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Abstract 

This paper presents face recognition using 
spread fixed spread radial basis function 
neural network for security system. The face 
recognition system can be applied to security 
system such as door lock system etc. Acquired 
image will be going through image processing 
process. General preprocessing approach is 
use for normalizing the image. Radial Basis 
Function Neural Network is use for face 
recognition and Support Vector Machine is 
used as the face detector. RBF Neural Networks 
offer several advantages compared to other 
neural network architecture such as they can be 
trained using fast two stages training algorithm 
and the network possesses the property of best 
approximation. The output of the network can 
be optimized by setting suitable values of the 
center and spread of the RBF but in this paper 
fixed spread is used as there is only one train 
image for every user and to limit the output 
value. 

Keywords: component; Face recognition, 
Radial Basis Function Neural Network, Image 
Processing.

I. INTRODUCTION

Biometrics deals with the identification 
of individuals based on their biological 
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or behavioral characteristics [1]. Face 
can be defined as the front part of 
head from the forehead to the chin 
[2]. A number of biometrics have been 
proposed, researched and evaluated for 
identification applications. Face is one of 
the most acceptable biometrics because 
it is one of the most common methods of 
identification which humans use in their 
interactions [1]. Face recognition is one of 
many possible approaches to biometric 
identification therefore many biometric 
systems are based on face recognition 
in combination with other biometric 
features such as voice or fingerprints. The 
human face is a dynamic object but with 
a standard configuration of facial features 
which can vary within a limited range 
such as using only the frontal view. It is a 
difficult problem to detect such dynamic 
objects and considering the changes 
in faces over time (facial hair, glasses, 
wrinkles, skin color, bruises) together 
with variations in pose, developing a 
robust face detection algorithm is still a 
hard problem to solve in computer vision 
systems [9].
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II. Image pROCessINg

In this project, the acquired image is first 
converted into double class in matrix 
form. The matrix is then converted into 
column matrix 1 x n. This input will be fed 
into the RBF network for the next process. 
Figure 1 and 2 shows the conversion of 
image into matrix form. The image that 
to be fed into the network whether for 
training or testing will be normalized 
using a preprocessing step, adapted from 
[4].
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Abstract— This paper presents face recognition using spread 
fixed spread radial basis function neural network for security 
system. The face recognition system can be applied to security 
system such as door lock system etc. Acquired image will be 
going through image processing process. General 
preprocessing approach is use for normalizing the image. 
Radial Basis Function Neural Network is use for face 
recognition and Support Vector Machine is used as the face 
detector. RBF Neural Networks offer several advantages 
compared to other neural network architecture such as they 
can be trained using fast two stages training algorithm and the 
network possesses the property of best approximation. The 
output of the network can be optimized by setting suitable 
values of the center and spread of the RBF but in this paper 
fixed spread is used as there is only one train image for every 
user and to limit the output value.

Keywords-component; Face recognition, Radial Basis 
Function Neural Network, Image Processing. 

I.  INTRODUCTION  
Biometrics deals with the identification of individuals 

based on their biological or behavioral characteristics [1]. 
Face can be defined as the front part of head from the 
forehead to the chin [2]. A number of biometrics have been 
proposed, researched and evaluated for identification 
applications. Face is one of the most acceptable biometrics 
because it is one of the most common methods of 
identification which humans use in their interactions [1]. 
Face recognition is one of many possible approaches to 
biometric identification therefore many biometric systems 
are based on face recognition in combination with other 
biometric features such as voice or fingerprints. The human 
face is a dynamic object but with a standard configuration of 
facial features which can vary within a limited range such as 
using only the frontal view. It is a difficult problem to detect 
such dynamic objects and considering the changes in faces 

over time (facial hair, glasses, wrinkles, skin color, bruises) 
together with variations in pose, developing a robust face 
detection algorithm is still a hard problem to solve in 
computer vision systems [9]. 
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III. RADIAL BASIS FUNCTION NEURAL NETWORK 
RBFNN offers several advantages compared to the 

Multilayer Perceptrons. Two of these advantages are: 
 

1. They can be trained using fast 2 stages training 
algorithm without the need for time consuming non-
linear optimization techniques. 
 

2. ANN RBF possesses the property of ‘best 
approximation’ [11]. This means that if in the set A of 
approximating functions (for instance the set F(x, w) 
spanned by parameters w), then the RBFNN has the 
minimum distance from any given function of a larger 
set, Η. 

 
RBFNN had been successfully used in face detection 

such as in Mikami, et. al., 2003[3] and K. A. A. Aziz, et. al. 
[12][13][14]. Figure 4 illustrates the architecture of the 
RBFNN used in this work. 

 
 

 
Figure 4: RBF Neural Network 

 
The network consists of three layers: an input layer, a 

hidden layer and an output layer. Here, R denotes the number 
of inputs while Q the number of outputs. For Q = 1, the 
output of the RBFNN in Figure 4 is calculated according to 
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function, ||.|| denotes the Euclidean norm, w1k  are the weights 
in the output layer, S1 is the number of neurons    (and 

centers) in the hidden layer and 
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kc ℜ∈ are the RBF 
centers in the input vector space. Equation (1) can also be 
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β is the spread parameter of the RBF. For training, the 

least squares formula was used to find the second layer 
weights while the centers are set using the available data 
samples. 

IV. NETWORK TRAINING 
The network is trained using one image for every user. 

The simplest procedure for selecting the basis function 
centers ck is to set the center equal to the input vectors or a 
random subset of the input vectors from the training set but 
this is not an optimal procedure since it leads to the use of 
unnecessarily large number of basis function [6]. Broomhead 
et al. [8] suggested strategies for selecting RBF centers 
randomly from the training data. The centers of RBF can 
either be distributed uniformly within the region of input 
space for which there is data. In this paper K-means 
clustering was used. 

 K-means clustering is one of the techniques that was 
used to find a set of centers where the technique is more 
accurately reflects the distribution of the data points [6]. It is 
used in research such as in [3] and [7]. In k-means clustering, 
the number of desired centers, K, must be decided in 
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RBFNN offers several advantages 
compared to the Multilayer Perceptrons. 
Two of these advantages are:

1. They can be trained using fast 2 
stages training algorithm without 
the need for time consuming non-
linear optimization techniques.

2. ANN RBF possesses the property 
of ‘best approximation’ [11]. 
This means that if in the set A of 
approximating functions (for 
instance the set F(x, w) spanned by 
parameters w), then the RBFNN 
has the minimum distance from 
any given function of a larger set, 
H.

RBFNN had been successfully used in 
face detection such as in Mikami, et.al., 
2003[3] and K. A. A. Aziz, et.al. [12][13]
[14]. Figure 4 illustrates the architecture 
of the RBFNN used in this work.
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For the training, supervised learning is used where 

training patterns are provided to the RBFNN together with a 
teaching signal or target. As for the input of the user’s face 
will be given the value of 1. 

V. TESTING 
Testing the network divided into two parts. The first part 

is using the same person as the input image and the second 
part is using different person. For both part, the output values 
are recorded.  
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2 0.09497 0.46838 0.62428 0.74399 0.81019 

3 0.15841 0.44032 0.62468 0.72568 0.80599 

4 0.37757 0.42894 0.62910 0.76942 0.79489 

5 0.30389 0.46488 0.61575 0.73994 0.79581 

6 0.38865 0.43339 0.64862 0.73414 0.80894 

7 0.29739 0.46123 0.63516 0.82496 0.79308 

8 0.40463 0.46402 0.59523 0.83513 0.80746 

9 0.35306 0.42466 0.60791 0.70033 0.78928 

10 0.36185 0.45722 0.74761 0.74080 0.77571 

 

 
The results of testing the face recognition system using 

RBFNN are shown in Table 2 and Table 3. The RBFNN 
used fixed spread setting that is equal to 30. As for the face 
detection, SVM from [14] was used. The first image in 
Table 2 is the training image for the RBFNN and the target 
value is 1. As we can see in the table, the values for 
imposter or other than the user were less than 0.8. Table 3 is 
the result of testing the system using only the user’s face as 
the input. Here we can see that values given by the network 
are more than 0.85. 
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VII. CONCLUSION  
 

The results in Table 1, 2 and 3 show that the system can 
recognize a person using 30 spread value and the threshold 
for output is more than 0.85. Other than the user or any 
imposter, it will give an output value of less than 0.8. It can 
be concluded that this system can be applied in the security 
system such as door locking system. Nowadays there are 
many door locking systems employing the pin code system 
for authorized personnel to enter a restricted area or room. 
Instead of using the pin code system, the security system can 
be enhanced by replacing the pin code system with the face 
recognition system.  
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VII. CONClUsION 

The results in Table 1, 2 and 3 shows that 
the system can recognize a person using 30 
spread value and the threshold for output 
is more than 0.85. Other than the user 
or imposter will get the value of output 
less than 0.8. This system can be applied 
in security system such as door lock. 
Nowadays many door lock system using 
pin code for authorize person to enter a 
restricted room. The pin code system can 
be changed with face recognition system. 
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