
 

 

  
Abstract—In this paper, fluid flow patterns of steady 

incompressible flow inside shear driven cavity are studied. The 
numerical simulations are conducted by using lattice Boltzmann 
method (LBM) for different Reynolds numbers. In order to simulate 
the flow, derivation of macroscopic hydrodynamics equations from 
the continuous Boltzmann equation need to be performed.  Then, 
the numerical results of shear-driven flow inside square and 
triangular cavity are compared with results found in literature 
review. Present study found that flow patterns are affected by the 
geometry of the cavity and the Reynolds numbers used. 
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I. INTRODUCTION 
OMPUTATIONAL Fluid Dynamics (CFD) has been 
extensively used for the analysis of system pertaining to 

engineering field like fluid flows, heat transfer, chemical 
reaction, evaporation, condensation [1]. 

Over the years, fluid flow behaviors inside lid driven 
cavities have drawn many interested researchers and 
scientists. Applications of lid driven cavities are in material 
processing, dynamics of lakes, metal casting, galvanizing 
and etc [2]. Numerous studies have been carried out on flow 
patterns inside a cavity. Excellent reviews on lid driven 
square cavity were done in [3]-[5]. On the other hand, the 
numerical simulation of driven triangular cavity flow had 
been conducted in [6]-[8]. These researchers used the 
conventional CFD method which is by solving the 2-D 
Navier Stokes equation. 

In recent years, there has been a rapid progress in 
developing the lattice Boltzmann method (LBM) as an 
efficient alternative way to the conventional CFD methods.  
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The main advantage of LBM is its flexibility in terms of 
programming and better accuracy in dealing with 
complicated boundary of geometries [9].  In addition to that, 
the LBM is also better than the classical CFD in the range of 
small to moderate Reynolds numbers if dealing with flows in 
complex geometries [10]. 

II.  LATTICE BOLTZMANN SCHEME 
The basic idea of Boltzmann work is that a gas is 

composed of interacting particles that can be explained by 
classical mechanics [11].   The mechanics can be very simple 
where it contains streaming in space and billiard-like 
collisions interactions [11].  In addition to that, since there 
are many particles involves, a statistical treatment is needed 
and is more suitable.  

The statistical treatment of a system can be represented in 
terms of distribution function.  This distribution functions 

 , ,   is the number of particles which its positions 
and velocities are  and  at time  respectively.  Each 
particle would move from  to ∆  if there is no 
collision occurs.  Each particle velocity would change from  

∆  in which  is the acceleration due to external forces 
on a particle at  with a velocity of .  No collision means 
there is conservation of molecules which can be represented 
in equations of [12] : 

  ∆ , ∆ , ∆ , , 0 (1) 

However, if there is collision occurs, the equation represent 
this particular case is as follow: 

∆ , ∆ , ∆ , ,  Ω    (2) 

where , ,  is the single particle distribution function 
with descrete velocity of c and Ω  is the 
Boltzmann collision operator. It is from this equation that 
Bhatnagar-Gross-Krook (BGK) collision model was 
developed and further derived to become BGK - LBM 
equation. 

In general, the descretised version of BGK LBM equation 
can be written as follow: 
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Where  is equilibrium distribution function  and  is 
the time relaxation.  

The Lattice Boltzmann model with BGK collision 
operator or BGK model in short, is the classical LB fluid 
model. This model is most often used to solve the 
incompressible Navier-Stokes equations. 

III. NUMERICAL PROCEDURE 
In this study, apart from square cavity geometry, two 

different types of triangle geometries were also considered. 
The first type is an isosceles triangle with the 90° being at 
the top right corner.  On the other hand, the second type is an 
isosceles triangle with 90° being at the top left corner. The 
value of Reynolds (Re) numbers is varied for each case of 
cavity geometry. 

The simulations of flow of lid driven square cavity are 
conducted for different range of Reynolds (Re) numbers.  
The top wall velocity, U was maintained at 0.1 lattice unit 
per second (lu/s) while the velocity of other three walls 
which is right, left and below was set to 0 lu/s.  The fluid 
temperature is maintained to be constant (isothermal). The 
Re numbers are varied from 7500, 9000, and 12500. 

On the other hand, the simulation of flow in shear driven 
triangular cavity is performed for Re number of 1000, 1500, 
and 2000. The rest of the parameters are equal to the square 
cavity. 

IV. SIMULATION RESULTS 

A.  Shear Driven Square Cavity 
The graph of velocity profile at mid height of each x and y 

axis were plotted for Reynolds number of 7500. The graph 
obtained in Fig. 1 for Re number of 7500 were compared 
with the numerical results in [3].  Good agreements between 
LBM and in [3] have been found for Re number equal to 
7500.   

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Velocity profile at mid-height (x-velocity,Ux & y-  
velocity,Uy) of cavity for Re number 7500. Line-LBM and symbol- 

Ghia et al[3] 

 

 

 

 

 

Apart from the numerical results, the streamline patterns 
were also shown for each Re number. These patterns are 
plotted when steady state solution is achieved.  The 
streamline patterns are shown as in Fig. 2 to Fig 4.   The 
figures depict that there is addition in terms of the number of 
secondary vortex when the Re number is increased.  As 
shown in the Fig. 4, the number of secondary vortex is 
increase from 3 to 4 when the Reynolds number is increased 
from 9000 to 12500. 

 
 

Fig. 2 Streamline patterns for Re number of 7500 

 

 
 

Fig. 3 Streamline patterns for Re number of 9000 

 

 
 

Fig. 4 Streamline patterns for Re number of 12500 

 

The location of the primary vortex is also plotted on a 
graph as shown in Fig. 5. From the graph, it shows that the 
primary vortex moves downstream as Re number increases. 
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Fig. 5 Grap
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Fig. 8 (a)-(c) 
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