the collapse load is 

in good agreement with experiment but deviate 20% - 

25% after the post collapse.  

In the present study, theoretical study has been given on 

a single hexagonal ring with side constraints subjected to 

compression across faces, by using equivalent structure 

technique [16]. The experimental results on the load-

displacement are also compared. is developed and 

compared with experimental results [17,18]. 

2. ANALYSIS OF COMPRESSION A CROSS 

FACES WITH SIDE CONSTRAINTS 

The Equivalent Structure Technique demonstrated 

successfully by Gill [16] and are used by Reddy and 

Reid [6] for a circular ring compressed diametrically 

with transverse constraints, is used. Owing to symmetry, 

only one half of the ring is considered. Friction between 

the tube and top and bottom platens is neglected. The 

material of the tube is assumed to be rigid-perfectly 

plastic and any interactions between bending and normal 

or shear stress resultants are neglected. The material is 

made of mild steel. Modulus of Elasticity, E is 212 GPa. 

The yield stress, y and poisson ratio, v  is 212 GPa and 

0.27, respectively. 

Figure 1 shows two possible modes of deformation 

for one half of a hexagonal ring compressed vertically 
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across faces and restrained laterally. There are three 

distinct phases in each mode. In mode 1, the link 

AGE is assumed as a rigid in all three phase, while in 

mode 2, AGE remains rigid only in phase 1 and GEC  

is assumed to be a rigid link in phase 2 and 3. However, 

mode 1 shows close correlation with the experimental 

observation[18]. Thus, the analysis is based on mode 1. 

 
Figure 1: The possibility of deforming mode of 

hexagonal ring, compressed across faces: mode 1 and 

mode 2 
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The bottom half remains rigid in all three phases. The 

first phase starts with the formation of 3 hinges at 
' ' ', , and  .A E C The load acts at points  G , A  moves 

down and moves in vertical with 
'E  as centre. This 

continues until the two hinges 
'A and 

'E  at the same 

horizontal level as shown by the broken lines in Figure 

2c. Further deformation proceeds (in phase 2, mode 1) 

with the stationary hinge 
"A  moving down, the 

geometry compatibility being facilitated by the reversal 

of the direction of rotation about C. This continues until 
"A  is the same level with C . The third phase is shown 

in Figure 2d. The phase ends as link CE  becomes 

horizontal. 

 

2.1. Analysis of Phase 1 

Figure 2b shows a general position in phase 1. The 

load is acting at G  and the position is defined by a 

deflection, δ. A G E   remains rigid and the links rotate 

at about plastic hinges at ,A E  and C .  AE inclined 

at 30° to the horizontal before deformation (i.e αo= 30°), 

is now inclined at an angle γ.  If I   is the point of 

intersection of vertical line through G  and the 

horizontal line through A , the line of action of the 

resultant force, R  is parallel to CI  . The equivalent 

structure for CE G  should be parallel to the line of 

action of the resultant force and equidistant from C  and 

E , causing fully plastic moments (  Mp = )  at 

these points. The horizontal component of this resultant 

force with a moment arm I J   will be responsible for 

the plastic bending moment at A . The bending moment 

at A  is also can be checked and equal to Mp. The 

horizontal component of R  is H = R cos and this acts 

with a moment arm y = JI  = x /cosand hence the 

moment at A  is H y = R x  = Mp. 

 

The various angles defining the geometry at the 

instant shown are given in Figure 2b. CI and hence the 

line of action of the resultant force is inclined at an angle 

 to the horizontal. For a given leads to the 

displacement of,  
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It can be shown from geometry that   and   are 

related by CQ Q O CO    as 

 

 

Figure 2 : Crushing across the faces of a transversely 

constrained hexagonal ring. (a) undeformed (b), (c), 

and (d) show different phases during deformation. 

Dotted and broken lines indicate the initial 

configuration and the starting positions for the 

respective phases. 
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The resultant force to cause fully plastic bending 

moments at C  and E  is 
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Phase 1 ends when hinges E  and A  at the same 

horizontal level, i.e.  = 0
°
. At this instant, noting that 

= 40.35
°
, it can be seen that  = 34.11

°
 and this  = 

74.46° from equation (6). The deflection,  at the end of 

phase 1 obtained from equation (2) is 0.1343b as α o = 

30° and o = 60°.  

 

The load-deflection trace represented by equations 2 

and 5 is shown in Figure 3. The experimental load-

deflection curves are also compared [18].  

2.2 Phase 2- Mode 1 

 

Figure 2c(i) shows the mode of deformation in phase 

2. The hinge A  continues to move down along the 

vertical line, to A , A G E    remains rigid while 

CE  rotates about hinge C . In this phase, Ewill be 

the instantaneous centre of rotation of A G E   . The end 

of this mode of deformation occurs when, A is at the 

same level as C . The line of resultant force is parallel to 

CI   and is equidistant from C  and E .  
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It can be shown from geometry that   and are 

related by COOQQC  , as 
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The resultant forces and resisting moment are related 

by,
x

M
R

p


 and the applied and resultant forces by  
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End of phase 2 is when point A and C are at the 

same level. At this instant 
o30 ,   = 

0
o
,

o60   and  = 0.43b. The bending moment 

at A  can also be checked and found to be equal to Mp 

during this phase. The horizontal component of R is R 

 cos  acts with a moment arm 

 cosJI xy and hence the moment at A  

is Mp. It also can be shown that bending moment at G  

is always less than Mp as distance n is always less 

than x  . 

The load-deflection curve represented by equations 8 
and 11 is plotted in Figure 3. 

 

2.3 Phase 2- Mode 2  

 

In an alternative mode, as shown in Figure 2c(ii), 

point G travels downward and a plastic hinge is formed 

at G . The link E G C  is assumed to be rigid (hence 

o
o 22.22  as at the end of phase 1) until hinge 

A is the same level with hinge C  . 

The deflection referring to Figure 2c(ii) is 
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The resulting force to cause fully plastic bending at C  

and G is 
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Combining equations (17) and (18) give 

 

)sin(cos

sin4










oo

p

b

M
F               (19) 

Mode 2 in phase 2 terminates at 

bo 41.0and52,0   . The bending 

moment at is found to be Mp.  

The load-displacement of equations 15 and 19 is 

plotted in Figure 3. 

 

2.4 Phase 3 

This phase starts with hinge A  at point O  and at 

the same level with hinge C . At this instant, the point of 

load application F/2 has shifted to point E  which as 

shown in Figure 3. The link A G E   is assumed to 

remain rigid and hinge A  continues to move down 

along the vertical line facilitated by rotation about C  

and E . This phase continues until CE  becomes 

horizontal. For a given   leads to the displacement, 

of,  
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Hence, 
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End of phase 3 is when CE  becomes horizontal, 

i.e. 0 . At this instant, 
oo 7.54,7.54    

and b866.0 . The horizontal component of 

resultant force is Rcos   acts with a moment arm 

  cos/xJIy  and hence the moment 

at A   is Mp.  

The load-deflection curves of the third phase in 

equations 20 and 25 are plotted in Figure 3. 

 

3 DISCUSSION 

 

The analysis in section 2 is an idealisation of reality. 

The aspects not included in the analysis are friction, 

interaction of bending and normal or shear stress 

resultants, aspect of material properties, dimensional 

variations and at the corners initially during deformation 

at plastic zones. This gives a slight deviation on load-
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displacement curve compared with the experimental 

result. It also assumes that the deforming mode is 

symmetrical about the vertical axis but in experiment this 

is not observed. Figure 3 shows the comparison between 

analyses and experimental results on load-displacement 

curve compressed across faces. The predicted collapse 

loads are infinite as moment arms are zero in the 

idealised cases (phase 1 in Figure 3). The zero load 

observed in the analysis is due to the fact that the line of 

action of the resultant force becomes horizontal and 

hence the vertical component is zero (end of second 

phase in Figure 3). The predicted load-displacement 

curves in the first phase for the case of compressed 

across faces seem to have the same form as the 

experimental curve (Figure 3) in which the load drops 

very fast within 5 mm displacement. 

 

 
Figure 3:Comparison between analytical and experiment 

load-displacement curve for lateral compression 

hexagonal rings across faces with side constraints (b = 

40mm, t = 1.87mm, w = 10mm) 

 

However, the theoretical valley load underestimates 

the experiments up to 50% in compression across faces. 

This could be due to the effect of changes in the 

geometry resulting from strain hardening and neglect of 

the interaction of bending, normal and shear stress 

resultants in the analysis. The neglect of frictional effects 

in the analysis between the side constraints and ring 

faces also contributes to the differences between theory 

and experiment in the appropriate post collapse regimes. 

In addition, the analysis assumes symmetrical 

deformations, but the lack of symmetry in experiment is 

obvious particularly in the later stages. 

 

4 CONCLUSION 

The theoretical analysis produces good results in 

phase 1 when compressed across faces. If friction and 

strain hardening effects are introduced in the analysis, 

the result may be close to experiment.  
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