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Abstract — This study presents simulation of land cover 
classification for RazakSAT satellite. The simulation makes 
use of the spectral capability of Landsat 5 TM satellite that 
has overlapping bands with RazakSAT. The classification is 
performed using Maximum Likelihood (ML), a supervised 
classification method that is based on the Bayes theorem. 
ML makes use of a discriminant function to assign pixel to 
the class with the highest likelihood. Class mean vector and 
covariance matrix are the key inputs to the function and are 
estimated from the training pixels of a particular class. The 
accuracy of the classification for the simulated RazakSAT 
data is accessed by means of a confusion matrix. The results 
show that RazakSAT tends to have lower overall and 
individual class accuracies than Landsat mainly due to the 
unavailability of mid-infrared bands that hinders separation 
between different plant types. 
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I.  INTRODUCTION 

The Malaysian second remote sensing satellite, 
RazakSAT (Figure 1), is named after the Malaysian 
second prime minister - the late Abdul Razak, also known 
as the father of Malaysian Development. It was 
successfully launched into orbit by a Falcon 1 rocket on 
July 14, 2009, aiming to serve Malaysia with remote 
sensing data for applications mainly in agriculture, 
landscape mapping, forestry and urban planning.  

 

 
(a) (b) 

 
Figure 1. (a) RazakSAT satellite (Malaysian National Space Agency 

2007) and (b) RazakSAT Near Equatorial Orbit (NEqO) [12]. 

 
As it is meant to serve the interest of Malaysia and 

other countries (Table 1) in the near-Equatorial belt, the 
satellite was launched into a Near Equatorial Orbit 
(NEqO) with inclination 9°, to take advantage of the 
corresponding opportunities to gather images at 14 times 

daily and overcome the major obstacle for passive remote 
sensing, cloud cover [11].  
 

TABLE 1.  LIST OF COUNTRIES COVERED BY NEQO AT 9O 
INCLINATION [11] 

Continent Countries 

Asia 
India, Indonesia, Malaysia, Maldives, Philippines, Sri 

Lanka, Thailand 

Africa 

Angola, Benin, Burundi, Cameroon, Central African 
Republic, Chad, Cote d'Ivoire, Ethiopia, Gabon, 
Guinea, Kenya, Liberia, Nigeria, Rwanda, Sierra 
Leone, Somalia, Sudan, Tanzania, Uganda, Zaire 

Latin 
America 

Brazil, Colombia, Ecuador, French Guiana, Guyana, 
Panama, Peru, Surinam, Venezuela 

 
The RazakSAT satellite carries a medium-sized 

aperture camera (MAC) to be used as an earth 
observation payload. It is a push-broom type high 
resolution camera with one panchromatic and four 
multispectral bands. The panchromatic band with 2.5 m 
ground sampling resolution operates at 0.510 to 0.730 m 
wavelength. The other four bands operate at 0.450 to 
0.520 m (blue),  0.520 to 0.600 m (green), 0.630 to 
0.690 m (red) and 0.760 to 0.890 m (near infrared) 
wavelength respectively (Table 2). Unfortunately, due to 
unknown circumstances, the RazakSAT data is still 
available for users, although nearly after three and a half 
year since its launch. 
 

TABLE 2. RAZAKSAT SPECIFICATIONS [13] 

Parameter Descripion 
Altitude 685 km (nominal) 

Inclination 9º 
Spectral channels 5 visible and 1 panchromatic bands: 

Band 1: 0.450  – 0.520 m (Blue) 
Band 2: 0.520  – 0.600 m (Green) 
Band 3: 0.630  – 0.690 m (Red) 

Band 4: 0.760  – 0.890 m (Near infrared) 
Band 5: 0.510  – 0.730 m (Panchromatic) 

Ground  Sampling 5.0 m (visible) 
2.5 (panchromatic) 

Swath Width (FOV) > 20 km 
(1.675) 

IFOV 7.30 rad (visibile) 
3.65 rad (panchromatic) 

SNR > 70 
Modulation Transfer 

Frequency 
15% (visible) 

8% (panchromatic) 
Data Storage 32 Gbit 

Signal Quantization 8 bits 
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Instrument Mass 42.1 kg 
Designed Mission Lifetime  > 3 years 

 
One of the most common remote sensing satellites is 

Landsat, initiated by NASA (National Aeronautical and 
Space Administration) in 1972 [3]. The Landsat satellites 
have been providing optical data for almost 40 years. 
Landsat 1 – 3 launched in the 1970s and used 
Multispectral Scanner (MSS), while Landsat 4 – 5, 
launched in the 1980s, use Thematic Mapper (TM) as 
their main sensor. The latest Landsat 7, launched in 1999, 
uses the Enhanced Thematic Mapper (ETM+). 
Comparison between the specifications of these satellites 
is given in Table 3. Landsat 5 was launched on March 1, 
1984 with an expected lifetime of 5 years, and, after more 
than 27 years of operation, has provided the global 
science community with over 900,000 individual scenes 
and is the longest running satellite of the series (Figure 
2).  
 

 
Figure 2. Landsat 5 satellite [16] 

 

TABLE 3. LANDSAT 5 TM SATELLITE SPECIFICATIONS [3] 

Parameter Description 
Spectral Bands 4 VNIR, 2 SWIR, 1 thermal 

Spatial Resolution 
(IFOV) 

30 m – VNIR, SWIR 
120 m – thermal 

Sampling 1 samples/IFOV along scan 
Cross Track 

Coverage 
185 km 

Radiometric 
Resolution 

8 bits 

Radiometric 
Calibration 

Internal lamps, shutter and black body 

Scanning Mechanism 
Bidirectional Scanning with Scan Line 

Corrector 
Period of  
operation 

Landsat 5: 1984 – present 
 

Main sensor 
MSS 
TM 

Altitude 705 km 
Repeat Cycle 16 days 

Equatorial Crossing  9:45 AM +/- 15 minutes 
Type Sun synchronous, near polar 

Inclination 98.2° 

 
Landsat 5 TM level 1 data come in Product 

Generation System (LPGS) format and need to be 
converted into a physically meaningful common 
radiometric unit, representing the at-sensor spectral 
radiance. The Level 1 Landsat 5 TM data received by 
users are in scaled 8-bit numbers, calQ , or also known as 

digital number (DN). Conversion from calQ  to spectral 

radiance, λL , can be done by using [5]: 

 

 
   maxλ min λ

λ cal calmin min λ
calmax calmin

L L
L Q Q L

Q Q


  


  (1) 

 
where, λL  is the spectral radiance at the sensor's aperture 

(W/ m2 sr μm), calQ  is the quantized calibrated pixel 

value (DN), calminQ is the minimum quantised calibrated 

pixel value corresponding to minλL  (DN), calmaxQ  is the 

maximum quantised calibrated pixel value corresponding 
to maxλL  (DN), min λL  is the spectral at-sensor radiance 

that is scaled to calminQ  (W/ m2 sr μm), maxλL  is the 

spectral at-sensor radiance that is scaled to calmaxQ  (W/ 

m2 sr μm) and calminQ  and calmaxQ  are 1 and 255 

respectively.  
Table 4 shows min λL , maxλL  and the mean 

exoatmospheric solar irradiance ( λE ). 

 

TABLE 4. LANDSAT TM SPECTRAL RANGE, POST-
CALIBRATION DYNAMIC RANGES AND THE MEAN 

EXOATMOSPHERIC SOLAR IRRADIANCE [5] 

Band Spectral range 
Centre 

wavelength minλL  maxλL  λE  

 (m) (W/ m2 sr μm)  

1 0.452 – 0.518 0.485 -1.52 169 1983 
2 0.528 – 0.609 0.569 -2.84 333 1796 
3 0.626 – 0.693 0.660 -1.17 264 1536 
4 0.776 – 0.904 0.840 -1.51 221 1031 
5 1.567 – 1.784 1.676 -0.37 30.2 22.0 
6 10.45 – 12.42 11.435 1.2378 15.3032 N/A 
7 2.097 – 2.223 2.223 -0.15 16.5 83.44 

 
Scene-to-scene variability can be reduced by 

converting the at-sensor spectral radiance to top-of-
atmosphere (TOA) reflectance, also known as in-band 
planetary albedo. By performing this conversion, the 
cosine effect of different solar zenith angles due to the 
time difference between data acquisitions is removed, 
different values of the exoatmospheric solar irradiance 
arising from spectral band differences are compensated 
and the variation in the Earth–Sun distance between 
different data acquisition dates is corrected. The TOA 
reflectance can be computed by using [5]: 
 

 
2

λ
λ

λ s

πL d
ρ

E cos θ
      (2)

      
 
where, λρ  is the planetary TOA reflectance (unitless), π 

is the mathematical constant equal to ~3.14159 (unitless), 
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λL  is the spectral radiance at the sensor's aperture (W m-2 

sr-1 μm-1), d is the Earth–Sun distance (astronomical 
units), λE is the mean exoatmospheric solar irradiance 

(W m-2 μm-1) and sθ  is the solar zenith angle (degrees). d 

can be generated from the Jet Propulsion Laboratory 
(JPL) Ephemeris at http://ssd.jpl.nasa.gov/?horizons or 
can be obtained from the literature (e.g.[5]). Conversion 
to at-sensor spectral radiance and TOA reflectance can be 
performed by using built-in tools in high-end image 
processing software, such as ENVI. 
 This study attempts to simulate the RazakSAT land 
cover classification by making use of the Landsat data. 
The classification is carried out by means of Maximum 
Likelihood method. 
 

II. MAXIMUM LIKELIHOOD (ML) CLASSIFICATION 

ML is a supervised classification method derived from 
the Bayes theorem, which states that the a posteriori 
distribution P(i|), i.e., the probability that a pixel with 
feature vector   belongs to class i, is given by: 
 

     
 

P i P i
P i |

P


ω |
ω

ω
    (3) 

 
where,  P iω | is the likelihood function,  P i is the a 

priori information, i.e., the probability that class i occurs 
in the study area and  P ω is the probability that  is 

observed, which can be written as: 
 

     
M

i 1
P P | i P i


ω ω     (4) 

 
where, M is the number of classes.  P ω  is often treated 

as a normalisation constant to ensure  
M

i 1
P i |


 ω  sums to 

1. Pixel x is assigned to class i by the rule: 
 
xi    if    P i | P j |ω ω for all j≠i   (5) 

 
ML often assumes that the distribution of the data within 
a given class i obeys a multivariate Gaussian distribution. 
It is then convenient to define the log likelihood (or 
discriminant function): 

 

     
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Since log is a monotonic function, Equation (3) is 
equivalent to: 

 
xi  if i jg ( ) g ( )ω ω for all j≠i    (7) 

 
Each pixel is assigned to the class with the highest 

likelihood or labelled as unclassified if the probability 
values are all below a threshold set by the user [7]. The 
general procedures in ML are as follows: 
 
1. The number of land cover types within the study area 

is determined. 
2. The training pixels for each of the desired classes are 

chosen using land cover information for the study 
area. For this purpose, the Jeffries-Matusita (JM) 
distance can be used to measure class separability of 
the chosen training pixels. For normally distributed 
classes, the JM separability measure for two 
classes, Jij, is defined as follows [7]: 

 

 ijJ 2 1 e      (8) 

 
where,  is the Bhattacharyya distance and is given 
by [7]: 
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 (9) 
 
Jij ranges from 0 to 2.0, where Jij > 1.9 indicates good 
separability of classes, moderate separability for 1.0 
  Jij  1.9 and poor separability for Jij < 1.0. 

 
3. The training pixels are then used to estimate the 

mean vector and covariance matrix of each class. 
 
4. Finally, every pixel in the image is classified into 

one of the desired land cover types or labeled as 
unknown. 

 
In ML classification, each class is enclosed in a 

region in multispectral space where its discriminant 
function is larger than that of all other classes. These 
class regions are separated by decision boundaries, 
where, the decision boundary between class i and j occurs 
when: 
 

i jg ( ) g ( )ω ω     (10) 
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For multivariate normal distributions, this becomes: 
 

       

   

 

 

t 1
i i

t 1
j

j

1 N 1
C ln 2 ln C

2 2 2
1

C
2

0N
ln 2

2
1

ln C
2





      

     
 
 
  
  
 
 
 
 

i i

j j

ω μ ω μ

ω μ ω μ
 

 (11) 
 
which can be written as: 
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This is a quadratic function in N dimensions. Hence, if 
we consider only two classes, the decision boundaries are 
conic sections (i.e. parabolas, circles, ellipses or 
hyperbolas). 

III. ML USING LANDSAT DATA 
 

The study area was located in Selangor, Malaysia, 
covering approximately 840 km2 within longitude 101 
10’ E to 10130’ E and latitude 299’ N to 315’ N. The 
satellite data come from bands 1, 2, 3, 4, 5 and 7 of 
Landsat-5 TM dated 11th February 1999 (Figure 3(b)). 
The data was chosen because have minimal cloud and 
free from haze, which normally occurs at the end of the 
year [2]. Prior to any data processing, the cloud and its 
shadow were masked out based on threshold approach 
[1]. Visual interpretation of the Landsat data was then 
performed, aided by a reference map (Figure 3(a)), 
produced in October 1991 using ground surveying and 
SPOT satellite data by the Malaysian Surveying 
Department and Malaysian Remote Sensing Agency. 11 
main classes identified were water, coastal swamp forest, 
dryland forest, oil palm, rubber, industry, cleared land, 
urban, sediment plumes, coconut and bare land.  

 
 
 

 
 

Figure 3. The study area from (a) the land cover map and (b) the 
Landsat-5 TM with bands 5 4 and 3 assigned to the red, green and blue 

channels. Cloud and its shadow are masked in black. 

Training areas were established by choosing one or 
more polygons for each class. In order to select a good 
training area for a class, the important properties taken 
into consideration are its uniformity and how well they 
represent the same class throughout the whole image [8]. 
Class separability of the chosen training pixels (extracted 
from the training area) was determined by means of the 
JM distance. Fifty pairs have JM distance between 1.9 
and 2.0 indicating good separability, four from 1.0 to 1.9 
indicating moderate separability and one less than 1.0 
indicating poor separability. The worst separability, 
possessed by the urban – industry pair (0.947), was 
expected since both have very similar spectral 
characteristics.  For each class, these training pixels 
provide values from which to estimate the mean and 
covariances of the spectral bands used.  

The outcome of ML classification after assigning the 
classes with suitable colours, is shown in Figure 4: 
coastal swamp forest (green), dryland forest (blue), oil 
palm (yellow), rubber (cyan), cleared land (purple), 
coconut (maroon), bare land (orange), urban (red), 
industry (grey), sediment plumes (sea green) and water 
(white). Clouds and their shadows are masked black. The 
areas in terms of percentage and square kilometres were 
also computed; the classes with the largest area are oil 
palm, cleared land and industry. Although being similar, 
coastal swamp forest and dryland forest can be clearly 
seen in the south-west and north-east of the classified 
image, as indicated by the reference map. Coastal swamp 
forest covers most of the Island and coastal regions in the 
south-west of the scene. Most of the dryland forest can be 
recognised as a large straight-edged region in the north-
east. Oil palm and urban dominate the northern and 
southern parts respectively. Rubber appears as scattered 
patches that mostly are surrounded by oil palms. Industry 
can be recognised as patches near the urban areas, 
especially in the south-west and north-east. Coconut can 
be seen in the coastal area in the north-west of the image. 
A quite large area of bare land can be seen in the east, 
while cleared land can be seen mostly in the north, south 
and south-east of the image.  
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Figure 4.  ML classification using band 1, 2, 3, 4, 5 and 7 of Landsat 
TM and the class areas in terms of square kilometre and percentage 

 
Accuracy assessment of the ML classification was 

determined by means of a confusion matrix or sometimes 
called error matrix (Table 5) [10], which compares, on a 
class-by-class basis, the relationship between reference 
data (ground truth) and the corresponding results of a 
classification [15]. Such matrices are square, with the 
number of rows and columns equal to the number of 
classes, i.e. 11. For all classes, the numbers of reference 
pixels are: rubber (103), water (9129), coastal swamp 
forest (14840), dryland forest (6162), oil palm (10492), 
industry (350), cleared land (1250), urban (2309), 
coconut (159), bare land (313) and sediment plumes 
(1881). The diagonal elements in Table 5 represent the 
pixels of correctly assigned pixels and are also known as 
the producer accuracy. Producer accuracy is a measure of 
the accuracy of a particular classification scheme and 
shows the percentage of a particular ground class that is 
correctly classified. It is calculated by dividing each of 
the diagonal elements in Table 5 by the total of each 
column respectively: 
 

aa

a

c
Producer accuracy 100%

c
     (13) 

 
 where,  

th th
aa

a

c element at position a row and a column

c column sums




 
 

The minimum acceptable accuracy for a class is 90% 
[10]. It is obvious that all classes possess producer 
accuracy higher than 90%: bare land gives the highest 
(100%) and oil palm the lowest (92.4%). The relatively 
low accuracy of oil palm is mainly because 6% and 1% 
of its pixels were classified as coconut and cleared land. 
The misclassification of oil palm pixels to the coconut 
class is due to the fact that oil palm and coconut have a 
similar physical structure, so tend to have similar spectral 
behaviour and therefore can easily be misclassified as 
each other. User Accuracy is a measure of how well the 
classification is performed. It indicates the percentage of 
probability that the class which a pixel is classified to on 
an image actually represents that class on the ground 
[10]. It is calculated by dividing each of the diagonal 

elements in a confusion matrix by the total of the row in 
which it occurs: 

 

ii

i

c
User accuracy 100%

c 
     (14) 

 
where, 

ic row sum  . Coastal swamp forest, dryland 

forest, oil palm, sediment plumes, water, bare land and 
urban show a user accuracy of more than 90%. Rubber, 
cleared land and industry possess accuracy between 70% 
and 90%, while the worst accuracy is possessed by 
coconut (16%). The low accuracy of coconut is because 
the oil palm pixels tend to be classified as coconut 
because they having similar spectral properties to oil 
palm. A measure of overall behaviour of the ML 
classification can be determined by the overall accuracy, 
which is the total percentage of pixels correctly 
classified: 
 

U

aa
a 1

c
Overall accuracy 100%

Q
 


  (15) 

 
where, Q  and U  is the total number of pixels and 
classes respectively. The minimum acceptable overall 
accuracy is 85% [6]. The Kappa coefficient,   is a 
second measure of classification accuracy which 
incorporates the off-diagonal elements as well as the 
diagonal terms to give a more robust assessment of 
accuracy than overall accuracy. It is computed as [9]: 
 

U U
aa a a

2
a 1 a 1

U
a a

2
a 1

c c c

Q Q
c c

1
Q

 

 

 




 



 


   (16) 

 
where, ac row sums  . The ML classification yielded 

an overall accuracy of 97.4% and kappa coefficient 0.97, 
indicating very high agreement with the ground truth.  
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TABLE 5. CONFUSION MATRIX FOR ML CLASSIFICATION 
USING LANDSAT DATA 

 

IV. ML USING SIMULATED RAZAKSAT DATA 

Table 6 shows relationship between Landsat and 
RazakSAT satellite. For comparison, some of MODIS 
bands are also shown. Compared to Landsat, RazakSAT 
only has 4 multispectral bands and does not measure in 
mid-infrared wavelengths. Here, ML classification using 
bands 1, 2, 3 and 4 of Landsat dataset (i.e. correspond to 
bands 1, 2, 3 and 4 of RazakSAT) was performed in order 
to simulate RazakSAT classification. The labelling and 
colour scheme in Figure 4 were used.  Figure 5 is the ML 
classification using (a) Landsat bands 1, 2, 3 and 4 and (b) 
same as shown in Figure 4, but is shown again for 
convenient. The bottom images are the enlarged versions 
of the region in the blue box in the top images. The circles 
indicate areas where apparent misclassification occurred; 
i.e. cleared land pixels (bottom circle) and industry pixels 
(top circle) being misclassified as urban.   

TABLE 6. RELATIONSHIP BETWEEN MODIS, LANDSAT AND 
RAZAKSAT SATELLITE 

 

 

The corresponding confusion matrix is given in Table 
7; the overall classification accuracy declines from 97% 
(Figure 5(b)) to 88% (Figure 5(a)).  

 
Figure 5. ML classification of the study area in Selangor, Malaysia using 

(a) bands 1, 2, 3 and 4 (top), (b) bands 1, 2, 3, 4, 5 and 7 (top) and 
enlarged versions of the area in the blue box (bottom). The Circles 

indicate areas where apparent misclassification occurred. 

Table 8 shows the producer and user accuracy of 
simulated RazakSAT data for all classes; those of Landsat 
is also given for comparison. To better visualise the 
difference, plots of producer and user accuracy for the 
simulated RazakSAT and Landsat data are given in Figure 
6. The highest producer accuracy is possessed by bare 
land, industry and water, while urban, cleared land and 
sediment plumes have the worst accuracy. For user 
accuracy, water, bare land and coastal swamp forest have 
the highest accuracy while rubber, coconut and cleared 
land have the lowest accuracy. 

The lower user accuracies of rubber, coconut and 
cleared land indicates high commission error for these 
classes, meaning that there is a probability (proportionate 
to the error) that pixel classified as rubber, coconut and 
cleared land may not actually exist on the ground. On the 
other hand, urban, cleared land and sediment plumes have 
the worst producer accuracy due to the high omission 
error, meaning that there is a probability (proportionate to 
the errors) that the pixels for these classes were classified 
incorrectly. The maximum wavelength that RazakSAT 
can sense is about 0.9 m, while that of Landsat is 2.35 
m. Wavelengths beyond 1.3 m, e.g. 1.4 m and 1.9 m 
are known as water absorption bands are useful to 
differentiate between land and water boundary as well as 
between different plant types. The water in the leaf 
absorbs strongly at these wavelength. Clearly, these 
wavelengths are useful to differentiate plants due to the 
different amount of water stored in different plant leaves. 
This leads to the smaller producer and user accuracy of 
the simulated RazakSAT data compared to the Landsat 
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data in most plant classes. It can be seen that non plant 
classes, i.e. urban and cleared land, are also affected due 
to normally having minimal amount vegetation and 
surfaces with different moisture content. As expected the 
least difference is shown by industry and bare land due to 
having almost no vegetation and covered with uniform 
reflective surfaces. 

This shows that when only considering the spectral 
capability of the bands, RazakSAT tends to produce 
classification with lower accuracy than Landsat. However, 
RazakSAT bands have a higher spatial resolution (5 m) 
than Landsat (30 m) and is equipped with a panchromatic 
band (2.5 m spatial resolution), which may be able to 
increase the classification accuracy. 

TABLE 7. CONFUSION MATRIX FOR ML CLASSIFICATION 
USING SIMULATED RAZAKSAT DATA 

 
 

TABLE 8. PRODUCER AND USER ACCURACY OF 
CLASSIFICATION USING SIMULATED RAZAKSAT AND 

LANDSAT DATA 
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Figure 6. Plots of producer (top) and user (bottom) accuracy for 

simulated RazakSAT and Landsat data 

V. CONCLUSION 

The study presented here makes use of the moderate 
resolution Landsat 5 TM data to simulate the 
performance of RazakSAT classification. The 
unavailability of RazakSAT data allows limited analysis 
to anticipate its actual performance. The simulation of 
RazakSAT classification analysis using Landsat data 
shows that although without the mid-infrared bands, 
RazakSAT is still able to classify the study area with 
accuracy only slightly lower than Landsat. It is 
undeniable that the main shortcoming of RazakSAT is the 
unavailability of mid-infrared bands that hampers its 
capability to distinguish between vegetations and 
surfaces. Nonetheless, the availability of a panchromatic 
band and the higher spatial resolution of the multispectral 
bands confer major advantages of RazakSAT compared 
to the Landsat. 
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