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Abstract—In this paper, free-standing structures in the form of 

cantilevers, fabricated by using a combination of conventional 

thick-film technology and sacrificial layer techniques, is 

proposed. These structures were designed to operate as energy 

harvesters at low-levels of ambient vibration and were 

characterised using a shaker table over a range of frequencies 

and acceleration levels. A cantilever with dimensions of 13.5 

mm long by 9 mm wide and total thickness of 192 µµµµm was 

found to have Young’s modulus of 3.8 ×××× 10 N/m
2, effective 

mass of 0.035g and spring constant of 362 N/m. Samples of 

length 18 mm and functional elements (Lead Zirconate 

Titanate, PZT) of thickness 80 µµµµm were found to produce an 

output voltage of up to 130 mV at their resonant frequency of 

229 Hz, for an acceleration level of 0.981 ms-2 when driving 

into a resistive load of 60 kΩΩΩΩ.  The addition of a proof mass 

was shown to improve the electrical output power generation. 

In a series of experiments, the electric power generated by a 

beam having a proof mass of 2.2 g, resulted in a nine-fold 

improvement of output power compared to a device with no 

proof mass. The size of the proof mass is also an important 

factor in determining the output power of the device. 

I. INTRODUCTION 

Conventionally, thick-film piezoelectric materials are 
fabricated and used as sensors and actuators. However, with 
the improvement of high piezoelectric activity in lead 
zirconate titanate (PZT), useful electrical energy is generated 
and can be used in powering a variety of microelectronic 
devices. The first reported thick-film micro-generator 
described by White et al [1] was fabricated by printing the 
functional materials on stainless steel. The device was 

capable of generating powers up of up to 3 µW at 80 Hz for 
an acceleration of 225.6 m/s

2
. Recently, thin-film and 

micromachining technologies have also been used in 
fabricating energy harvesters as reported by Jeon et al and 
Choi et al [2, 3]. However, these devices were operated at 
relatively high resonant frequencies (13.9 kHz) and high 
acceleration levels (252 m/s

2
), which are not suitable for 

harvesting energy from typical ambient environments. These 
are typically at levels of acceleration in the range 0.05 – 2 
m/s

2
 at frequencies from 10 Hz to 300 Hz. 

A better solution for harvesting low level vibrations is by 
fabricating thick-film piezoelectric materials in free-standing 
form, where the functional material can move freely without 

the constraint of the substrate material. The first thick-film 
free-standing structures were reported by Stecher, G in 1987 
[4], who fabricated a form of circular membrane that was 
used as pressure sensor. 

Free-standing thick-film piezoelectric cantilevers 
fabricated by a combination of conventional thick-film 
technology and sacrificial layer techniques will now be 
described further. The structures were fabricated to have 
different lengths between 4.5 mm and 18 mm. They were 
characterised on a shaker table excited by sinusoidal 
vibration, at different acceleration levels over a range of 
different frequencies near to the resonant frequency of the 
beam. Various sizes of proof mass were attached to a sample 
of length 13.5 mm and evaluated to determine the electrical 
output performance and to estimate the Young’s modulus 
and effective mass and spring constant of the structure. 

II. TYPICAL AMBIENT VIBRATION SOURCES 

There are many possible vibration sources having a wide 

range of frequencies at various acceleration levels, which 

are available around us and can be used for harvesting 

energy for powering low energy microelectronic devices. In 

order to design piezoelectric micro-generators suitable for 

the ambient environment, a few typical vibration sources 

were characterised as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Typical ambient vibration sources measured with an 

accelerometer and presented in the frequency domain: (a) Microwave 

casing, (b) engine of a stationary car, (c) kitchen ventilation fan at lower 
speed and (d) kitchen ventilation fan at higher speed. 
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Table 1 shows a summary of the measured vibration sources 

in terms of peak acceleration levels and resonant 

frequencies. 

TABLE 1. SUMMARIES OF MEASURED VIBRATION SOURCES. 

 

Vibration Sources 
Acc. 
(m/s2) 

Freq. 
(Hz) 

Microwave (Casing) 0.68 100 

Refrigerator (Coil) 0.09 100 

Vending machine (Casing) 0.12 100 

Kitchen 

ventilation fan 

Speed I 0.2 200 

Speed II 1.1 38 

Desktop 
PC 

Normal operation 0.21 543 

Running CD ROM 0.26 154 

Laptop 
Normal operation 0.26 90.2 

Running CD ROM 0.66 43.2 

Bus 

(floor) 

Stationary 0.37 111 

Travelling at 

moderate speed 
1.04 10.8 

Stationary Car 

(1.0cc) 

Engine 1.23 30.5 

Dashboard 0.04 30 

 

 

III. CANTILEVER MICRO-GENERATOR DESIGN 

A cantilever micro-generator was designed based on 
spring-mass-damper system [5]. When the cantilever is 
excited with a displacement of Y(t) relative to the system 
housing, a deflection, z is produced as shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  A schematic diagram of a cantilever clamped on one end, with 

dimensions of length, l, width, w and thickness, h. The free-standing 

structure is loaded with a proof mass, M, excited with a diplacement of Y(t) 
and producing a deflection of z.  

 

The resonant frequency of a cantilever is determined by 
the mechanical properties of the structure, which is related to 

its length, l, thickness, h, Young’s modulus, γ and density, ρ 
given by [6], 
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where 
2

nv is the eigenvalue of nth mode of vibration, which 

is depended on the boundary conditions. The eigenvalue of 

the fundamental mode of a cantilever beam is 3.52. This 

equation can be used to estimate the resonant frequency for 

a uniform beams. However, the dimensions of a cantilever 

beam change after fabrication because of shrinkage, 

therefore, the effective mass, meff  of the materials is used to 

determine the resonant frequency of the structure, which is 

given as,  
2
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The spring constant, κ of the structure can be determined by 

experiments with varying proof masses and excited at its 

resonant frequency.  

 

When the device is excited at its resonant frequency, the 

maximum power driving a resistive load is related to the 

total mass of the system, m, input acceleration, Ain, angular 

frequency, ωn and damping coefficient as,  
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The mechanical damping factor, ζm is a property of the 
system which is difficult to control. However, the electrical 

damping factor, ζe can simply be varied by using different 

resistive load. Once the resistive load is matched with the 

mechanical damping, maximum energy is transferred from 

the mechanical to electrical domain. The electrical output 

power does not increase indefinitely with the proof mass. At 

some point with additional mass, the damping effect in the 

structure increases, therefore increasing the energy 

dissipation, hence decreasing the output power. 
 

IV. FABRICATION TECHNIQUE  

The materials for fabricating the free-standing structures 
consisted of PZT paste, carbon sacrificial paste, 
silver/palladium (Ag/Pd) conductor pastes and alumina 
substrates. The functional element, PZT pastes were 
formulated as according to [7], and the carbon pastes similar 
to that described by Birol et al [8] was used as the sacrificial 
layer. 
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The fabrication process commences by screen-printing a 
carbon sacrificial layer (Fig. 3), followed by Ag/Pd printed 
over the sacrificial layer as the lower electrode. Eight layers 
of PZT were then printed and dried in infra-red dryer 
individually at 140 C for 10 minutes, before a final layer of 
Ag/Pd was printed and dried as the upper electrode layer. 
The whole composite films were then co-fired together at a 

peak temperature of 850 °C, holding for 10 minutes, in a 
multi-zone furnace. During the co-firing process, the carbon 
sacrificial layer was burnt off in air thus releasing a 
composite free-standing structure, that breaks free and bends 
away from the surface of alumina substrates because of the 
different thermal expansion coefficients between PZT 
ceramic and Ag/pd conductor. Finally, the samples were then 

polarised at around 3 MV/m with a temperature of 200 °C 
for 30 minutes. 

 

 

 

 

 

 

 

Figure 3.  Sacrificial layer technique fabrication steps for releasing a 

cantilever free-standing structure. 

 

The result of the fabrication is shown in Fig. 4. The 
fabricated free-standing composite cantilevers were found to 
shrink by around 10 % from their original design dimensions 
because of the high negative thermal expansion coefficient of 
the conductors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Free-standing cantilever: (a) Design layout and (b) fabricated 

prototype. 

V. RESULTS AND DISCUSSION 

The resonant frequency of the cantilever decreases with 
increasing length and added mass according to equations (2) 
and (3), which were verified experimentally as shown in Fig. 
5 (a) and (b) respectively. The density of the sandwich 
structure of PZT-Ag/Pd was measured at 6240 kg/m

3
, which 

gives an average Young’s modulus of 3.8 × 10 N/m2
. A 

sample having 13.5 mm length and 9 mm width was found to 
have a spring constant of 362 N/m and the calculated 
effective mass of the cantilever beam is 0.035 g. 

 

 

 

 

 

 

 

 

Figure 5.  Resonant frequency is inversely proportional to (a) square of 

length and (b) square root of mass. The gradient of the graph of fr Vs h/l
2 

can be used to estimate the Young’s modulus of the samples. Extrapolation 

of graph fr Vs M/1 can determine the effective mass of the cantilever 

beam. 

 

The output voltage of the device increases with the length 
of the cantilever beam as shown in Fig. 6. An open circuit 
output voltage for a cantilever of length 18 mm was 
measured at 130 mV for an acceleration of 0.981 m/s

2
 (0.1 

G). However, the voltage dropped to around 20 mV when 

driving an optimum resistive load of 60 kΩ, which gives an 
electrical output power of about 7 nW. 

Higher vibration acceleration levels can improve the 
electrical output power. The power increases by a factor of 
more than 25 when accelerated at 9.81 m/s

2
 (1 G), as shown 

in Fig. 7. However, a higher acceleration level induces a 
nonlinearity for power generated by the cantilever structures, 
where the fundamental resonant frequency was found to be 
shifted to a lower frequency as the acceleration increases and 
also due to the fact that the acceleration level is not 
consistent in the ambient vibration source. Therefore micro-
generators with a wider band of resonant frequencies have to 
be designed to harvest a wider range of different and 
inconsistent acceleration levels of ambient vibration. 

The output power can be increased by attaching a proof 
mass at the tip of a piezoelectric cantilever. Larger masses 
produced more power, to an extent. Excessive proof masses, 
however, can result in energy dissipation through damping 
effects in the structure. The dimensions of the proof mass are 
also an important factor in determining the output power. 
From the experiments conducted, a proof mass that had its 
centre of mass focused on the tip of the beam and spread 

Step1 

Step 3 

Step 2 

Potential Free-

Standing Structure 

 l0 

w0 

Solder Pad Sacrificial 

Layer 

(a) 

(b) 

0

0.2

0.4

0.6

0 2 4 6

1/m^0.5 (g)

f0
 (
H
z
)

M1

M2

M3

M4

0

0.5

1

1.5

2

0 2 4

h/l
2
 (m-1)

f r
 (
k
H
z
)

dy/dx = 398 Hz m 

0.035 g at 505.5 Hz 

R
e
so
n
a
n
t 
fr
eq
.,
 f
r 
(k
H
z
) 

h/l2 (m-1) M/1  

(a) (b) 



across the width of the beam, produced the most output 
power, which is shown by a proof mass, M1 with dimensions 
of 9 mm width, 2.5 mm length and 1 mm thickness compare 
to other proof mass as shown in Fig. 8. This is because, in 
this configuration, more stress was induced when the 
cantilever was vibrated at its resonant frequency. 

VI. CONCLUSION 

This is the first time that thick-film free-standing 
structures, in the form of a cantilever, have been fabricated 
by a combination of thick-film and sacrificial layer 
techniques. The structures were designed to operate in an 
ambient environment to harvest energy from low 
acceleration levels and frequencies. In a series of 
experiments with different cantilever lengths and attaching 
different proof masses, the mechanical properties, Young’s 
modulus and spring constant of the free-standing structures 
were determined. Because of the fact that, the devices were 
not identical to the desired design dimensions, the effective 
mass of the composite structures is an important parameter to 
determine their resonant frequencies. Owing to nonlinear 
effects and the inconsistency of acceleration levels of 
ambient vibration sources, the design of energy harvesters 
having wider band of resonant frequencies is desirable. The 
addition of a proof mass improves the output power to some 
extent, but the effectiveness decreased for large inertial 
masses. Although the powers generated from the vibration 
devices are relatively small (270 nW at 9.81 m/s

2
), they have 

the potential to be improved further i.e. by increasing the 
thickness of the functional elements. 
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Figure 6.  Output voltage as a function of length for the cantilever, with 

open circuit test and with optimum resistive load test for sample with 

length 18 mm, accelerated at 0.981 m/s2. 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Resonant frequency and output power change as acceleration 

level changes. (1 G = 9.81 m/s2). 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Output power of a cantilever with different proof mass weights 

and dimensions: width × length × thickness (M1 = 9 × 2.5 × 1, M2 = 9 × 5 

× 1, M3 = 4.5 × 2.5 × 1 and  M4 = 2.5 × 4.5 × 1) mm. 
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