Low Noise, High Gain LNA at 5.8GHz with Cascode and Cascaded Techniques Using T-Matching Network for Wireless Applications

Abu Bakar Ibrahim, Abdul Rani Othman, Mohd Nor Husain, and Mohammad Syahrir Johal

Abstract—This project presents a design of low noise, high gain LNA a 5.8 GHz with cascode and cascaded techniques using T-matching network is applicable for IEEE 802.16 standard. The amplifier use FHX76LP Low Noise SuperHEMT FET. The LNA designed used T-matching network consisting of lump element reactive element at the input and the output terminal. The cascode and cascaded low noise amplifier (LNA) produced gain of 36.8dB and noise figure (NF) at 1.3dB. The input reflection (S11) and output return loss (S22) are -11.4dB and -12.3dB respectively. The bandwidth of the amplifier is more than 1GHz. The input sensitivity is compliant with the IEEE 802.16 standards.

Index Terms—Cascode and Cascade LNA, Radio Frequency, T-Matching Network

I. INTRODUCTION

The numbers of systems that use radio frequencies are increasing quickly. At the same time, the numbers of standards for such systems are increasing quickly as well. To make this possible the number of frequency band dedicated for wireless communication has also increased [1]. WiMAX, which is short for Worldwide Interoperability for Microwave Access, is a novel wireless communication technology. It is an attractive technology due to the high transmitting speed (up to 70Mbps) and long transmitting distance (up to 30 mile). The system bases on IEEE 802.16 standards and uses several bands (2.3-2.7 GHz, 3.4-3.6 GHz and 5.1-5.8GHz) to transmit the data. The design of the front-end low noise amplifier (LNA) is one of the challenges in radio frequency (RF) receivers, to provide good input impedance match, enough power gain and low Noise Figure (NF) within the required band [2].

Many high gain amplifier topologies have been proposed as a way to satisfy the requirement for low power dissipation as well as good performances. The cascode with cascaded techniques for produces results in a higher bandwidth and gain, due to the increase in the output impedance, as well as better isolation between the input and output ports [3-7]. In this work, LNA with cascode and cascaded techniques is proposed as shown in figure 1.

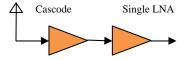


Fig. 1. Cascode and Cascaded LNA

Manuscript received September 5, 2011; revised September 20, 2011. All authors are with the Universiti Teknikal Malaysia Melaka.

II. THEORETICAL ASPECTS

Basically, for the design of an amplifier, the input and output matching network are designed to achieve the required stability, small signal gain, and bandwidth. Super high frequency amplifier is a typical active circuit used to amplify the amplitude of Radio Frequency (RF) signal. Basic concept and consideration in design of super high frequency amplifier is presented below. For the LNA designed, the formula and equation were referred to [4]. Figure 2, shows a typical single-stage amplifier including input/output matching networks.

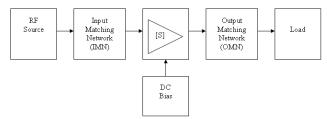


Fig. 2. Typical amplifier design

The basic concept of high frequency amplifier design is to match input/output of a transistor at high frequencies using S-parameters frequency characteristics at a specific DC-bias point with source impedance and load impedance. Input/output matching circuit is essential to reduce the unwanted reflection of signal and to improve efficiency of the transmission from source to load [4-5].

A. Power Gain

Several power gains were defined in order to understand the operation of super high frequency amplifier, as shown in Figure 3, power gains of 2- ports circuit network with power impedance or load impedance at power amplifier represented with scattering coefficient are classified into Operating Power Gain, Transducer Power Gain and Available Power Gain [4-5].

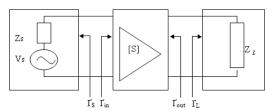


Fig. 3. I/O circuit of 2-port network

B. Operating Power Gain

Operating power gain is the ratio of power (P_L) delivered to the load (Z_L) to power (P_{in}) supplied to 2 port network. Power delivered to the load is the difference between the power reflected at the output power port and the input

power port, and power supplied to the 2-port network is the difference between the input power at the input port and the reflected power. Therefore, Operating Power Gain is represented by

$$G_{P} = \frac{Power \quad delivered \quad to \quad the \quad load}{power \quad \text{supplied} \quad to \quad the \quad amplifier}$$

$$= \frac{P_{L}}{P_{in}} = \frac{1}{1 - |\Gamma_{in}|^{2}} |S_{21}|^{2} \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}}$$
(1)

where, Γ_{in} indicates reflection coefficient of load at the input port of 2-port network and Γ_s is reflection coefficient of power supplied to the input port.

C. Transducer Power Gain

Transducer Power Gain is the ratio of P_{avs} , maximum power available from source to P_L , power delivered to the load. As maximum power is obtained when input impedance of circuit network is equal to conjugate complex number of power impedance, if $\Gamma_{in} = \Gamma_s$, transducer power gain is represented by

$$G_{T} = \frac{Power \ delivered \ to \ the \ load}{Power Available from the source}$$

$$= \frac{P_{L}}{P_{avs}} = \frac{|S_{21}|^{2} (1 - |\Gamma_{S}|^{2})(1 - |\Gamma_{L}|^{2})}{|(1 - S_{11}\Gamma_{S})(1 - S_{22}\Gamma_{L}) - (S_{12}S_{21}\Gamma_{S}\Gamma_{L})|^{2}}$$
(2)

where, Γ_I indicates load reflection coefficient.

D. Available Power Gain

Available Power Gain, G_A is the ratio of P_{avs} , power available from the source, to P_{avn} , power available from (2-port network) respects, $G_A = \frac{P_{avn}}{P_{avs}}$. Power gain is P_{avn}

when $\Gamma_{in} = \Gamma^*_{s}$. Therefore Available Power Gain is given by:

$$G_{A} = \frac{Power \ available \ from \ the \ amplifier}{Power \ available \ from \ the source}$$

$$= \frac{P_{avn}}{P_{our}} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11}\Gamma_{S}|^{2}} |S_{21}|^{2} \frac{1}{|1 - S_{22}\Gamma_{L}|^{2}}$$
(3)

That is, the above formula indicates power gain when input and output are matched [5].

E. Noise Figure

Signals and noises are applied to the input port of an amplifier to amplify the gain of the amplifier and noise of amplifier itself is added to the output. Therefore, SNR (Signal to Noise Ratio) of the output port is smaller than that of the input port. The ratio of SNR of input port to the output port is referred to as noise figure and is larger than 1 dB. Typically, noise figure of 2-port transistor has a minimum value at the specified admittance given by formula:

$$F = F_{\min} \frac{R_V}{G} |Y_s - Y_{op}|^2 \tag{4}$$

For low noise transistors, manufactures usually provide

 F_{\min} , R_N , Y_{opt} by frequencies. N defined by formula for desired noise figure:

$$N = \frac{|\Gamma_s - \Gamma_{opt}|^2}{1 - |\Gamma_s|^2} = \frac{F - F_{\min}}{4R_N / Z_0} |1 + \Gamma_{opt}|^2$$
 (5)

F. Condition for Matching

The scattering coefficients of transistor were determined. The only flexibility permitted to the designer is the input/output matching circuit. The input circuit should match to the source and the output circuit should match to the load in order to deliver maximum power to the load. After stability of active device is determined, input/output matching circuits should be designed so that reflection coefficient of each port is correlated with conjugate complex number as given below [6]:

$$\Gamma_{IN} = \Gamma_S^* = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L} \tag{6}$$

$$\Gamma_{OUT} = \Gamma_L^* = S_{22} + \frac{S_{12}S_{21}\Gamma_S}{1 - S_{11}\Gamma_S}$$
 (7)

The noise figure of the first stage of the receiver overrules the noise figure of the whole system. To get minimum noise figure using transistor, power reflection coefficient should match with Γ_{opt}^* and load reflection coefficient should match with Γ_{out}^*

$$\Gamma_{s} = \Gamma_{opt} \tag{8}$$

$$\Gamma_{L} = \Gamma_{out}^{*} = \left(S_{22} + \frac{S_{12}S_{21}\Gamma_{s}}{1 - S_{11}\Gamma_{s}}\right)$$
(9)

III. DESIGN OF LNA

Low noise amplifier has been design based on the sparameters were obtained from calculation and simulation using ADS. The S-parameter for each LNAs are shown in Table I and Table II.

Table I: S-PARAMETERS OF CASCODE LNA

Freq/dB	S ₁₁	S ₁₂	S ₂₁	S ₂₂
5.8GHZ	0.637	0.040	2.873	0.536
Angle	-89.645	29.157	86.557	-24.058

Table II: S-PARAMETERS OF SINGLE LNA

L	Freq/dB	S_{11}	S_{12}	S_{21}	S_{22}
ſ	5.8GHz	0.712	0.065	8.994	0.237
	Angle	-86.54	33.878	178.66	-10.456

The overall performance of the low noise amplifier is determined by calculating the transducer gain G_T , noise figure F and the input and output standing wave ratios, VSWR_{IN} and VSWR_{OUT}. The optimum, Γ_{opt} and Γ_L were obtained as $\Gamma_{opt} = 17.354 + j50.13$ and $\Gamma_L = 79.913$ -j7.304 for single LNA. While, $\Gamma_{opt} = 21 + j48.881$ and $\Gamma_L = 79.913$ - j7.304 for cascode LNA.

Figure 4 shows, the complete schematic of a single stage LNA and Figure 5 shows the completed schematic of a cascode LNA. A T-matching network is used to match the input impedance. Using Smith Chart matching techniques,

the component values are shown in Table III achieve the targeted overall gain of 35dB, it was decided to design cascode and cascaded technique.

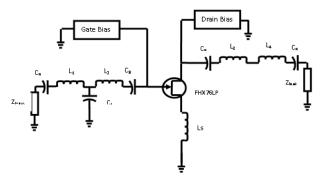


Fig. 4. The Schematic Circuit for Single LNA

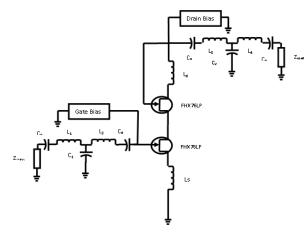


Fig. 5. The Schematic Circuit for Cascode LNA

Table III: LNA parameters

Items	Components of Matching				
	Cascode LNA	Single LNA			
L_1	6.14 nH	3.661 nH			
L_2	2.4 nH	0.8799 nH			
L_3	1.55 nH	3.60 nH			
L_4	1.62 nH	0.88 nH			
C_1	0.315 pF	0.5 pF			
C_2	429.9fF				

IV. SIMULATION RESULT

Table IV shows the s-parameters output for comparison of LNA. It is simulated using Advanced Design System (ADS). The simulation recorded that the amplifier gain S_{21} is 36.3dB.The input insertion loss S_{11} is -21.1dB, overall noise figure (NF) was 1.2dB and the output insertion loss S_{22} is -27.7dB.The reflection loss S_{12} is -42.5dB. These values were within the design specification and were accepted. The output S-parameter as shown in consistence figure 6a, 6b and 6c.

Table IV: COMPARISON OF OUTPUT LNAS

Table 17. Committed on or Center Entre						
S-Parameters (dB)	S_{11}	S_{12}	S_{21}	S_{22}	NF	(k)
Single LNA	-12.8	-20.2	17.0	-27.9	0.76	1.02
Cascode LNA	-18.9	-22.1	19.5	-20.0	1.2	1.02
Cascode and Cascaded LNA	-21.1	-42.5	36.3	-27.7	1.20	1.26

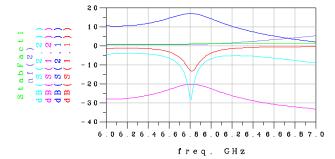


Fig. 6a. S-parameters for single LNA

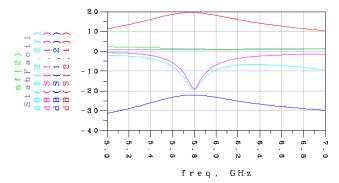


Fig. 6b. S-parameters for single cascode

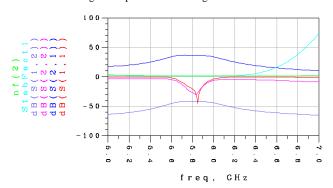


Fig. 6c. S-parameters for cascode and cascaded

V. MEASUREMENT

Referring to the measurement setup shown in Figure 7, the S parameter of the amplifier; whereas S_{11} , S_{12} , S_{21} and S_{22} are measured using the network analyzer. The gain of the amplifier is measured using the setup in Figure 8. The noise figure values and 3dB bandwidth were obtained from the setup in Figure 9. Before all measurement is recorded, a standard procedure of calibration is conducted to ensure that the measurement tools were calibrated.

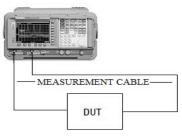


Fig. 7. Setup for device under test S Measurement using Network Analyzer

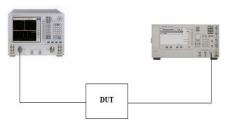


Fig. 8. Frequency response measurement setup for device under test.

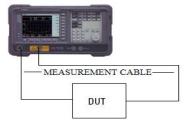


Fig. 9. Measurement setup for device under test for Noise Figure

VI. RESULT

The result for LNA RF front-end module is presented in Table V. From the tabulated values, the S_{11} parameter measured was 11.4 dB. This is -1.4 dB less than targeted value which is acceptable. S22 measured value is -12.3 dB which is less than targeted and is acceptable. The return loss required S₁₂ obtained is less than -39 dB. The related measured gain S₂₁ for the LNA amplifier was 36.8 dB measured using the setup Figure 6. The noise figure values obtained from setup Figure 8 was 1.37 dB which complied with the targeted value of less 3 dB. The use of T lump reactive element and microstrip line matching technique at the input of the LNA contributes the best performance for the amplifier. This matching technique was used to provide high-loaded Q factor for better sensitivity and thus minimized the noise figure. The elements of T-network were realized in the form of lump reactive elements and microstrip line impedance. The 3 dB bandwidth for the amplifier is measured using setup Figure 7. The 3dB bandwidth obtained is 1.24 GHz compliant with targeted result of more than 1 GHz. The measured parameters for the LNA were also compliant with the formulae (1) to (9) using MathCAD analysis.

TABLE V: S-PARAMETERS MEASURED

S Parameters	Targeted	Measured	
Input Reflection S ₁₁ dB	<-10 dB	-11.4	
Return Loss S ₁₂ dB	<-10 dB	-39.1	
Forward transfer S ₂₁ dB	>35 dB	36.8	
Output ReflectionS ₂₂ dB	<-10 dB	-12.3	
NF dB *	<3 dB	1.3	
BW MHz	>1000	1240	

VII. CONCLUSION

A low noise amplifier has been simulated and developed

successfully with IEEE standard 802.16 WiMAX. It is observed that the simulated and experiment results have not much different. It is observed that the gain of the simulated analysis is 36.3 dB and the experimental value is 36.8 dB. It is important to take note when designing the amplifier to match the amplifier circuits. The 5.8GHz LNA has been developed successfully and the circuit cab contributed to the front end receiver at the described frequency. For better performance in gain of the amplifier, it can be achieved by increasing the number of stages to improve the gain and noise figure of the design. Higher gain would expand the coverage or communication distance.

REFERENCES

- M.Amor, M.Loulou, and D.Pasquut. A wideband CMO LNA design for WiMAX application. IEEE Proceeding 2008.
- [2] Ruey Lue Wang, Shih-Chih Chen, Cheng Lin Huang, hien Hsuan, and Lie, Yi-Shu Lin. 2-6GHz Current eused LNA With Transformer-type Inductors. IEEE roceeding 2008.
- [3] Leon, Michael Angelo G.Lorenzo and Maria Theresa G.De. Comparison of LNA Topology for Wimax Application in a Standard 90-nm CMOS Process. 12th International Conference on Computer Modelling and Simulation. 2010. pp-642-647.
- [4] M.Pozar, and David. Microwave and RF Wireless System. Third Avenue, N.Y.John Wiley & Sons in, 2001.
- [5] Gonzalez, and Guillermo. Microwave Transistor Amplifier. 996.
- [6] Othman A.R, Hamidon A.H,Ting J.T.H and Mustaffa M.F.High Gain Cascaded Low Noise Amplifier Using T-Matching Network. 4th ISBC 2010.
- [7] Weber, Wuezhan Wang and Robert. Design of a CMOS Low Noise Amplifier (LNA) at 5.8GHz and its Sensitivity Analysis. 11th NASA Symposium 2003

Abu Bakar Ibrahim received the B.S degree in electrical engineering and master degree from University of Technology Malaysia in 1998 and 2000 respectively. Currently is working toward the Ph.D. degree in development of low noise amplifier front-end receiver for wireless application at the Universiti Teknikal Malaysia Melaka. Email: abupsp@gmail.com

Abdul Rani Othman received B.eng in electrical and Electronic from University of Strathclyde and master degree in electrical and electronic from University Technology of Malaysia. He received Ph.D. in RF frontend receiver for wireless application from University of Teknikal Malaysia Melaka and now he joined Universiti Teknikal Malaysia Melaka. Email: rani@utem.edu.my

Mohd Nor Husain received B.S in electrical and Electronic Engineering from University of Strathclyde and master degree in electronic communication from University of Essex England. He received Ph.D. in optical and waveguide from University of Bath England and now he joined Universiti Teknikal Malaysia Melaka. Email: drmohdnor@utem.edu.my

Mohammad Syahrir Johal received B.S in electrical Engineering from University of Western Ontario and master degree in electrical engineering from University Technology of Malaysia. Now he joined Universiti Teknikal Malaysia Melaka. His research interests include propagation wireless digital communication. Email: syahrir@utem.edu.my.