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Abstract

This paper considers the problem of designing a robust H1 static output feedback controller for

polynomial systems with parametric uncertainties. Sufficient conditions for the existence of a nonlinear

H1 static output feedback controller are given in terms of solvability conditions of polynomial matrix

inequalities. An iterative sum of squares decomposition is proposed to solve these polynomial matrix

inequalities. The proposed controller guarantees that the closed-loop system is stable and the L2-gain of

the mapping from exogenous input noise to the controlled output is less than or equal to a prescribed

value. Numerical examples are provided to demonstrate the validity of applied methods.

& 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The problem of designing a nonlinear H1 controller has attracted considerable attention for
more than three decades; see for instance [1–4]. Generally speaking, the aim of an H1 control
problem is to design a controller such that the resulting closed-loop control system is stable
and a prescribed level of attenuation from the exogenous disturbance input to the controlled
output in L2=l2-norm is fulfilled. There are two common approaches available to address
nonlinear H1 control problems: One is based on the theory of dissipative energy [5] and
theory of differential games [1], and the other is based on the nonlinear version of the bounded
real lemma as developed in [6,7]. The underlying idea behind both approaches is the conver-
sion of the nonlinear H1 control problem into the solvability form of the Hamilton–Jacobi
equation (HJE). Unfortunately, this representation is NP-hard and it is generally very difficult to
find a global solution.
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The problem of static output feedback is stated as follows: given a dynamic system, find
a static output feedback controller such that the closed loop system is stable. The
formulation to obtain a static output controller can be used to design a full order dynamic
controller, but the converse is not true [8]. An iterative linear matrix inequality (ILMI)
procedure to compute the static output feedback gain for linear systems can be found in
[9]. The result has been extended to nonlinear systems using Takagi–Sugeno (TS) fuzzy
model to approximate the system’s nonlinearities in [10]. In there, the ILMI methodology
has been used to solve bilinear matrix inequalities. Further, in [11] the ILMI method is
used to obtain a nonlinear H1 static output controller for TS fuzzy models. The authors
assume that the premises variables are bounded, thus implying that the state variables are
also bounded. Additionally, the algorithm requires that the Lyapunov function to be of a
quadratic form.

Using the so-called sum of squares (SOS) decompositions of polynomial terms, a
computational relaxation of the solvability conditions of the HJE has been presented in
[12]. In detail, the SOS decomposition uses Gram Matrix methods to efficiently transform
the HJE, into LMIs [13]. These can in turn be solved in polynomial time with semidefinite
programming (SDP) [14,15]. There exist several freely available toolboxes to formulate
these problems in Matlab, for example SOSTOOLS [16], YALMIP [17], CVX [18], and
GloptiPoly [19]. Whereas SOSTOOLS is specifically designed to address polynomial
non-negativity problems, the latter toolboxes have more functionalities, such as modules
to solve the dual of the SOS problem and the moment problem.

In recent years, several approaches utilizing SOS decompositions to achieve nonlinear H1
control have been presented, e.g. [20–25]. The systems discussed are represented in a state
dependent linear-like form and the authors assumed that the control input matrix has some
zero rows. Further, it was assumed that the state dynamics are not directly affected by the
control input, that is the Lyapunov function can only depend on states whose corresponding
rows in control matrix are zero. These assumptions, however, lead to conservatism in the
controller design.

To the best of authors’ knowledge, there is no general result for H1 static output feedback
controller design for polynomial systems. Even though [24] addressed this problem, it uses the
same assumption as [23], i.e. the corresponding rows of the control matrix has some zeros rows
and Lyapunov function only depends on states whose corresponding rows in control matrix
are zero. By making this assumption, one can avoid non-convex expressions in the static
output feedback design, but introduces conservatism in the design. The main contributions of
this paper can be summarized as follows:
�
 The proposed controller design avoids rational static output feedback controllers
resulting from the inversion of the Lyapunov function.

�
 The Lyapunov function does not require to be a function of states whose corresponding

rows in control matrix are zeroes.
The rest of this paper is organized as follows: Section 2 provides the preliminaries and
notations used throughout the rest of the paper. The main results are highlighted in Section 3.

Then, the validity of the presented algorithm is illustrated with examples in Section 4.
Conclusions are given in Section 5.
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2. Preliminaries and notations

In this section, we introduce the notation that will be used in the rest of the paper. Further-
more, we provide a brief review on SOS decomposition. For a more elaborate description of the
SOS decompositions and their applications in control, see for example [12,26].

2.1. Notations

Let R be the set of real numbers and Rn be the n-dimensional real space. Furthermore,
let In represent the identity matrix of size n� n. For a square matrix Q, Qg0ðQk0Þ is used
to express its positive (semi)definiteness.
When talking about partial derivatives of a Lyapunov function V(x) in n variables, we

denote @V ðxÞ=@x as a row vector, i.e. @V ðxÞ=@x¼ ½@V ðxÞ=@x1,@V ðxÞ=@x2, . . . ,@V ðxÞ=@xn�.
‘‘n’’ is used to represent transposed symmetric matrix entries. In Section 3.2, we use ½�i�t

as an index for the current iteration t of the sub-matrix �i.

2.2. SOS decomposition
Definition 2.1. A multivariate polynomial f(x), x 2 Rn, is a sum of squares if there exist
polynomials fiðxÞ, i¼ 1, . . . ,m such that

f ðxÞ ¼
Xm

i ¼ 1

f 2
i ðxÞ: ð1Þ

From Definition 2.1, it is clear that the set of SOS polynomials in n variables is a convex

cone, and it is also true (but not obvious) that this convex cone is proper [27]. If a
decomposition of f(x) in the above form can be obtained, it is clear that f ðxÞZ0,8x 2 Rn.
The converse, however, is generally not true.
The problem of finding the right hand side of Eq. (1) can be formulated in terms of the

existence of a positive semidefinite matrix Q such that the following proposition holds:

Proposition 2.1 (Parrilo [12]). Let f(x) be a polynomial in x 2 Rn of degree 2d. Let Z(x) be

a column vector whose entries are all monomials in x with degree rd. Then, f(x) is said to be

SOS if and only if there exists a positive semidefinite matrix Q such that

f ðxÞ ¼ZðxÞT QZðxÞ: ð2Þ

In general, determining the non-negativity of f(x) for degðf ÞZ4 is a NP-hard problem [28,29].
Proposition 2.1 provides a relaxation to formulate non-negativity conditions on polynomials
that is computational tractable. A more general formulation of this transformation for sym-
metric polynomial matrices is given in the following proposition:

Proposition 2.2 (Prajna et al. [20]). Let F(x) be an N�N symmetric polynomial matrix of

degree 2d in x 2 Rn. Furthermore, let Z(x) be a column vector whose entries are all monomials in

x with a degree no greater than d, and consider the following conditions:
(1)
 F ðxÞk0 for all x 2 Rn;

(2)
 vT F ðxÞv is a SOS, where v 2 RN ;
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(3)
 there exists a positive semidefinite matrix Q such that vT F ðxÞv¼ ðv� ZðxÞÞT Qðv� ZðxÞÞ,
with � denoting the Kronecker product.
F(x) being a SOS implies F ðxÞk0. The converse, however, is generally not true. Furthermore,
Statements (2) and (3) are equivalent.

3. Main results

In this section, we start with the derivation of a H1 controller for polynomial systems without
parametric uncertainties. The results are subsequently extended to the robust control synthesis.

3.1. H1 control of polynomial systems without parametric uncertainties

Consider the following dynamic model of a polynomial system:

_x ¼AðxÞ þ BuðxÞuþ BoðxÞo,
y¼CyðxÞ,

z¼CzðxÞ þDzðxÞu, ð3Þ

where o 2 Rp is the disturbance input and z is the output to be regulated. AðxÞ, CyðxÞ,
CzðxÞ are polynomial vectors and BuðxÞ, BoðxÞ, DzðxÞ are polynomial matrices of
appropriate dimensions. The objective of static output feedback H1 control is to find a
controller K(y) such that the system (3) with

u¼KðyÞ ð4Þ

is asymptotically stable and the L2 gain from the disturbance input to the controlled
output is less than a prescribed value g40, that is,Z 1

0

zT z dtrg2
Z 1
0

oTo dt: ð5Þ

Theorem 3.1. The polynomial system (3) is stabilizable with a prescribed H1 performance

g40 via a static output feedback controller (4) if there exist a polynomial function V(x) and a

polynomial matrix K(y) such that 8xa0

V ðxÞ40 ð6Þ

and

@V ðxÞ

@x
AðxÞ�

1

4

@V ðxÞ

@x
BuðxÞB

T
u ðxÞ

@V T ðxÞ

@x
þ

1

2

@V ðxÞ

@x
BoðxÞ

� �
1

g2
1

2

@V ðxÞ

@x
BoðxÞ

� �T

þ
1

2

@V ðxÞ

@x
BuðxÞ þ KT ðyÞ

� �
1

2

@V ðxÞ

@x
BuðxÞ þ KT ðyÞ

� �T

þ ðCzðxÞ þDzðxÞKðyÞÞ
T
ðCzðxÞ þDzðxÞKðyÞÞo0: ð7Þ

Proof. Note that for 8xa0

_V ðxÞ ¼
@V ðxÞ

@x
½AðxÞ þ BuðxÞKðyÞ þ BoðxÞo�
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r
@V ðxÞ

@x
½AðxÞ þ BuðxÞKðyÞ þ BoðxÞo� þ ðgoTo�zT zÞ

�ðgoTo�zT zÞ þ KT ðyÞKðyÞ

¼
@V ðxÞ

@x
AðxÞ�

1

4

@V ðxÞ

@x
BuðxÞB

T
u ðxÞ

@V T ðxÞ

@x
þYðx,yÞYðx,yÞT�Yoðx,oÞYoðx,oÞ

T

þ
1

2

@V ðxÞ

@x
BoðxÞ

� �
1

g2
1

2

@V ðxÞ

@x
BoðxÞ

� �T

þðCzðxÞ þDzðxÞKðyÞÞ
T
ðCzðxÞ þDzðxÞKðyÞÞ þ ðg2oTo�zT zÞ

r
@V ðxÞ

@x
AðxÞ�

1

4

@V ðxÞ

@x
BuðxÞB

T
u ðxÞ

@VT ðxÞ

@x
þYðx,yÞYðx,yÞT

þ
1

2

@V ðxÞ

@x
BoðxÞ

� �
1

g2
1

2

@V ðxÞ

@x
BoðxÞ

� �T

þðCzðxÞ þDzðxÞKðyÞÞ
T
ðCzðxÞ þDzðxÞKðyÞÞ þ ðg2oTo�zT zÞo0, ð8Þ

with

Yrðx,yÞ ¼
rðxÞ
2

@V1ðxÞ

@x
BuðxÞ þ KT ðyÞ

� �
and Yoðx,oÞ ¼

1

2g
@V ðxÞ

@x
BoðxÞ�goT

� �
:

Thus, if Eq. (7) holds, we have

_V ðxðtÞÞo�zT zþ g2oTo: ð9Þ

Integrating both sides of the inequality yieldsZ 1
0

_V ðxðtÞÞ dtr
Z 1
0

ð�zT zþ g2oToÞ dt,

V ðxð1ÞÞ�V ðxð0ÞÞr
Z 1
0

ð�zT zþ g2oToÞ dt:

Noting that xð0Þ ¼ 0 and V ðxð1ÞÞZ0, we obtainZ 1
0

zT z dtrg2
Z 1
0

oTo dt:

Hence Eq. (5) holds and the H1 performance is fulfilled.
To prove that the closed-loop system (3) with Eq. (4) is asymptotically stable, we set the

disturbance oðtÞ ¼ 0. From Eq. (9), we learn that _V ðxðtÞÞo0, hence, by the Lyapunov
stability theorem the closed-loop system (3) with Eq. (4) is asymptotically stable. &

The separation of the Lyapunov function and the controller of the H1 static output
feedback problem in Eq. (7) is the first step in bringing the problem in a more suitable form
for numerical methods. However, it cannot be expressed as a state-dependent LMI, due to
the negative term � 1

4 ð@V ðxÞ=@xÞBuðxÞB
T
u ðxÞ@V T ðxÞ=@x. To accommodate this negative

term, an additional design polynomial vector EðxÞ of appropriate dimension is introduced.
Knowing that

EðxÞ�
@V ðxÞ

@x

� �
BuðxÞB

T
u ðxÞ EðxÞ�

@V ðxÞ

@x

� �T

Z0



M. Krug et al. / Journal of the Franklin Institute 350 (2013) 318–330 323
for any EðxÞ and @V ðxÞ=@x of the same dimension, we obtain

@V ðxÞ

@x
BuðxÞB

T
u ðxÞ

@VT ðxÞ

@x
Z�EðxÞBuðxÞB

T
u ðxÞE

T ðxÞ þ EðxÞBuðxÞB
T
u ðxÞ

@V T ðxÞ

@x

þ
@V ðxÞ

@x
BuðxÞB

T
u ðxÞE

T ðxÞ: ð10Þ

with the equality holds when EðxÞ ¼ @V ðxÞ=@x. Using Eqs. (10) and (7), we have the following
theorem.

Theorem 3.2. The polynomial system (3) is stabilizable with a prescribed H1 performance

g40 via a static output feedback controller (4), if there exist a polynomial function V(x), a

polynomial vector EðxÞ of appropriate dimensions, and a polynomial matrix K(y) satisfying

the following condition for 8xa0

V ðxÞ40, ð11Þ

Mðx,yÞ ¼

M11ðxÞ ðnÞ ðnÞ ðnÞ

M21ðx,yÞ �I ðnÞ ðnÞ

M31ðx,yÞ 0 �I ðnÞ

M41ðxÞ 0 0 �g2I

2
66664

3
77775!0, ð12Þ

with

M11ðxÞ ¼
@V ðxÞ

@x
AðxÞ þ

1

4
EðxÞBuðxÞB

T
u ðxÞE

T ðxÞ�
1

2
EðxÞBuðxÞB

T
u ðxÞ

@V T ðxÞ

@x
,

M21ðx,yÞ ¼
1

2

@V ðxÞ

@x
BuðxÞ þ KT ðyÞ

� �T

,

M31ðx,yÞ ¼CzðxÞ þDzðxÞKðyÞ,

M41ðxÞ ¼
1

2

@V ðxÞ

@x
BoðxÞ

� �T

: ð13Þ

Proof. It is obvious that using Eq. (10) in Eq. (7) yields

@V ðxÞ

@x
AðxÞ þ

1

2

@V ðxÞ

@x
BuðxÞ þ KT ðyÞ

� �
1

2

@V ðxÞ

@x
BuðxÞ þ KT ðyÞ

� �T

þ
1

4
EðxÞBuðxÞB

T
u ðxÞE

T ðxÞ�
1

2
EðxÞBuðxÞB

T
u ðxÞ

@VT ðxÞ

@x

þ
1

2

@V ðxÞ

@x
BoðxÞ

� �
1

g2
1

2

@V ðxÞ

@x
BoðxÞ

� �T

þ ðCzðxÞ þDzðxÞKðyÞÞ
T
ðCzðxÞ þDzðxÞKðyÞÞo0, ð14Þ

thus representing a sufficient condition for H1 stability. Applying Schur Complement, one
can verify Eq. (12). &

The term � 1
2
EðxÞBuðxÞB

T
u ðxÞ@V T ðxÞ=@x makes Eq. (12) non-convex, hence the inequality

cannot be solved directly by SOS decomposition. Hence, we propose the following iterative
SOS (ISOS) algorithm to solve Eq. (12).
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ISOS algorithm for H1 static output feedback control of polynomial systems.
Step 1:
 Linearize system (3) and set o¼ 0. Use the static output feedback approach
described in [9] to find a solution to the linearized problem without disturbance. Set
t¼ 1,E1ðxÞ ¼ xT P,V0 ¼ xT Px.
Step 2:
 Solve the following SOS optimization problem in Vt(x) and Kt(y) with fixed
auxiliary polynomial vector EtðxÞ and some positive polynomials l1ðxÞ and l2ðxÞ:

Minimize at

Subject to VtðxÞ þ l1ðxÞ is a SOS,

�vT ðMa
t ðx,yÞ þ l2ðxÞIÞv is a SOS,

with

Ma
t ðx,yÞ9

M11ðxÞ�atVt�1ðxÞ ðnÞ ðnÞ ðnÞ

M21ðx,yÞ �I ðnÞ ðnÞ

M31ðx,yÞ 0 �I ðnÞ

M41ðxÞ 0 0 �g2I

2
66664

3
77775, ð15Þ

v of appropriate dimensions, and M11ðxÞ,M21ðx,yÞ,M31ðx,yÞ,M41ðxÞ are as in
Eq. (13) with V ðxÞ9VtðxÞ,KðyÞ9KtðyÞ, and EðxÞ9EtðxÞ.
If ato0, then Vt(x) and Kt(y) represent a feasible solution to the H1 static output
feedback control problem of polynomial systems. Terminate the algorithm.
Step 3:
 Set t¼ tþ 1 and solve the following SOS optimization problem in Vt(x), Kt(y),
with Z(x) as in Proposition 2.2 and the SOS decomposition of the Lyapunov
function VtðxÞ ¼ZðxÞT QtZðxÞ,EtðxÞ ¼ Et�1ðxÞ as well as some positive polynomials
l1ðxÞ and l2ðxÞ:

Minimize trðQtÞ

Subject to VtðxÞ þ l1ðxÞ is a SOS,

�vT ðNa
t ðx,yÞ þ l2ðxÞIÞv is a SOS,

with

Na
t ðx,yÞ9

M11ðxÞ�at�1VtðxÞ ðnÞ ðnÞ ðnÞ

M21ðx,yÞ �I ðnÞ ðnÞ

M31ðx,yÞ 0 �I ðnÞ

M41ðxÞ 0 0 �g2I

2
66664

3
77775, ð16Þ

v of appropriate dimensions, and M11ðxÞ, M21ðx,yÞ, M31ðx,yÞ, M41ðxÞ are as in
Eq. (13) with V ðxÞ9VtðxÞ,KðyÞ9KtðyÞ, and EðxÞ9EtðxÞ.
Step 4:
 Solve the following feasibility problem with v2 2 Rnþ1 and some positive tolerance
function dðxÞ40,xa0:

vT
2

dðxÞ ðnÞ

EtðxÞ�
@VtðxÞ

@x

� �T

1

2
64

3
75v2 is a SOS:

If the problem is feasible go to Step 5. Else, set t¼ tþ 1 and EtðxÞ ¼ @Vt�1ðxÞ=@x

determined in Step 3 and go to Step 2.
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Step 5:
 The system (3) may not be stabilizable with H1 performance g by static output
feedback (4). Terminate the algorithm. &
Remark 3.1. The term � 1
2
EðxÞBuðxÞB

T
u ðxÞ@VT ðxÞ=@x makes Eq. (12) non-convex, hence the

inequality cannot be solved directly by SOS decomposition. If, however, the auxiliary
polynomial vector EðxÞ is fixed, Eq. (12) becomes convex and can be solved efficiently.
Unfortunately, fixing EðxÞ generally does not yield a feasible solution. Therefore, we
introduce atVt�1ðxÞ in Eq. (15) to relax the SOS decomposition in Eq. (12) and makes it
feasible. This corresponds to the following Lyapunov inequalities:

VtðxÞ40,

_V tðxÞratVt�1ðxÞ:

Similar Lyapunov inequalities can be obtained for Eq. (16). If a in Eq. (15) or (16) is
negative, then we conclude the system (3) with Eq. (4) is stable.

Step 1 is the initialization of the iterative algorithm and necessary to find an initial value
of E1ðxÞ to use in the following iterations. The optimization problem in Step 2 is a
generalized eigenvalue minimization problem and guarantees the progressive reduction of
at. Meanwhile, Step 3 ensures convergence of the algorithm. Step 4 updates EðxÞ and checks
whether the iterative algorithm stalls, i.e. the gap between EðxÞ and @V ðxÞ=@x is smaller
than some positive tolerance function dðxÞ.

Note that the iterative algorithm increases the iteration variable t twice per cycle (in
Steps 3 and 4). This is done to avoid confusion with the indexes.
3.2. Robust stability synthesis

The results presented in the previous section assume that all system parameters are
known exactly. In this section, we extend the results to polynomial systems with parametric
uncertainties.

Consider the following system:

_x ¼Aðx,yÞ þ Buðx,yÞuþ Boðx,yÞw,

y¼Cyðx,yÞ,
z¼Dzðx,yÞ þDzðx,yÞu, ð17Þ

where the matrices �ðx,yÞ are defined as follows:

Aðx,yÞ ¼
Xq

i ¼ 1

AiðxÞyi, Buðx,yÞ ¼
Xq

i ¼ 1

Bui
ðxÞy, Boðx,yÞ ¼

Xq

i ¼ 1

Boi
ðxÞy,

Cyðx,yÞ ¼
Xq

i ¼ 1

Cyi
ðxÞy, Czðx,yÞ ¼

Xq

i ¼ 1

Czi
ðxÞy, Dzðx,yÞ ¼

Xq

i ¼ 1

Dzi
ðxÞy: ð18Þ

y¼ fy1, . . . ,yqg
T 2 Rq is the vector of constant uncertainty and satisfies

y 2 Y9 y 2 Rq : yiZ0,i¼ 1, . . . ,q,
Xq

i ¼ 1

yi ¼ 1

( )
: ð19Þ
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We further define the following parameter dependent Lyapunov function:

V ðxÞ ¼
Xq

i ¼ 1

ViðxÞyi: ð20Þ

With the results from the previous section, we have the main result for the robust H1
static feedback controller design for polynomial systems with parametric uncertainties.

Theorem 3.3. The polynomial system with parametric uncertainties (17) is stabilizable with a

prescribed H1 performance g40 via a static output feedback (4) if there exist a polynomial

function V(x) as in Eq. (20), a polynomial vector EðxÞ ¼
Pq

i ¼ 1 EiðxÞyi of appropriate

dimensions, a polynomial matrix K(y), as well as some positive functions l1ðxÞ40 and

l2ðxÞ40 such that for xa0,i¼ 1, . . . ,q:

ViðxÞ40 ð21Þ

and

Mðx,yÞ ¼
Xq

i ¼ 1

Miðx,yÞyi!0, ð22Þ

where

Miðx,yÞ ¼

Mi
11ðxÞ ðnÞ ðnÞ ðnÞ

Mi
21ðx,yÞ �I ðnÞ ðnÞ

Mi
31ðx,yÞ 0 �I ðnÞ

Mi
41ðxÞ 0 0 �g2I

2
66664

3
77775, ð23Þ

with Mi
11ðxÞ,M

i
21ðx,yÞ,M

i
31ðx,yÞ,M

i
41ðxÞ as in Eq. (13) for each subsystem of Eq. (17),

respectively.

Proof. This theorem follows directly from Theorem 3.2. &

The same ISOS algorithm given in Section 3.1 can be employed to solve Eq. (23):

4. Numerical example

In this section, we will provide two design examples to demonstrate the validity of
the proposed H1 static output feedback controller design for polynomial systems with
parametric uncertainties.

4.1. Lorenz Chaotic System

The dynamics of the Lorenz Chaotic System can be described as follows:

_x ¼

�ax1 þ ax2

cx1�x2�x1x3

x1x2�bx3

2
64

3
75þ

1

0

0

2
64
3
75u: ð24Þ

The system exhibits chaotic behavior for a¼ 10, b¼ 8=3, c¼ 28. We assume z¼ y¼ x2

and the presence of a disturbance in _x3. Further, the system dynamics are subject to
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a parametric uncertainty with b 2 ½�0:1,0:1�:

_x ¼

�ax1 þ ax2

cx1�x2�x1x3

x1x2�bx3

2
64

3
75þ

1

0

0

2
64
3
75uþ

0

0

1

2
64
3
75oþ b

�ax1 þ ax2

cx1

�bx3

2
64

3
75þ

1

0

0

2
64
3
75u

0
B@

1
CA: ð25Þ

The system can be transformed into the form of (17)–(18). We select l1ðxÞ ¼ l2ðxÞ ¼
dðxÞ ¼ 0:01ðx2

1 þ x2
2 þ x2

3Þ. We initially choose quadratic Lyapunov function candidates and
set the polynomial static output feedback controller to be of the form KðyÞ ¼ m1yþ m2y

2. The
ISOS algorithm terminates without obtaining a feasible solution, thus we increase the degree
of the Lyapunov function candidates to 4. This yields a feasible solution with m2 � 0, therefore
indicating that m2 ¼ 0 may also be a feasible solution. After four iterations, the following static
output feedback controller with g¼ 1:567 is obtained:

KðyÞ ¼ �20:353y: ð26Þ

The corresponding Lyapunov functions are

V ðxÞ ¼ 1:8378x4
1 þ 0:2204x3

1x2 þ 2:3156x2
1x

2
2 þ 0:7371x2

1x
2
3�2:0176x2

1x3 þ 59:7839x2
1

þ0:0807x1x2x3 þ 38:8908x1x2 þ 0:5322x4
2 þ 0:1114x2

2x
2
3 þ 0:5265x2

2x3

þ29:8318x2
2 þ 0:0073x4

3�0:0097x3
3 þ 2:1633x2

3

þbð0:0681x4
1 þ 0:003x3

1x2�0:3381x2
1x2

2�0:2005x2
1x

2
3�0:2738x2

1x3 þ 11:4993x2
1

�0:0671x1x2x3 þ 1:5202x1x2�0:1963x4
2�0:0255x2

2x
2
3�0:1691x2

2x3

�1:6668x2
2�0:0005x4

3 þ 0:0071x3
3�0:13275x2

3Þ: ð27Þ

Fig. 1 shows the closed-loop responses of the Lorenz Chaotic System with initial conditions
x0 ¼ ½20,�10,�20�

T and a random white noise disturbance o with power spectrum density of 1
for b¼ ½�0:1,0,0:1�. In the figure, EðtÞ is denoted as the energy ratio, EðtÞ ¼

R t
0 zT z dt=R t

0 o
To dt. After 3 s, EðtÞ tends to 0.3 which implies g¼

ffiffiffiffiffiffiffi
0:3
p

¼ 0:5477, which is less than the
prescribed g¼ 1:567.

4.2. Polynomial system

Consider the polynomial system from [24], where b 2 ½�1,1�:

_x ¼
�x1 þ x2

1�
3

2
x3
1�

3

8
x1x

2
2 þ

1

4
x2�x2

1x2�
1

4
x3
2

0

2
4

3
5þ 0

1:1

� �
uþ

1:25

0

� �
o,

þb
3

8
x1x

2
2�

1

4
x3
2

0

2
4

3
5þ 0

0:1

� �
uþ

0:25

0

� �
o

0
@

1
A,

y¼ x1�x2,

z¼ u: ð28Þ

We select l1ðxÞ ¼ l2ðxÞ ¼ dðxÞ ¼ 0:01ðx2
1 þ x2

2 þ x2
3Þ, set K(y) to be of the form KðyÞ ¼ m1yþ

m2y2 þ m3y
3 and initially look for Lyapunov function candidates of degree 4. The ISOS

algorithm terminates with a feasible solution and Jm2J � Jm3Jo0:01. After setting m2 ¼ m3 ¼ 0,
the algorithm terminates after six iterations and the following static output feedback controller



Fig. 1. Lorenz Chaotic System.
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with H1 performance g¼ 1:514 is obtained:

KðyÞ ¼ 0:380y: ð29Þ

The corresponding with Lyapunov functions are

V ¼ 0:09585x4
1 þ 0:0476x3

1x2 þ 0:0455x3
1 þ 0:0340x2

1x
2
2 þ 0:0718x2

1x2 þ 0:2812x2
1

þ0:0934x1x3
2�0:0362x1x2

2�0:1322x1x2 þ 0:08515x4
2�0:0558x3

2 þ 0:5756x2
2

þbð�0:0125x4
1 þ 0:0388x3

1x2�0:0109x3
1�0:0146x2

1x
2
2�0:0134x2

1x2�0:0005x2
1

�0:0862x1x3
2 þ 0:024x1x

2
2�0:0238x1x2�0:03675x4

2�0:0132x3
2�0:0454x2

2Þ: ð30Þ

The smallest g obtained in this paper is 1.514, which is smaller than 1.8071 obtained in [24]. It is
noteworthy that this g is achieved with a linear controller compared to the polynomial controller
obtained in [24]. Fig. 2 shows that the closed-loop system responses with the initial conditions
are x0 ¼ ½10,10�

T and the disturbance is modeled by Gaussian white noise with power density
spectrum of 0.01. After 20 s, EðtÞ tends to a value which is less than ð1:514Þ2.
5. Conclusion

A novel approach for designing a nonlinear H1 static output feedback controller for
polynomial systems with parametric uncertainties has been proposed. Sufficient conditions
for the existence of a nonlinear H1 static output feedback controller are derived and
expressed in terms of polynomial matrix inequalities. In order to solve these polynomial
matrix inequalities, an iterative sum of squares decomposition has been proposed. The
novelties of our approach are (1) the proposed controller design avoids rational static
output feedback controllers resulting from the inversion of the Lyapunov function and (2)



Fig. 2. Polynomial system.
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the Lyapunov function does not require to be a function of states whose corresponding
rows in control matrix are zeroes. Through simulation examples, we have shown that our
results are less conservative than the results given in [24].
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