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Abstract—This paper examines the problem of designing a
nonlinear static output feedback controller for uncertain poly-
nomial systems via an iterative sums of squares approach. The
derivation of the static output feedback controller is given in
terms of the solvability conditions of state dependent bilinear
matrix inequalities (BMIs). An iterative algorithm based on the
sum of squares (SOS) decomposition is proposed to solve these
state-dependent BMIs. Finally, numerical examples are provided
at the end of the paper as to demonstrate the validity of the
proposed design technique.

I. INTRODUCTION

Static output feedback designs are important problems due
to the fact that static controllers are less expensive to be imple-
mented and more reliable in practice. In the past two decades,
the static output feedback problem has attracted considerable
attentions of many researchers [1]- [5]. The problem can be
stated as follows: given a system, find a static output feedback
so that the closed-loop system is stable. Normally, the existence
of a full order output feedback control law is given in terms of
the solvability of two convex problems. However, the synthesis
of a static output feedback gain or a fixed order controller is
much more difficult. The main rationale is that the separation
principle does not hold in such cases. A comprehensive survey
on static output feedback can be found in [5]. The authors
show that any dynamic output feedback problem can be
transformed into a static output feedback problem. Hence, the
static output feedback formulation is more general than the full
order dynamic output feedback formulation, that is, the static
output formulation can be used to design a full order dynamic
controller, but the converse is not true.

Static output feedback control designs for nonlinear systems
is not as widely studied as its linear counterpart. In [6]- [7],
the nonlinear static output feedback stabilization problem has
been converted to the solvability of the so-called Hamilton-
Jacobi equation (HJE). However, until now, it is still very
difficult to find a global solution to the HJE. Motivated by
this fact, in [8]- [10], a Takagi-Sugeno (TS) fuzzy model is
used to approximate a nonlinear systems. Then, based on this
TS fuzzy model, the authors show that the existence of a
nonlinear static output feedback control law can be expressed

in terms of the solvability of BMIs. In order to compute a
solution to these BMIs, an iterative algorithm based on the
linear matrix inequality has been developed. However, in the
TS fuzzy model, the premise variables are assumed to be
bounded. In general, the premise variables are related to the
state variables, which implies, that the state variables have to
be bounded. This is one of the major drawbacks of the TS
fuzzy model approach, and another drawback associated with
this approach is, the Lyapunov function is always restricted to
be of a quadratic form.

Recently, a semidefinite programming (SDP) approach
based on the sum of squares (SOS) decomposition has been
proposed to solve the state dependent LMIs [11]. Through
this SOS-based SDP, stability analysis and design of nonlinear
control systems using Lyapunov methods can be effectively
performed. In [12], the Matlab-based SOSTOOLS has been
created as a platform to solve the state depedent LMIs. Based
on the SOS approach, stability analysis and synthesis of
nonlinear control systems have been investigated in [13]- [16].
To the best of the authors’ knowledge, there is no general
result on nonlinear static output feedback designs for nonlinear
systems. There is an attempt in [17], however, it is based
on restricting the Lyapunov function to be only of function
of states whose corresponding rows in the control matrix are
zeroes, and its inverse to be of a certain form. In doing so,
it avoids the non-convexity of the static feedback design, but
that makes the results more conservative.

Motivated by the above facts, this paper examines the
problem of designing a static output feedback controller for
uncertain polynomial systems. We convert the nonlinear static
output feedback control problem into the solvability of the
state dependent BMIs. In order to compute a feasible solution
to these state dependent BMIs, an iterative SOS-based SDP
algorithm has been developed.

The main contributions of the paper can be summarized as
follows:

• The proposed controller design avoids rational static out-
put feedback controller due to inversion of the Lyapunov
function. The Lyapunov function does not require to be a
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function of states whose corresponding rows in the control
matrix are zeros.

• The augmented approach proposed in [17] suffers from
a large number of variables for high-order systems and
also non-singularity of some polynomial matrices cannot
be ensured whil solving SOSs.

The remainder of this paper is organized as follows: Section
2 provides system description and problem formulation. The
main results are given in Section 3. Then, the validity of our
proposed approach is illustrated using appropriate examples in
Section 4. Finally, conclusions are given in Section 5.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

The uncertain polynomial systems considered in this paper
are described as follows:

ẋ = A(x) +∆A(x) + [B(x) +∆B(x)]u(t)

y = C(x) (1)

where x = x(t) ∈ "n, u(t) ∈ "m, y(t) ∈ "l denote
states, control input, and output of the system, respectively.
A(x), B(x) and C(x) are polynomial vectors in x with ap-
propriate dimensions. The polynomial vectors ∆A(x) and
∆B(x) represent the uncertainties in the system and satisfy
the following assumption.

Assumption 2.1:
[

∆A(x) ∆B(x)
]

= H(x)F (x)
[

E1(x) E2(x)
]

where H(x) and Ei(x) are known polynomial matrices which
characterize the structure of the uncertainties. Furthermore,
F (x) satisfies the following inequality:

FT (x)F (x) ≤ I (2)

Consider the static output feedback controller of the follow-
ing form,

u(t) = K(y) (3)

where K(y) is a polynomial vector in y(t).
The objective is to design a static output feedback of the

form (3) such that the system (1) with (3) is stable.
In the sections to follow, (∗) is used to represent the

transposed symmetric entries in the matrix inequalities.

III. MAIN RESULTS

This section describes the methodology used for the static
output feedback controller design using an iterative sum of
squares (ISOS) approach for the system (1).

Theorem 3.1: The system (1) with F (x) = 0 (i.e, no
uncertainty) is stabilisable via a static output feedback if and
only if there exist a nonlinear function V (x) and nonlinear
matrix K(y) satisfying the following conditions for ∀x &= 0:

V (x) > 0 (4)

and

0 > ∂V (x)
∂x A(x)− 1

4
∂V (x)
∂x B(x)BT (x)∂V

T (x)
∂x +

(

1
2
∂V (x)
∂x B(x) +KT (y)

)(

1
2
∂V (x)
∂x B(x) +KT (y)

)T
.

(5)

Proof: Sufficiency: Note that for ∀x &= 0

V̇ (x) ≤
∂V (x)

∂x
[A(x) +B(x)K(y)] +KT (y)K(y)

=
∂V (x)

∂x
A(x)−

1

4

∂V (x)

∂x
B(x)BT (x)

∂V T (x)

∂x
+

(

1

2

∂V (x)

∂x
B(x) +KT (y)

)(

1

2

∂V (x)

∂x
B(x) +KT (y)

)T

.

From Lyapunov’s stability theorem, we know that the system
(1) with F (x) = 0 and (3) is stable.

Necessity: Suppose the system (1) with F (x) = 0 and (3)
is stable, then there exist V1(x) > 0, ∀x &= 0 and K(y) such
that

∂V1(x)

∂x
[A(x) +B(x)K(y)] < 0, ∀x &= 0. (6)

This implies that there exists a nonlinear function ρ(x) >
0, ∀x ∈ "n such that

∂V1(x)

∂x
[A(x) +B(x)K(y)]+

1

ρ(x)
KT (y)K(y) < 0, ∀x &= 0.

(7)
Since V1(x) > 0, we can always select ρ(x) = β1 +
β2(V1(x))β3 , where βi are sufficiently large positive constants.
By completing the square, we get for ∀x &= 0

0 > ρ(x)
∂V1(x)

∂x
A(x)−

ρ2(x)

4

∂V1(x)

∂x
B(x)BT (x)

∂V T
1 (x)

∂x
+

(

ρ(x)

2

∂V1(x)

∂x
B(x) +KT (y)

)(

ρ(x)

2

∂V1(x)

∂x
B(x) +KT (y)

)T

(8)

Defining V (x) = β1V1(x) +
1

β3+1β2(V1(x))β3+1, we obtain
the inequality (5). ∇∇∇

Advantages of expressing the conditions in the form given
in Theorem 3.1 are 1) a more suitable for the numerical pro-
cedures can be developed, and 2) a static feedback controller
is no longer assumed to a function of the solution V (x) of a
special equation. Hence, this approach can be applied to simul-
taneous stabilization and decentralized stabilization problems.

However, due the negative term − 1
4
∂V (x)
∂x B(x)BT (x)∂V

T (x)
∂x ,

it cannot be expressed as the state-dependent LMI. To ac-
commodate this negative term, an additional design nonlinear
vector ε(x) is introduced. Knowing that

(

ε(x)−
∂V (x)

∂x

)

B(x)BT (x)

(

ε(x)−
∂V (x)

∂x

)T

≥ 0. (9)

for any ε(x) and ∂V (x)
∂x of the same dimension, we obtain

−ε(x)B(x)BT (x)εT (x) + ε(x)B(x)BT (x)∂V
T (x)
∂x +

∂V (x)
∂x B(x)BT (x)εT (x) ≤ ∂V (x)

∂x B(x)BT (x)∂V
T (x)
∂x

(10)

with the equality holds when ε(x) = ∂V (x)
∂x . Employing (10)

and (5), we obtaining the following theorem.

Theorem 3.2: The system (1) with F (x) = 0 is stabilizable
by means of a static output feedback if and only if there exist a
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nonlinear function V (x), nonlinear vector K(y), and nonlinear
function ε(x) satisfying the following conditions for ∀x &= 0:

V (x) > 0, ∀x &= 0 (11)

and

∂V (x)
∂x A(x) + 1

4ε(x)B(x)BT (x)εT (x)−
1
2ε(x)B(x)BT (x)∂V

T (x)
∂x +

(

1
2
∂V (x)
∂x B(x) +KT (y)

)(

1
2
∂V (x)
∂x B(x) +KT (y)

)T
< 0.

(12)

Proof: The sufficiency is obvious, only the necessity needs
to be proven. Suppose the system (1) with F (x) = 0 and (3)
is stable, then there exist V (x) > 0, x &= 0 and K(y) such
that for x &= 0

∂V (x)
∂x A(x)− 1

4
∂V (x)
∂x B(x)BT (x)∂V

T (x)
∂x +

(

1
2
∂V (x)
∂x B(x) +KT (y)

)(

1
2
∂V (x)
∂x B(x) +KT (y)

)T
< 0.

(13)
Therefore, there exists a positive nonlinear function ρ(x) >
0, ∀x &= 0 such that for ∀x &= 0

∂V (x)
∂x A(x)− 1

4
∂V (x)
∂x B(x)BT (x)∂V

T (x)
∂x +

(

1
2
∂V (x)
∂x B(x) +KT (y)

)(

1
2
∂V (x)
∂x B(x) +KT (y)

)T

+ρ(x) < 0.
(14)

Select a positive nonlinear function ζ(x) ≥ B(x)BT (x) and

set ε(x) = ∂V (x)
∂x − ρ1/2(x)ζ−1/2(x), then

(

ε(x)−
∂V (x)

∂x

)

B(x)BT (x)

(

ε(x)−
∂V (x)

∂x

)T

≤ ρ(x)

(15)
Hence, the inequality (12) holds. ∇∇∇

Now, we present sufficient conditions for the uncertain
system (1) to be stabilizable by means of a static output
feedback.

Theorem 3.3: The system (1) is stabilizable by means of a
static output feedback if there exist a nonlinear function V (x),
nonlinear vector K(y), and nonlinear function ε(x) satisfying
the following conditions:

V (x) > 0, ∀x &= 0 (16)

and

M =









M11(x) (∗) (∗) (∗)
M21(x) −2I (∗) (∗)
M31(x) 0 −2I (∗)
M41(x) 0 0 −1









< 0, ∀x &= 0 (17)

where

M11(x) =
∂V (x)

∂x
A(x)−

1

2
ε(x)B(x)BT (x)

∂V T (x)

∂x

+
1

4
ε(x)B(x)BT (x)εT (x)

M21(x) = (E1(x) + E2(x)K(y))

M31(x) =HT (x)
∂V T (x)

∂x

M41(x) =

(

1

2

∂V (x)

∂x
B(x) +KT (y)

)T

Proof: Using Theorem 3.2, the uncertain system (1) is stabi-
lizable by means of a static output feedback controller if and
only if there exist V (x), nonlinear vector K(y), and nonlinear
function ε(x) satisfying the following conditions:

V (x) > 0 and Σus(x) < 0 ∀x &= 0 (18)

where

Σus(x) =
∂V (x)
∂x (A(x) +H(x)F (x)[E1(x) + E2(x)K(y)])

+ 1
4ε(x)B(x)BT (x)εT (x)− 1

2ε(x)B(x)BT (x)∂V
T (x)
∂x

+
(

1
2
∂V (x)
∂x B(x) +KT (y)

)(

1
2
∂V (x)
∂x B(x) +KT (y)

)T

(19)
Using the triangular inequality on the uncertain term,
∂V (x)
∂x H(x)F (x)[E1(x) + E2(x)K(y)], we have

∂V (x)
∂x A(x) + 1

4ε(x)B(x)BT (x)εT (x)

− 1
2ε(x)B(x)BT (x)∂V

T (x)
∂x

+
(

1
2
∂V (x)
∂x B(x) +KT (y)

)(

1
2
∂V (x)
∂x B(x) +KT (y)

)T

+ 1
2

[

E1(x) + E2(x)K(y)
]T [

E1(x) + E2(x)K(y)
]

+ 1
2
∂V (x)
∂x H(x)HT (x)∂V

T (x)
∂x ≥ Σus(x)

Applying the Schur complement on (17) and using (20), we
learn that Σus(x) < 0 for all x &= 0, hence, the uncertain
system (1) with (3) is stable. ∇∇∇

Remark 3.1: Theorem 3.3 reduces to the result given in [1]
when the system under consideration is linear. Hence, the result
can be viewed as the generalisation of the results given in [1]
to nonlinear systems.

The conditions given in Theorem 3.3 are in terms of state
dependent BMIs. Solving this inequality is computationally
hard because it requires to solve an infinity set state dependent
BMIs. In [11], a SOS based semidefinite programming (SDP)
has been proposed to solve the state dependent LMIs.

Definition 3.1: A polynomial f(x) in x ∈ "n is an SOS
polynomial if there exist polynomials f1(x), f2(x), · · · , fm(x)
such that

f(x) =
m
∑

i=1

f2
i (x). (20)

Note that f(x) being an SOS polynomial implies f(x) ≥ 0 in
x ∈ "n. However, the converse is not always true, except for
some special cases. In [11], it has been shown that f(x) is an
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SOS polynomial if and only if there exists a positive definite
matrix Q such that

f(x) = ZT (x)QZ(x) (21)

where Z(x) is the vector of all monomials of degree less
than or equal to the half degree of f(x). A SOS decompo-
sition for f(x) can be effectively computed using semidefinite
programming because it concerns with the optimization of
Q in the intersection of the cone of positive semidefinite
matrices and affine constraints given in (21). Hence, the SOS
based semidefinite programming provides a polynomial-time
computational relaxation for proving global nonnegativity of
polynomials. Numerical examples seem to suggest that the gap
between sum of squares and nonnegativity of polynomial is
small [18].

Proposition 3.1: [14] Let F (x) be an N × N symmetric
polynomial matrix in x ∈ "n, and v ∈ "N . Then vTF (x)v
being a SOS implies F (x) ≥ 0 for x ∈ "n.

The SOS based SDP can provide a computational relaxation
for the sufficient conditions given in Theorem 3.3.

Proposition 3.2: Consider the system (1). Given SOS poly-
nomial functions λ1(x) > 0 and λ2(x) > 0 for x &= 0, if there
exist polynomial function V (x), polynomial vector K(y) and
a polynomial function ε(x) such that following conditions hold
for x &= 0:

V (x)− λ1(x) is an SOS (22)

−vT (M(x) + λ2(x)I) v is an SOS (23)

where v is of appropriate dimensions and M(x) is defined as
in (17) in Theorem 3.3. Then the system (1) with the controller
(3) is stable.

Remark 1 The term − 1
2ε(x)B(x)BT (x)∂V

T (x)
∂x in (23)

makes (23) non-convex, hence it can not be solved directly
by the SOS based SDP. If the auxiliary polynomial vector
ε(x) in (23) is fixed, then (23) can be efficiently solved by
the SOS based SDP. However, in general, fixing the auxiliary
polynomial vector ε(x) yields no feasible solution. Thus, to
relax this problem and facilitate the search for a feasible
solution, a term −αV (x), where α ∈ ", is introduced into
(23) as follows.

Mα(x)
∆
= −









M11(x)− αV (x) (∗) (∗) (∗)
M21(x) −2I (∗) (∗)
M31(x) 0 −2I (∗)
M41(x) 0 0 −1









(24)

We propose the following iterative SOS (ISOS) procedure to
iteratively search for V (x) and K(y) with an updated ε(x),
which is obtained by decreasing α. α < 0 implies a feasible
solution is found.

Iterative Algorithm of Sum of Squares (ISOS)

Step 1: Solve the following Riccati equation

1

2
AT

l P +
1

2
PAl − PBlB

T
l P +Q (25)

where Al and Bl are, respectively, the linearized system matrix
and input matrix of (1) at x = 0 with no uncertainty and

Q > 0. Set i = 1 and ε(x) = xTP and select α0 sufficiently
large positive value.

Step 2: Solve the following SOS optimization problem in
V (x) and K(y) using the ε(x) that has been determined in
Step 1 to obtain αt.

Minimize αt

Subject to −vT (Mα(x) + λ2(x)I)v is an SOS,

where v is of appropriate dimensions. If αt < 0, V (x) and
K(y) obtained in Step 2 are the feasible solutions, then EXIT.

Step 3: Solve the following optimization problem in V (x)
and K(y) based on αt value from Step 3.

Minimize V (x)
Subject to both V (x) and −vT (Mα(x)+λ2(x)I)v are SOS.

Step 4: If vT2

[

δ(x) (∗)
(

ε(x)− ∂V (x)
∂x

)T
1

]

v2 is an SOS,

where v2 ∈ "n+1 and δ(x) is a pre-defined positive tolerance
function (δ(x) > 0 for x &= 0), then go to the Step 5. Else, set

t = t+1 and update ε(x) = ∂V (x)
∂x for the next iteration, then

go to Step 2.
Step 5: The system may not be stabilizable by a static

output feedback (no feasible solution) and EXIT.
Remark 2

• The LMIs in Step 1 is used to find an appropriate value
of ε(x), and uses it as initial guess for the iterative
algorithm to fulfill the condition in (17). The derivation
of having LMIs as in the Step 1 is done by setting
V (x) = xTQ−1x > 0.

• The term αV (x) is introduced in (24) to relax the
SOS decomposition, which corresponds to the following
Lyapunov inequality:

V (x) > 0 and V̇ (x) ≤ αV (x)

We can see that, if α is negative, the SOS decomposition
has a feasible solution, and the system in (1) can be
stabilized with a static output feedback controller.

• The optimization problem in Step 2 is a generalized eigen-
value minimization problem. This step guarantees the
progressive reduction of αt. Meanwhile, Step 4 ensures
the convergence of the algorithm.

• It is important to note that the minimization of αt should
not be performed in quick progression; the reduction must
be delivered in a slow manner. Otherwise, the algorithm
might converge to an infeasible solution.

IV. NUMERICAL EXAMPLES

In this section, two design examples together with their
simulation results are provided to demonstrate the validity
of the proposed static output feedback control design for
uncertain polynomial systems.
Example 1: Lorenz Chaotic System
The dynamics of the Lorenz chaotic system is described as
follows:

ẋ1 = −ax1 + ax2 + u,
ẋ2 = cx1 − x2 + x1x3,
ẋ3 = x1x2 − bx3,

(26)
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where a = 10, b = 8/3, and c = 28. Meanwhile, x1, x2, and
x3 are the state variables, and u is the control input associated
with the system. We assume y = x2 and parameters a, b, and
c vary ±10% of their nominal values. Expressing (26) in the
form of (1), we have

A(x) =





−ax1 + ax2

cx1 − x2 + x1x3

x1x2 − bx3



 , B =





1
0
0



 ,

H = 0.1, E1(x) =





a(x1 − x2)
cx1

bx3



 ,

E2(x) = 0, ‖F (x)‖ ≤ 1, y = x2.

Using the augmented approach proposed in [17], we run
into “out of memory“ problems in Matlab and the problem
cannot be solved. We select λ1(x) = 0.1(x2

1 + x2
2 + x2

3) and
λ2 = 0.1(x2

1 + x2
2 + x2

3). Using the ISOS procedure outlined
in the previous section, initially, the degree of the Lyapunov
function as well as the degree of the controller polynomial is
chosen to be 2, but no feasible solution is found. However,
when the degree of the Lyapunov function is increased to 6,
the following static output feedback controller is obtained.

K(y) = −25.458y (27)

V (x) = 0.02082x4
1 + 0.00045x3

1x2 + 0.009874x2
1x

2
2

−0.0096783x2
1x

2
3 + 0.10449x2

1x3 + 8.2266x2
1

+0.00036x1x3
2 − 0.08177x1x2x3 + 5.3136x1x2

+0.005638x4
2 − 0.01116x2

2x
2
3 − 0.31207x2

2x3

+4.3903x2
2 + 0.00563x4

3 + 0.3043x3
3

+5.5973x2
3

and

ε(x) =





11.9392x1 + 9.3192x2

9.3192x1 + 7.3445x2

0.375x3





T

Simulation results are shown in Fig. 1 with different initial
conditions.

From Fig.1, the Lorenz chaotic system with the static output
feedback control (27) is stable.
Example 2: Polynomial System
Consider the following polynomial system from [17]

A(x) =

[

−x1 + x2
1 −

3x3

1

2 − 3x2

2
x1

8 + x2

4 − x2
1x2 −

x3

2

4
0

]

,

B =

[

0
1

]

, H = 1, E1(x) =

[

3x2

2
x1

8 + x3

2

4
0

]

,

E2 =

[

0
0.2

]

, ‖F (x)‖ ≤ 1, y = x1 − x2.

This system has one pure integrator, clearly the open-loop
system is not stable. For this example, we select λ1(x) =
0.01(x2

1+x2
2) and λ2 = 0.01(x2

1+x2
2), the Lyapunov function’s

degree of 4 and the controller’s degree of 3. By using the
ISOS algorithm as given in the previous section, a static output
feedback controller is found as follows:

K(y) = 3.3567y.
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(t

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

0

20

40

Time(sec)

x 3
(t

)

Fig. 1. Histories of x(t) with different initial conditions

V (x) = 0.12771x4
1 + 0.17097x3

1x2 + 0.075211x3
1

+0.18552x2
1x

2
2 − 0.032091x2

1x2 + 0.64405x2
1

and

ε(x) =

[

0.99324x1 + 0.08221x2

0.08221x1 + 1.0102x2

]T

Fig. 2 depicts the simulation results of the system with
different initial conditions. Again, the figure shows that the
system is stabilizable by the static output feedback controller.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10

−5

0

5
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−10

−5

0

5

10

Time (sec)

x 1
(t

)

Fig. 2. Histories of x(t) with different initial conditions

V. CONCLUSION

In this paper, sufficient conditions for the existence of
a nonlinear static output feedback controller for uncertain
polynomial systems are given in terms of state-dependent
BMIs. An iterative algorithm based on the SOS decomposi-
tion has been proposed to solve these state-dependent BMIs.
Finally, numerical examples have been provided to show the
effectiveness of the proposed static output feedback design.
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