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Abstract

This paper presents the development of a Proportionai-
Integral sliding mode controller to contro] a class of

. uncertain systems.- It is assumed that the plant to be.

controlled “can be represented by its nominal and

bounded parametric uneertainties. A robust sliding -

mode controller is newly derived so thai the actual
trajeciory tracks the desired trajectory as closely as
possible despite the pon-linearities and input couplings
present in the system. The Propertional-Integral sliding
mode is chosen to ensure the stability of overall
dynamics during the entire period i.e. the reaching phase
and the sliding phase. The controller is applied to the
control of a two-link planar robot manipulator.

¥ Introduction

Variable structure control with Sliding Mode
Control (SMC) has been widely applied to system with
uncertainties and/or input couplings {1], (2]. The design
philosophy behind the SMC is to obiain a high-speed
switching coatrol law to drive the nonlinear plant’s state
trajectory onto a specified and user-chosen surface
called the sliding or switching surface. When a system

. is in the -sliding mode, its. dynamjcs: is - strictly
determined by the dypamics of the sliding surfaces and
hence insensitive to parameter variations and sysiem

* distutbances. Nevertheless, the system posses no such

insensitivity property during the rteaching phase.

‘Therefore insensitivity cannot be ensured throughout the

entire response and the robustness during the reaching

phase is normatly improved by high-gain feedback

control [3].

Recently, a varety of the SMC known as Integral
Sliding Mode Control (ISMC) has surfaced in the
literature [4], {5], [6). Different from the conventional
SMC design approaches, the order of the metion
equation in ISMC is equal to the order of the original
system, rather than reduced by the number of dimension
of the control input, This is established by making
use of the integral {ype switching surface. With this
approach, the robustness of the systen can be
guaranteed throughout the entire response of the system
starting from the initial time instance.

In this paper, the problem of robust tracking for a
class of dypamical systems with uncertainties is
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considered. On the basis of sliding mode control
theory, a class of variable structure controilers for
robust tracking of dynamical signals is proposed. It is
shown theoretically that for system with matched
unceriainties, the. tracking emor. is- guaranteed to
decrease asymiptotically to zero. In fact the system
dynarnics during the sliding phase can easily be shaped
up using any conventional pole placement roethod.

2 Problem Formulation

Consider an unceriain system descﬁbcd'by
X(OY=[A+ A(OIX () +[ B+ AB () )
where  X() € R",u(f) € R™, represent the state and
input vectors, respectively. 4 and B are constant

matrices of appropriate dimensions.
Definc the state vector of the system as

X(0y=lx Oz, (O, OF @
Let a continuous function Y,() € R" be the desired
state trajectory, where X{#) is defined as:

X,0) =20 05y @2 (OF ©)
Define the tracking error, Z{f) as
ZW) =X -X, ) @

In this stidy, the following assumptions are made:

i) The state vector X{(f) can be fully observed;
ii) There exist continuous fimctions 5(f) and

E(d) such that for all X()e R” and all ;

MO=BH({; |HElsa &
AB(=BE(D); JEM]=<p

iif) There exist a Lebesgue function 3(f) € R, which
is integrable on bounded interval such that
Xalt)= AX,(8)+ BR() )

iv) The pair (4, B) is controllable.

In view of equations (4), (5) and (6), equation (1) can be

wrilten as

Z() =[4+ BHWOIZW + BHOX, ()

= BO() +[B + BE(()
Define the Froportional-Integral sliding surface as

o{t) = C2(— i[m+c51c]z(:)a=c 6)]

M -



where ¢ e R and X € R™" arc constan! matrices.
The matrix K satisfies
A (A+BK)<0 2]

and € is chosen such that CB & R™* is nonsingular,

The control probiem is then to design a controller
using the Proportional-Integral sliding mode given by
-equation (8) such that the system siate trajectory X(1)
tracks the desired state trajectory X (1) as closely as
possible for all ¢ in spite of the uncertainties and non-
linearities present in the system. The whole tesk can he
divided into two parts; firstly it must be assured that the
system emror dynamics s asymptotically stable
(approaching zero) during the sliding' mode, and
secondly a sliding mode controller is designed in such a
way that whatever error the system has during the initial
stage, the system must be directed towards the sliding
surface (without sacrificing the stability aspect of the
controlled system) during the reaching phase.

3  System Dynamics During Sliding Mode
Differentiating ¢quation (8} gives

o(1) = C Z(s) ~[CA + CBK1Z(5) (10
Substituting equation {7) into equation {10) gives:
olf) = CBH(NZ{ + CBH{NX 400~ CB0) (1)

+[CB + CBE()ju(r) — CBKZ(0) ’
Equaling equation (11} to zero gives the equivalent
control, w.,(f):
trg (0} =[CB-+ CBEQ){CEKZ() + CEA (1

— CBH(NZ(1) - CBH{X ,(8)
Moting that
[CB+CBEWT™ {1, + E@(CBY"  (13)
the equivalent control of equation (12) can be written as
u () =—1, +EQF' (- K20 (14)

~ Q)+ H{O)X (1)}

Remark I: The equivalent contro] u.{f) is only a
mathematically derived tool for the analysis of a sliding
metion rather than a real contol law generated in
practical systems. In fact it is not realizable in the real
controller.

The system dynamics during sliding mode can be found
by substituting the equivalent control of equation (14)
into the system error dynamics of equation (7):
Z) =14 + BH(NZ() + BHOX () - BSYs)

~18+BE@WL, + EOT {[HEO - KIZ()

T URFAGEM O]

={A+BKIZ() as

Henee if the matching condition is satisfied {equation
(5) hoids), the system’s error dynamics during sliding

a4

mode is independent of the system uncertainties and
couplings between the inputs, and, insensitive to the
parameter varations.

4 Sliding Mode Tracking Controller
Design
The manifold of equation (8) is asymptotically

stable in tbe large, if the following hitting condition is
held [5]): '

(" () ol () <0 )
As a proof, let the positive definite fimetion be
(it = uc(z}ﬂ (mn

Differentiating equation (17) with respect to time, ¢
yields

V() = (0" () () o) (18)
Following the Lyapunov stability theory, if equation
(16} halds, then -the sliding manifold o) is
asymptotically stable in the large.

Theorem: The hitting condition (16) of the manifold

given by equation (8) is satisfied if the control u{f) of

system {7) is given by : .
u(y=~(CB"[v.Jz@f +v: 0]

(e8]
+1,RONSGN (o) + Q)
where
1y > (] CB}+]CBRp {1+ B) (20)
12 > (afCBH AL +B) 1)
1; > (BCBp AL+ 22)

FProof: Substifuting eguation .(19) into equation (11)

mives:

alty = CBLH () - KIZ() — (CH)LL, + EOUCBY (rl2 (]
X )+ RJQMDSGN (i) + CBHNX, (0
+CBE(HL1). 23

Substituting equation (23) into equation (18) gives the

rate of change of the Lyapunov function:

V=@ @+ 249
where
V1= 6" O POPICBHO-KIZ0- (25
(CBWI, + EOXCB) 1, 2] SGN ()
V20 < (" (O WP ICBH X 1) - 26

(CBYY, + EQONCB) 12X, (ORSCN (o)}

V31) = (6" (M e ICBE (D) -

(CBYU, + EOUCBY 15 QUGN (o(e))}
Now let simplify each Lyapumov term individually.
First term of equation (25):

@n



(o (M ep (CBLH ) - KN2(N)

G e 10 T e 1

= {a]cB| +|cEK 2]
Noting that

ta” ()M OPSCN(E(N) =1 (29)
then the second term of equation (25) can be simplified

-2 (GBI, + E@)(CB) v JEWISGN (@)}

<-fesfi]+Jewiiesy izl (o)
-+ Py iz

Using equations (28) and (30}, equation (25} can be
written as

Vi@ys-{0+Pyr, ~[efCai+fCBRIjz(}  GD
Similarly, equations (26) and (27) can be simplified in a
same manner and the results are summarized as follows:

7200 5 Q-+, ~ofCBpIX.L (0]} 62

V() < {1+ By, ~BlCEBIO) (33)
Let equations (20), (21) apd (22) hold, then the global
hitting condition (16) is satisfed. u

Remark 2; The conditions imposed by equations (20),
(21) and (22) not oply guarantee that the hitting
cendition (16) is met, but it also assure that based on the
Lyapunov theory, the system dynamics is stable in the
large.

5 Simulatioz Example .

Consider 2 two-link manipulator (in the horizontal
plane) with rigid links of nominally equal length ! and
mass m shown in Figure 1. The dynamics of the
manipulator is [7]:

5 o Greosé) sin@,.6+3sin8,.(261+0:). 62
% -cos’d,
3T -3 +eos )T,

IO Rl B ¥ S duten: i X
16 2
F-cos’d,

5 -2 +c058,)sind, 0
L _cosd,
_ {+¢0s8,)sind, (2614 6:).8:
4 cos?f,
2} +0058,)T, — 4(3 +c0s8, )T,
L-cos? B,

Define
Ll - r
X(’)Q[‘l LT 14]1-:[91 6 8, 91]

vk, wl =i n]

Then the plant can be represented in the form of
X0 = AQX [+ BEul)

where
o1 0 0 6.0
0 a, 0 a by, b
A= I |, g=|™ Pn
0 0 0 1 o 0
0 a, 00, by by

a5 ={(2/3)+cos x,)sinx, - x, /((16/9)—cos’ x,)

B, =(2/3)sinx, - (2x, + x,)- £, K(16/9} - cos” )

&, ==2((5/3)+cosx;)sinx, - x, A{16/9) - cos™ x,)

a,, =—{{2/3) + cosx; )sinx, (2x, + x M({16/9)—cos® ;)
by = (4 {16/9) - cos® x)

Cba= 22((2/3) + cosx, ) ((16/9) - cos® &)

' bdl-bﬂ
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b = A(5/3)+ cosx, M{(1679) - cos™ x%,)
Suppose that the bounds of the g, () and 0 1) are:
-150" $8, 150, "5 26, £50°57,

=35 £8, S100°, [ Sé: £30°s™
With these bounds, the plant can be represented in the
form of equation (1) with the nominal value of 4 and B

calculatet!as:

0 1 0 1]
0 11684 0 09724

1y ¢ o 1
|0 -2.6496 0 -2.4310
Fo 0

R £.5058 -1.9489

1 o 0

[-1.9489- - 84151

The uncertainties for system and input matrices are

o © 0 0
o 0. .
e 9744 0 09724
6 o0 0 ¢
(0 42076 ¢ 24310
[0 )]
g | 02085 03368
0 0
|2.3368 52991

Using equation (5), the bounds of H(7) and £{1) can be
computed:

JH{] £ o =2.6046 ; JE(<P=1.9617
It is assumed that each sub-system is required to track a
pre-specified cycloidal function of lhe form:

A 2t 2:t
9,,(;):{9-'(0)"'5[—1*—5111(—;)]. 0<tst
8, T 51



where A =0,(1)-8,(0),i=12. In this example, the
input trajectory data used are as foliows:
Start time, {0) = 0.0 5
Final ime, 1= 1005
Start positions, 8,{0) = 10 deg ; 8(0) = L5 deg
Final positions, 8;{t) = 50 deg ; 0(7) = 60 deg
Define the gains:
- [2.0125 34291 0.0919 o.ms] such  that
0.3235 04080 0.4868 0.4338

AA +BK)y={-1,-2,~2,-3}
mdo 31 00

0 0 02 1
Remark 3: The gain K can be chosen arbitrarily but in
this paper the values of X is intentionally selected o
represent the case of over-damped response. Since the
choice of C affects the system response during the
reaching phase, it must be appropriately selected to give

the desired result. Nevertheless, € must be chosen such
that CB is nonsingular.

The controller parameter v's can therefore be computed
from equation (20)-(22):

T, > L1731 ¥, > 0.8742; v, > 0.6584
For comparison purposes, two seis of the controfler
parameters are chosen:

Casel: y =05 1,=02; y,=02

Case2: y, =15 ¥, =10; y,=10
In Casc 1, the contreller parameter is selected to study
the performance of the system if the gain conditions of
equations (20)-(22) are not met; while in Case 2 the
controller parameters is selected to represent a situation

where the conditions imposed on the controtler are met.

The simuiation results for Case 1 and Case 2 are shown
in Figure 2 and Figure 3, respectively. If the controller
parameter conditions are not met (Case’ 1), the actual
output positions fail to track the desired positions

(Figure 2a and Figure 2b). This is due to the fact that -

the control inputs not succeed to switch fast enough
(Pigure 2¢ and Figure 2d) and hence the sliding mode
fails to materislized (Figure 2¢).

On the contrary, when the controller parameter
conditions are met {Case 2), the position tracking is
satisfactory (Figure 3a and Figure 3b). As expected, the
control inputs switch indiscriminately very fast (Pigure
3¢ and Figure 3d), resulting the sliding surfaces to
converge to zero (Figure 3e) and hence making the
sliding phase took place.

6 Conclusions

In this paper, a Proportional-Integral Sliding Mode
controller is proposed for a class of uncertain system. It
is shown mathematically that the error dynamics during
sliding mode is stable and ¢an easily be shaped-up using

the conventional pole-placement technique. Beside
during the sliding phase, the system stability is also
guaranteed during the reaching phase. Application to a
two-link planar robet manipulator is presented to
illustrate the effectiveness of the proposed controller,
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