

ISSN 2249-6343

International Journal of Computer Technology and Electronics Engineering (IJCTEE)

Volume 1, Issue 3

58

Abstract— as the smarphone industry grows rapidly, the

smartphone application needs to be faster and consumes lower

power because the smartphone is only powered by a battery. In

this paper, two Android applications based on video processing

method are introduced; one by using OpenCV library, the other

one is using Android library with self-implemented algorithm

called CamTest. Eight image processing methods are applied to

each frame of the video captured from the Android smartphone.

The smartphone used in this study is the Samsung Galaxy S,

with Android 2.3 Gingerbread Operating System. The

efficiencies and power consumptions of the two applications are

compared by observing their frame processing rate and power

consumption. The experimental results show that out of the

eight image processing methods, six methods that executed using

OpenCV library are faster than that of CamTest with a total

average ratio of 0.41. For the power consumption per frame test,

six methods that executed using OpenCV library consume less

power than that of CamTest with a total average ratio of 0.39.

Index Terms— Android, computer vision, OpenCV, power

consumption.

I. INTRODUCTION

 Smartphone – the combination between the personal

digital assistant (PDA) and mobile phone has totally changed

the myth about mobile phone which is only mobile phone

company can develop its application. Since the launch of the

Android operating system (OS) [3] in 2007, mobile

development has been high in demand [4]. Android is

developed by Google and is based upon the Linux kernel and

GNU software.

Recently, Android has reached great success in mobile

operating system especially in smartphones and tablets. New

versions of Android are being updated continuously to satisfy

android users. Due to these circumstances, Android

developers introduce new application to satisfy the needs of

the Smartphone users. Libraries such as OpenGL (Open

Ammar Anuar, Faculty of Electronic Engineering and Computer

Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal,

Melaka, Malaysia. (e-mail: m021110015@student.utem.edu.my)

Khairul Muzzammil Saipullah, Faculty of Electronic Engineering and

Computer Engineering, Universiti Teknikal Malaysia Melaka, Durian

Tunggal, Melaka, Malaysia. (e-mail: muzzammil@utem.edu.my).

Nurul Atiqah Ismail, Faculty of Electronic Engineering and Computer

Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal,

Melaka, Malaysia. (e-mail: m021110036@student.utem.edu.my).

Yewguan Soo, Faculty of Electronic Engineering and Computer

Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal,

Melaka, Malaysia. (e-mail: soo@utem.edu.my).

Graphics Library) and OpenCV (Open Computer Vision) [1]

are used for the development of the application. Android

application developers tend to interface hardware into their

application such as camera, sensors, compass, Bluetooth,

Wi-Fi and etc. Application that uses camera usually involves

an image processing method such as Gaussian, Median, Mean

Laplacian, Sobel filter and others. Developers who have basic

knowledge about image processing can write their own codes

to apply those image processing methods in their application

but for the one who does not have any basic about image

processing will face a lot of difficulties creating their

applications. Developers usually prefer to import libraries in

their work. In the image processing field, an open source

image processing library known as OpenCV had made

developers can apply image processing methods easily in

their work. Nowadays OpenCV library has widely

implemented in several of image processing projects such as

in building a robot that can distinguish some objects [2].

The increasing need for low power systems had reflected

Android developers to consider power consumption in their

applications. Power dissipated in any embedded device can

be reduced with hardware optimization techniques, which

only applied in earlier design steps [5]. Another way to reduce

power consumption is software transformation. In software

optimization techniques, power dissipation can be reduced

with compiler, instruction-level, and source code-level

optimization methods [6]. Source code optimization has

benefits in terms of readability, portability, and maintenance

[7], [8]. Some research done in embedded software

optimization have shown that source code optimization

techniques tend to reduce power consumption [10].

 In this work, we made the comparison between our own

video processing implementation and OpenCV video

processing implementation in term of performance and power

consumption. To evaluate the efficiency performance, the

frame processing rate is measured. We also use PowerTutor

[9] application to measure the power consumption of each

application.

This document is organized as follows: in section 2, related

work in video processing method is discussed. Section 3

illustrates the methodology implemented and section 4 shows

the results obtained and the analysis performed. Finally,

conclusions are presented.

OpenCV Based Real-Time Video Processing

Using Android Smartphone

Ammar Anuar, Khairul Muzzammil Saipullah, Nurul Atiqah Ismail, Yewguan Soo

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka (UTeM) Repository

https://core.ac.uk/display/235635438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISSN 2249-6343

International Journal of Computer Technology and Electronics Engineering (IJCTEE)

Volume 1, Issue 3

59

II. OPENCV IN ANDROID PLATFORM

The OpenCV library was officially introduced in 1999 by

Intel Research initiative to advance CPU-intensive

application [1]. The OpenCV library in the earlier version

written in C, However since version 2.0, OpenCV includes

both C interface and C++ interface. Starting version 2.2,

OpenCV can be built for Android OS. The latest OpenCV

version, OpenCV 2.3.1 (beta2) was launched August 2011.

In OpenCV 2.3.1 for Android library, they also included

samples image processing code using camera such as face

detection, FAST feature finder that use combination of Java

and C++. In order to make an Android application to be able

to write in C++, the C++ parts have to be built before

executing the whole project. The most popular way to build

C++ parts is by using Android native development kit (NDK)

together with Cygwin: Linux-like environment for Windows.

The project folder will be accessed by Cygwin, and then it

will be built by a file from Android NDK, which is the

ndk-build file.

Some improvements made in OpenCV 2.3.1 are currently

about 700 unique OpenCV methods/functions are available in

Java, added OpenCV native camera support for armv5te

devices and added two detailed tutorials for quick start of

development with OpenCV for Android.

III. REAL-TIME VIDEO PROCESSING IN ANDROID WITH

OPENCV

As explained earlier, the real-time video processing

conducted in this paper is divided into two groups which are

the OpenCV library group and build in Android library group

that we called CamTest. Firstly, the OpenCV library needs to

be linked with an integrated design environment (IDE). In our

case, the OpenCV library is linked with Eclipse IDE and

Android software development kit (SDK) and NDK.

We exploit the OpenCV’s Imgproc.java class to perform

the image processing methods for the OpenCV library group.

For the Android library group, we only utilize the raw data

from android.hardware.Camera and android.hardware.

Camera.PreviewCallback as the input frame image of

self-made image processing algorithms. The algorithm we

applied is the basic algorithm of the image processing method

without any source-code level optimization. For the CamTest,

a standard loop is conducted to each frame using YUV to

RGB conversion, YUV to gray image conversion, image

thresholding, image blurring with mean and Gaussian filter,

noise removal with median filter, edge detection with

Laplacian and Sobel operator image processing methods. On

the other hand, for the OpenCV library, the functions

cvtColor(), threshold(), blur(), GaussianBlur(),

medianBlur(), Laplacian() and Sobel() are applied.

In OpenCV library the frame data are saved in the Mat

structure. This Mat structure is then passed to the OpenCV’s

image processing functions in order to process each pixel in

the frame. Meanwhile, for CamTest, the data are saved in one

dimensional byte array that is obtained from the Android

library.

IV. EXPERIMENTS AND DISCUSSIONS

In order to evaluate the efficiency and power consumption

of the video processing, eight basic image processing

methods are applied to each frame captured from the 5 mega

pixels camera of Samsung Galaxy S’s smartphone. The

Samsung Galaxy S is powered by 1 GHz ARM Cortex-A8

processor running with Android 2.3 Gingerbread OS. The

eight image processing methods are conducted using both

OpenCV library and CamTest in order to compare the

efficiency and power consumption between the OpenCV and

the build-in Android library on an embedded device namely

the smartphone. Each image processing method is iterated 30

times and the average value is recorded for each experiment.

Table I: Frame processing methods and its description.

Frame

Processing
Description

RGB
Convert The Original YUV Color Space To

RGB Color Space

Grayscale Convert the Y color space to 0~255 grayscale

Threshold Threshold the grayscale pixel with 70

Mean
Filtering the grayscale frame with average of

all the pixel values in a 3x3 window

Gaussian 2D convolution with Gaussian 3x3kernel

Median
Filtering the grayscale frame with median of all

the pixel values in a 3x3 window

Laplacian 2D convolution with Laplacian 3x3 kernel

Sobel
Filtering of the grayscale frame in horizontal

and vertical direction using 3x3 Sobel operator

The description the eight image processing methods are

shown in Table I. The input format from the Samsung Galaxy

S camera is in YUV color space. So it needs to be converted to

RGB color space for video processing in standard color

space. For video processing in grayscale, the luma (Y) is

mapped to 0~255 scale. For RGB processing, all the channels

in YUV color space are used to convert from the YUV space

into the RGB space. And lastly, for the threshold, mean,

Gaussian, median, Laplacian and Sobel image processing, the

resulting grayscale frame from the grayscale processing

method is utilized.

 The YUV to RGB conversion formula is calculated using

. .

. 0. 0.

. .0

R 1 164 Y 16 1 596 V 128

G 1 164 Y 16 813 V 128 391 U 128

B 1 164 Y 16 2 18 U 128

 (1)

For image thresholding each pixel is thresholded against a

constant number T. If the pixel value larger than T, the pixel

value will set to 1, otherwise the pixel value will be set to 0.

The image thresholding can be calculated using the

following formula:

ISSN 2249-6343

International Journal of Computer Technology and Electronics Engineering (IJCTEE)

Volume 1, Issue 3

60

1, if (,)
(,)

0, otherwise

f x y T
g x y

 (2)

where, f(x,y) is original frame and g(x,y) is thresholded

frame.

To remove the noise from the frame using median filter,

each 3x3 window of the original frame is processed by

calculating the median value of the whole pixels in 3x3

window. This median value is then will be the new pixel

value on the median filtered frame.

For video blurring each frame is convolved using a 3x3

mask. For Gaussian blurring, the frame will be convolved

with the 3x3 mask as shown in Fg. 1(a). For mean filter, the

frame will be convolved with 3x3 mask as shown in Fig.

1(b)

1/16 2/16 1/16

2/16 4/16 2/16

1/16 2/16 1/16

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

1 1 1

1 -8 1

1 1 1

 (a) (b) (c)

Fig. 1. (a) Gaussian mask, (b) Mean filter mask, (c) Laplacian

mask

 For edge detection,each frame is convolved using a 3x3 mask.

For Laplacian, the frame will be convolved with the 3x3 mask

as shown in Fig. 1(c). The Sobel edge detection uses two 3×3

masks which are convolved in the x and y direction with the

original frame. The two 3x3 masks are as shown as in Fig. 2.

-1 0 -1

-2 0 -2

-1 0 -1

-1 -2 -1

0 0 0

1 2 1

 (a) (b)

Fig. 2. (a) The x-direction Sobel 3x3 mask. (b) The y-direction

Sobel 3x3 mask.

Fig. 3 and Fig. 4 show the image processing methods using

OpenCV library and the CamTest. Those images were

captured in real-time using Samsung Galaxy S camera at the

same position for the eight different methods as explained

above. The output images were quite same for the grayscale,

mean, Gaussian, median processing. One of the significant

differences between the OpenCV library and CamTest can be

seen in the resulting image of Laplace edge detection. In

OpenCV library, the background region is dark whereas in the

case of the CamTest, the edge in the background region is

clearer. The reason is in the background regions, the

Laplacian() function from the OpenCV only returns raw

output data of convolution. To produce a clear and high

contrast edge, the output data of the convolution need to be

scaled into an appropriate range.

Fig. 3. OpenCV library implementation. Those images were

captured when it processes images in real-time video processing.

(a) is RGB image, (b) is Greyscale image, (c) is Threshold image,

(d) is Mean filter image, (e) is Gaussian image, (f) is Median

filter image, (g) is Laplacian filter image, (h) is Sobel filter

image.

Fig. 4. CamTest algorithm implementation. Those images were

captured when it processes images in real-time video processing.

(a) is RGB image, (b) is Greyscale image, (c) is Threshold image,

(d) is Mean filter image, (e) is Gaussian image, (f) is Median

filter image, (g) is Laplacian filter image, (h) is Sobel filter image

A. Efficiency Test

In order to evaluate the frame processing efficiency

between OpenCV library and CamTest, the frame processing

rate (FPR) is calculated and observed. The formula to

calculate the frame processing rate is as follows:

1

No. of processed frame
FPR

s
 (3)

ISSN 2249-6343

International Journal of Computer Technology and Electronics Engineering (IJCTEE)

Volume 1, Issue 3

61

The unit for the FPR is frame per second (fps). It is the

number of frames the image processing algorithm can be

processed in one second. The higher the value of the FPR, the

more efficient the method is. Fig. 5 shows the frame

processing rate of eight image processing methods using

OpenCV library and CamTest. As it can be seen, the chart

shows a significant FPR difference between the OpenCV

library and CamTest for the RGB, grayscale, threshold and

Gaussian processing. A bit unexpected result showed for

mean and Laplacian methods because for these two methods,

CamTest achieves FPR higher than that of OpenCV. This may

be cause by the similar algorithm applied for both mean and

Laplacian methods in OpenCV and CamTest.

Fig. 5. Frame Processing Rate in OpenCV library and CamTest

for the eight image processing methods.

The Gaussian, mean and Laplacian methods should result

in the similar FPR because they apply the same convolution

algorithm by moving the 3x3 mask on the image. In the case

of CamTest, it can be seen that the FPR of those methods are

similar. This is because in the CamTest we use the same

algorithm to compute the convolution for those three methods.

However, in the case of OpenCV library, the Gaussian

blurring executes almost two times faster than mean and

Laplacian methods. This shows that the GaussianBlur()

function utilizes difference convolution algorithm compared

to that of mean and Laplacian convolution algorithm.

To evaluate how much better the FPR of OpenCV

compared to that of CamTest, the FPR ratio is calculated. The

FPR ratio is calculated using the following formula:

max()

OpenCV FPR - CamTest FPR
FPR ratio

OpenCV FPR,CamTest FPR
 (4)

If the FPR ratio is a positive number N, it means that the

FPR of OpenCV is 1/N times better than CamTest. If the FPR

ratio is a negative number –M, it means that the FPR of

CamTest is 1/M times better than OpenCV. The overall FPR

ratios of the eight image processing methods are shown in

Table II. The total average FPR ratio is 0.41. This means that

overall, OpenCV is 1/0.41 or 2.4 times faster than the

CamTest.

Table II: The FPR ratio of the eight image processing methods

Frame

Processing
FPR ratio

RGB 0.82

Grayscale 0.36

Threshold 0.47

Mean -0.07

Gaussian 0.44

Median 0.49

Laplacian -0.07

Sobel 0.80

Total Average 0.41

B. Power Consumption Test

Fig. 6. Power consumption average in 30 sec between OpenCV

library and CamTest for the eight image processing methods.

The power consumption test was conducted by using

PowerTutor application. Each method whether in OpenCV

library or in CamTest will be running in 30 seconds and the

power consumption for each second will be recorded. The

average of the power consumption in the 30s will be taken to

be evaluated. Fig. 6 shows the average power consumption of

the eight image processing method in the OpenCV library and

the CamTest that is obtained from the PowerTutor

application. The lower the power consumption, the better the

library is. Overall, the power consumptions of OpenCV and

CamTest are quite similar. OpenCV consumes less power

compared to CamTest for almost of the image processing

methods except for the mean and Laplacian methods. The

Laplacian method that applied in Camtest consumes very less

power compared to the one that is applied in CamTest.

However, the chart in Fig. 6 does not consider the number

frame each method processed during the 30s of the power

consumption test. So, in order to evaluate the real power

consumption, the power consumption per frame (PCPF) is

calculated. The formula to get power consumption is as

follows:

 Average power comsumption
PCPF

No. of frame
 (5)

ISSN 2249-6343

International Journal of Computer Technology and Electronics Engineering (IJCTEE)

Volume 1, Issue 3

62

The PCPF of the eight image processing methods is shown

in Fig. 7. This graph shows a very significant difference

between the PCPF of OpenCV and CamTest for the RGB and

Sobel filter. The conversion from YUV to RGB consumes

heavy processing and without any code-level optimization of

good memory management, this conversion will consume a

lot power. This is what happened in the CamTest. For heavy

processing with large amount of data, a proper memory

management and optimization is very important to extend the

lifetime of the embedded hardware. The same reason is

applied to the Sobel methods. Sobel edge detection needs to

be convoluted twice before the output image shown. This

process for sure will use a lot of power to execute since

convolute method will use many looping. Without any

optimization conducted on the code-level or on the algorithm

itself, the convolution will consume a lot of time and power.

One can reduce the power consumption of convolution by

computing the convolution in the Fourier domain.

Fig. 7. Power consumption per frame results between OpenCV

library and CamTest for the eight image processing methods.

Out of eight of the methods, OpenCV performs badly for

Laplacian edge detection methods and mean blurring. It

seems like there is no optimization is done with those methods.

The PCPF ratio can also be computed by a little adjustment on

formula (4). Instead of using the FPR, the PCPF is used. The

result of PCPF ratio is shown in the Table III. From the table,

we can see that OpenCV really consumes less power

compared to that of CamTest. However, the two methods

namely the mean and Laplacian consumes much power than

the CamTest.

V. CONCLUSIONS AND FUTURE WORK

The majority of the image processing methods that using

OpenCV library is higher performance than the self-made

algorithm build in Android library. Based on the experimental

results, we can conclude that OpenCV gives more attention to

the efficiency rather than power consumption. For example,

the Laplacian method in OpenCV consumes more energy than

build in library. In the future, we would like to develop the

techniques that can optimize power consumption in the video

frame processing. This technique will be based on source

code level optimization that would be able to solve the power

consumption problem in OpenCV.

Table III. The PCPF ratio of the eight image processing methods

Frame

Processing
PCPF ratio

RGB 0.85

Grayscale 0.41

Threshold 0.52

Mean -0.12

Gaussian 0.48

Median 0.50

Laplacian -0.34

Sobel 0.82

Total Average 0.39

ACKNOWLEDGMENT

 This paper is supported by Universiti Teknikal Malaysia

Melaka under the contract PJP/2011/FKEKK(44B)/S00979

and PJP/2011/FKEKK (6B)/S00840.

 REFERENCES

[1] OpenCV, Open source Computer Vision library. In

http://opencv.willowgarage.com/wiki/, 2009.

[2] W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann, P. Mihelich,

E. Marder-Eppstein, M. Muja, V. Eruhimov, T. Foote, J. Hsu, R. Rusu,

B. Marthi, G. Bradski, K. Konolige, B. Gerkey, and E. Berger,

“Autonomous Door Opening and Plugging In with a Personal Robot,”

in Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), Anchorage, Alaska, May 3-8 2010.

[3] Industry leaders announce open platform for mobile devices,

November 2007.

[4] K. Owen, An Executive Summary of Research in Android & Integrated

Development Environments, April 2011.

[5] N.K. Jha. “Low power system scheduling and synthesis”, IEEE/ACM

International Conference on Computer Aided Design, pages 259 –

263, Nov. 2001.

[6] D. Ortiz and N. Santiago, “Impact of Source Code Optimizations on

Power Consumption of Embedded Systems,” June 2008, pp. 133–136.

[7] R. Leupers. Code optimization techniques for embedded processors.

Kluwer Academic Publishers, 2000.

[8] A. Sharma and C.P. Ravikumar. “Efficient implementation of ADPCM

codec”, Thirteenth International Conference on VLSI Design, pages

456– 461, Jan. 2000.

[9] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert

P. Dick, Zhuoqing Morley Mao, and Lei Yang. “Accurate online power

estimation and automatic battery behavior based power model

generation for smartphones”, in Proceedings of the eighth

IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis, CODES/ISSS ’10, pages 105–114,

New York, NY, USA, 2010. ACM. ISBN 978-1-60558-905-3.

[10] T. Simunic, L. Benini, and G. de Micheli. “Energy-efficient design of

battery-powered embedded systems”, IEEE Transactions on Very

Large Scale Integration Systems, 9(1):15 – 28, Feb. 2001.

 AUTHOR’S PROFILE

Ammar Anuar received his B.S. degree in Electronic

Engineering from Inha University, South Korea. He is

currently studying his Master in Electronics

Engineering & Computer Engineering at Universiti

Teknikal Malaysia Melaka. His research interests are

in Real-Time Image Processing for Embedded System,

Android Application, Low Power Consumption

Embedded System and Image Processing.

ISSN 2249-6343

International Journal of Computer Technology and Electronics Engineering (IJCTEE)

Volume 1, Issue 3

63

 Khairul Muzzammil Saipullah received his B.S. and

M.E. degree in Electronics Engineering from Inha

University, South Korea. He is currently working as

lecturer at Universiti Teknikal Malaysia Melaka. His

research interests are in the area of Real-Time Image

Processing for Embedded Device, Texture Image

Analysis, Medical Image Processing, Computer Vision,

and Embedded System.

Nurul Atiqah Ismail was born in 1987 in Pahang,

Malaysia and did Bachelor of Electronics Engineering

& Computer Engineering from Universiti Teknikal

Malaysia Melaka in year 2011. She is currently

pursuing her Master in Electronics Engineering at

Universiti Teknikal Malaysia Melaka. Her research

interests are in Image Processing and Embedded

System.

Yewguan Soo Yewguan Soo received his B.E. and

M.E. in Electrical Engineering from the University of

Technology Malaysia in 2001 and 2003, respectively. In

2010, he completed his Ph.D from the University of

Tokyo in Precision Engineering. He is presently

working on as Senior Lecturer in the University of

Tokyo. His research interests include myoelectric signal

processing and embedded system design.

