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Abstract.  

In an attempt to decrease weight,  new commercial and military aircraft are designs with unitised 

monolithic metal structural components which contains of thinner ribs (i.e., walls) and webs (i.e., 

floors). Most of the unitised monolithic metal structural components are machined from solid plate or 

forgings with the start-to-finish weight ratio of 20:1. The resulting thin-walled structure often suffers 

a deformation which causes a dimensional surface error due to the action of the cutting force 

generated during the machining process. To alleviate the resulting surface errors, current practices 

rely on machining through repetitive feeding several times and manual calibration which resulting in 

long cycle times, low productivity and high operating cost. A finite element analysis (FEA) 

machining model is developed in this project to specifically predict the distortion or deflection of the 

part during end milling process. The model aims to provide an input for downstream decision making 

on error compensation strategy when machining a thin-wall unitised monolithic metal structural 

components. A set of machining tests have been done in order to validate the accuracy of the model 

and the results between simulation and experiment are found in a good agreement. 

Introduction 

The manufacturing demands faced by the aerospace industry, with experts forecasting 13,000 new 

aircraft over the next 20 years leads to the production of thin-wall monolithic parts [1]. Airframe 

designs for modern commercial and military aircraft contain hundreds of unitized monolithic metal 

structural components which contains of thinner ribs (i.e., walls) and webs (i.e., floors). Thin-wall 

machining of monolithic parts allows for higher quality and precise parts in less time, impact business 

issues including inventory and Just-In-Time (JIT) manufacturing. However, because of the poor 

stiffness, the resulting thin-walled structure often suffers a deformation which causes a dimensional 

surface error due to the action of the cutting force generated during the machining process. To 

alleviate the resulting surface errors, current practices rely on machining through repetitive feeding 

several times and manual calibration which resulting in long cycle times, low productivity and high 

operating cost.  

 Advancement in computational method, leads to the use of finite element analysis software to 

simulate the manufacturing process over the past decade. However, modelling of the machining 

simulation still poses a great debate among researcher due to the nature and complexity of the process.  

There has been significant reported works in predicting the deformation of thin-wall part during 

machining using finite element analysis. Liu Gang [8] adopted a Johnson-Cook constitutive material 

model relation to study the deformation when milling thin-walled part.  Budak and Altintas [2] used 

the beam theory to analyse the form errors caused by the static deformation of the slender helical 

endmill by dividing the cutter into a set of element and calculate the normal deflection acting by the 

cutting forces. The effects of workpiece and cutter dynamic deflections on the chip load are proposed 

by Elbastawi and Sagherian [4]. Included in their model is the tracking of the changing of dynamics 

stiffness of workpiece geometry. Later, Tsai and Liao [3] developed an iteration schemes to predict 

the cutting forces and form error when machining thin-wall workpiece. The cutting force distribution 
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and the cutting system deflections are solved iteratively by modified Newton-Raphson method. 

Ratchev et al. [5] investigated the modelling and simulation environment for machining low-rigidity 

components. Later in his work, Ratchev et al. [6] modelled the material removal process using 

voxel-based representations by cutting through the voxels at the tool/part contact surface and 

replacing them with equivalent set of mesh. Recently, Rai and Xirouchakis [7] consider the effects of 

fixturing, operation sequence and tool path in transient thermo-mechanical coupled milling 

simulation of thin-walled components.  

 Despite of significant works on finite element modeling of thin-wall machining has been 

developed and successfully applied [8-12], there still a need for more efficient approach on modeling 

the thin-wall machining especially in modeling the real component attribute of the workpiece and 

cutting tool instead of an idealized geometry such as a cantilever beam and a simple cylinder to 

represent the cutting tool. A finite element analysis (FEA) machining model is developed in this 

project to specifically predict the distortion or deflection of the part during end milling process. The 

model aims to provide an input for downstream decision making on error compensation strategy 

when machining a thin-wall unitized monolithic metal structural components. A set of machining 

tests have been done in order to validate the accuracy of the model and the results between simulation 

and experiment are found in a good agreement.  

 

 

Surface Error When Machining Thin-Wall Part  

 

Because of the poor stiffness of thin-wall part, deformation is more likely to occur in the 

machining of thin-wall part which resulting a dimensional form errors. Fig. 1 shows the machining 

sketch map that illustrates the deflection of the thin-wall in machining process. The shadow area 

ABCD represents the material to be removed ideally. However, under the acting of the cutting force, 

point C and A is shifted to point C’ and A’. Thus, resulting only material A’BCD is remove in 

practical machining process due to the deflection. After the tool moves away from the milling surface, 

the wall recovers elastically, and material CDC’ that should be cut remain unremoved resulting the 

surface errors [16]. 

 

 

Fig. 1. Machining sketch of thin-wall part 



 

Finite Element Models Of Thin-Wall Parts And Helical Endmill 

 

The structural of the thin-wall workpiece and helical endmill are modelled with the 

three-dimensional tetrahedron solid element. Tetrahedron solid element is preferred because of the 

complexity of the shape and to capture the change in structural properties of the wall due to material 

been removed. For the three-dimensional element, each node has three degrees of freedom, i.e, three 

displacements (δx, δy and δz) and the displacements within each element are interpolated by the nodal 

values [3]. Fig. 2 and Fig. 3 show the thin-wall component and helical endmill model respectively, for 

the deflection calculations. Only the removed part is refined for accuracy and to save the 

computational calculation time. The workpiece is modelled as a plastic object which means it can be 

deformed and cut by the endmill teeth. Consequently, when the mesh is deformed it must be 

regenerated frequently, often at every time step. The workpiece mesh must be finer than the cutting 

tool mesh because the chip geometry can sometimes only be described with very fine elements. The 

initial wall thickness ti is reduced to tc at the transient zone where the cutter flutes enter and exit the 

material in the milling process. Only the bottom part of the workpiece is held constrained. For 

simplicity, in this simulation the cutting tool is assumed to be rigid and the cutter deflection can be 

neglected.  

 

 

Fig. 2. Finite element model of thin-wall part. 

 

 

Fig. 3. Finite element model of helical endmill. 

 



 

 The Lagrangian method is adopted in the machining simulation, in which each individual node of 

the mesh follows the corresponding material particle during motion [8]. One key advantage of the 

Lagrangian mesh in simulating the machining process is the ability to know the entire time history of 

the key variables at every point during the simulation. On the other hand, if a simulation crash for any 

reason, a new simulation can start where the crashed simulation stopped. This is particularly useful 

because nearly every simulation has some sort of problem during the run. This is possible because the 

Lagrangian mesh is reformulated at nearly every time step, in order to manage the deformation of the 

material. Fig. 4 shows the FEA input for modelling the thin-wall machining. 

. 

 

Fig. 4. FEA input for modelling the thin-wall machining. 

 

Model Validation 

 

The proposed model was experimentally tested by comparing the simulation results with the 

results of experiment for an identical set of test components. The geometry of the component used in 

the simulation and experiment is 150x150x17 mm with 1.8 mm of wall thickness. The radial depth of 

cut is 0.3 mm and the axial depth of cut is 15 mm. The experimental set-up is shown in Fig. 5. All 

experimental tests were performed on a HAAS VF1 vertical machining center. Three component 

Kistler dynamometer (type 9257B) and Kistler charge amplifier (type 5070A) are used to measure the 

cutting loads, while National Instrument DAQ card is used to acquire the signal. The wall deflection 

is measured using three Lion Precision ECL 130 inductive displacement sensors. The sensors are 

mounted at three different equal locations (37.5, 75 and 112.5 mm) at the back of the workpiece. Both 

the signals from the dynamometer and displacement sensors are then been analyse using LabVIEW 

8.5.1.  

The workpiece material used in the simulation and experimental is annealed alpha-beta titanium 

alloy, Ti-6Al-4V. The chemical composition and mechanical properties of the material is shown in 

Table 1 and 2, respectively. 6 mm four flutes helical fluted carbide flat endmill with 38
o
 helix angle 

and 5
o
 ramp down angle is used in the experiment. The cutting parameters used in the simulation and 

experiment are listed in Table 3. 

 

 

 

 



 

Table 1. Chemical compositions of Ti-6Al-4V alloy (wt. %). 

Chemistry N C H O Fe Al V Ti Other el. 

% w/w, min. - - - - - 5.50 3.50 - - 

% w/w, max. 0.05 0.10 0.0125 0.20 0.30 6.75 4.50 Balance 0.40 

 

Table 2. Mechanical properties of Ti-6Al-4V alloy at room temperature. 

Density 

[kg/m
3
] 

Young’s modulus 

[GPa] 

Poisson ratio Yield strength 

[MPa] 

Hardness 

[HB] 

Elongation 

[%] 

4430 113.8 0.34 880 334 14 

 

 

 

Fig. 5. Experimental set-up. 

 

Table 3. Parameter used for simulation and experiment. 

Tool 4 flutes carbide flat endmill 

Tool diameter 6 mm 

Helix angle  38
o
 

Ramp down angle 5
o
 

Cutting speed 4244 rpm 

Feed rate                     340mm/min 

Axial cutting depth     15 mm 

Radial cutting depth 0.3 mm 

 



 

 Fig. 6 shows the simulation during the machining process. The top row shows the stress and 

temperature state during the machining process. The bottom row shows the calculated displacement 

at the cutter feed location. Fig. 7 shows the comparison between simulation and experiment. It can be 

seen that the predicated displacement matches those measured in the cutting tests very well. The 

deflection of the workpiece is small at both ends and maximum at the middle region. In this two 

graphs it can be seen clearly that the displacement and its variation obtained from simulation follow 

the same pattern and trend of those measured in the cutting test, which indicates the proposed model 

is valid. Once the deflection of the workpiece is established, it can be used for further investigation on 

error compensation strategy. 

 

 

Fig. 6. Simulation during the machining process. 

 



 

 

Fig. 7. Results comparison between simulation and experiment. 

 

Conclusions 

 

 In aerospace industry, accuracy of machined components is one of the most critical 

considerations for many manufacturers especially in where most of the part used unitised monolithic 

metal structural components which contains of thinner ribs (i.e., walls) and webs (i.e., floors). In the 

current work, a finite element analysis (FEA) model is developed to specifically predict the 

distortions or displacements for machining thin-wall component. The thin-wall component and 

helical fluted endmill is modelled with three dimensional isoparametric tetrahedron elements, which 

can accurately model the specific geometry and structural behaviour of the part and the endmill. A set 

of machining tests have been done in order to validate the accuracy of the model and the results 

between simulation and experiment are in a good agreement. The FEA deflection model would be an 

efficient means for analysing the root cause of errors induced during machining of thin-wall parts and 

provide an input for downstream decision making on error compensation. On the other hands, through 

the FEA deflection model, manufacturers can further enhance their productivity by eliminating the 

need of expensive preliminary cutting trials often require for validating the designed machining 

process plan. 
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