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Abstract: The genetic algorithm approach is widely recognized as an effective and flexible
optimization method for system identification. The flexibility of a genetic algorithm allows
various strategies to be applied to it. One of the strategies applied is the modified genetic
algorithm which relies on, among other things, the separation of the population into groups
where each group undergoes mutual recombination operations. The strategy has been shown
to be better than the simple genetic algorithm and conventional statistical method, but it
contains inadequate justification of how the separation is made. The usage of objective function
values for separation of groups does not carry much flexibility and is not suitable since different
time-dependent data have different levels of equilibrium and thus different ranges of objective
function values. This paper investigates the optimum grouping of chromosomes by fixed group
ratios, enabling more efficient identification of dynamic systems using a NARX (Non-linear
AutoRegressive with eXogenous input) model. Several simulated systems and real-world time-
dependent data are used in the investigation. Comparisons based on widely used optimization
performance indicators along with outcomes from other research are used. The issue of model
parsimony is also addressed, and the model is validated using correlation tests. The study
reveals that, when recombination and mutation are used for different groups, equal com-
position of both groups produces a better result in terms of accuracy, parsimony, speed, and
consistency.

Keywords: model structure selection, NARX model, parameter estimation, system
identification, correlation test, genetic algorithm

1 INTRODUCTION applications [2–4]. It has been used in parallel with
neural network modelling solutions such as the group
data handling network [5], the fuzzy neural networkThe growing field of system identification has

brought much attention to high-end computation [6], the Gaussian–Hopfield neural network [7], and
the recurrent neural network [8]. Other types offor accuracy, ease of calculation, and speed. It com-

prises four distinctive stages: data acquisition, model modelling solution used are block-oriented models
[9], the Volterra function [10], and fuzzy rules [11].structure selection, parameter estimation, and model

validity tests. The model structure selection stage is Applications of GAs in system identification with
direct application to control designs are also avail-crucial in determining the form of model structure

suitable to explain the problem at hand. The issue able in the literature [12–14]. Mitsukura et al. [15]
demonstrated the use of GAs for the combination ofbrings wide recognition to the study of computational

systems such as genetic algorithms (GAs). functions, including exponential and trigonometric
functions, but this has an excessively long chromo-The GA approach introduced in 1975 [1] and
some representation. In some of these applications,has since been studied and developed for many
the model structures are defined beforehand.
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eXogenous input) and a cubic non-linear function. cation of a NARX model, however, does not restrict
The model structures in the work are, however, the potential of the method for other model rep-
predefined. Ahmad et al. [17] apply a GA to ARMAX resentation with slight modification to the structure
and NARMAX (Non-linear AutoRegressive Moving representation [25, 26].
Average with eXogenous input) models, but argue on The organization of this paper is as follows. Section 2
the phenomenon of premature convergence. explains the NARX model, as a model structure

In spite of the successes, much modification and representation, and the parameter estimation method.
investigation are still needed and seem feasible as the Section 3 describes the GA and the modified GA
GA relies on many different parameters. Among its in more detail. This section also lists the perform-
control parameters are population size, recombina- ance indicators and correlation tests used as model
tion operators, crossover probability, mutation prob- validity tests in the study. The simulations and results
ability, mating preferences, and selection strategies of the study are given in section 4 and discussed in
[18]. The refinement of its control parameters and section 5. Section 6 concludes the findings of the
their interdependence can ensure efficiency of the study.
search in terms of solution optimality, search speed,
convergence, algorithm robustness, etc.

2 NARX MODELSome researchers suggest refinement of search by
a hybrid algorithm or the simultaneous usage of The applicability of the GA applies to both linear and
different operators to attain quicker convergence non-linear models. There are wide choices of linear
to the optimum solution. This can be performed by and non-linear models to represent input–output
grouping of the population. Perry et al. refer to the relationships [25]. A common model structure rep-
groups as species and use different types of crossover resentation for a linear discrete-time system is the
and mutation operators[19]. The grouping approach ARX (AutoRegressive with eXogenous input) model
as a selection strategy was shown by Ahmad et al. written as
[20] to perform better than a simple GA in terms of
stability and to be equally good or may be even better y(t)=a1y(t−1)+,+a

n
y

y(t−n
y
)+b0u(t)

than an orthogonal least-squares (OLS) algorithm
+b1u(t−1)+,+b

n
u

u(t−n
u
)+e(t) (1)[20]. Grefenstette’s experiment with an elitist strategy,

which also requires grouping, was shown to perform
where y(t), u(t), and e(t) are the output, input, andbetter than a pure strategy in online evaluation [21].
noise respectively at time t; n

y
and n

u
are theAlthough a GA enables quick evaluation of model

orders of lag for output and input respectively, andstructures, the particular issue of parsimony of
a

1
, … , a

n
y

, b
0
, and b

1
, … , b

n
u

are the coefficients, ormodel structure also arises. This issue is addressed
parameters, of the model. Non-linear models giveby considering the significance of the terms and vari-
much richer possibilities in describing systems andables. Various approaches are available such as the
have better flexibility when inferring from a finiteuse of locally linear and cross-bilinear models [22],
dataset. The non-linear version of the ARX model ispenalty functions [23], and information criteria such
the NARX (Non-linear ARX) model. When a timeas Akaike’s information criterion, the B-information
delay exists, it is written ascriterion, and the w-information criterion [24]. It

allows the complexity of the structure to be reduced,
y(t)=F l

*
[y(t−1), y(t−2), … , y(t−n

y
),

gaining a parsimonious model of acceptable accuracy
level. The penalty function is a straightforward u(t−d ), … , u(t−d−n

u
+1), e(t)] (2)

approach when searching model structures with a
which is also a generalization of the linear differenceGA [23].
equation. In the above equation, F l*[·] is a non-linearThis paper uses a GA as a model structure selection
function of u and y, d is the time delay, l is the degreetool for system identification and also proposes a
of non-linearity, and other notations are the same asmodified GA by focusing on the suitable proportion
before. Model structure selection refers to the processof exploitation and exploration of search space. The
of determining the lags of input, n

u
, output, n

y
, andpaper demonstrates that a certain fixed ratio regard-

time delay, d, from the information of input, u, anding the grouping of population requires less com-
output, y, sequences for a discrete-time model [24].putation time (fewer evolution generations) but is
The aim in model structure selection mainly is tostill able to produce an accurate and parsimonious
determine the significant terms to be included in amodel when a NARX (Non-linear AutoRegressive

with eXogenous input) model is used. The appli- system model.
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Before the parameters of the model can be esti- chromosomes. Some early work, theories, and back-
ground on the GA can be found in references [1]mated using the least-squares method, the model has

to be transformed into a linear regression model as and [27].
A chromosome is a string of code used as afollows

representation of the solution. Each position in the
y(t)=wT(t)h+e(t), n

y
∏t∏N (3) string is called a gene. There are, however, only two

main genetic operators, crossover and mutation,
where h is the parameter vector, w=[w

1
w

2
, w

L
]T

each providing different styles of manipulation of
is the regressor vector, e is the value of noise or

the string solutions towards building the optimum
disturbance, L is the number of significant variables

solution. The crossover operator operates by ‘mating’
and terms, which also determines the size of the

two chromosomes so that portions of their structures
parameter vector, and N is the number of data.

or hyperplanes are exchanged. In this exchange of
Given that the model structure and consequently

information, new structures called offspring are
the vector of significant regressors has already been

formed. The crossover probability or rate, p
c
, deter-

defined, the estimated parameters h< can be obtained
mines the number of pairs in the population that

using least-squares methods [25, 26].
are forced to mate. The mutation operator acts by

The number of terms or regressors in a NARX
changing a portion of the structure individually.

model, L , is calculated as follows
It involves the targeting of certain positions of a
structure and changing the value held by the gene.L=M+1 (4a)
The mutation probability or rate, p

m
, indicates

Here the number of bits in a population that is being
mutated.

The general procedure of the GA consists of aM= ∑
l

i=1
n
i

(4b)
population of chromosomes where the operators
act on them, creating a new population. The oldwhere l is the degree of non-linearity, and
population is replaced so that the new creation
populates or is passed forward to the following

n
i
=

n
i−1

(n
y
+n
u
+ i−1)

i
(4c) generation. During this process, the fitness of each

chromosome is evaluated on the basis of a speci-
fied function. The fitness of a chromosome can bewhere n

0
=1, with n

y
and n

u
as in model (1).

defined subjectively in terms of the objective func-Suppose a NARX system is known to have a non-
tion (OF) value. With this evaluation, chromosomeslinearity order of two, an order of lag for input n

u
=2,

are selected for the next generation. The creation andan order of lag for output n
y
=2, and a time delay

evaluation of new solutions are performed until ad=0. The number of possible terms in the model is
user-defined termination criterion is reached, suchfound to be 15, along with the inclusion of a constant
as the maximum number of generations. Details ofterm. Since the decisions on the terms are either
GA operators and parameters can be found in refer-inclusion or omission, simple binomial theorems
ences [3] and [23]. The general flow chart of the GAapply. Therefore, in a model consisting of L terms,
is given in Fig. 1.the search space is 2L−1 (which in the above

example is 32 767).

3.2 Proposed modified GA

A modification to the simple GA, known as the modi-
3 GA AND MODIFIED GA

fied genetic algorithm (MGA), presented in reference
[20], takes another step in exploring the potential

3.1 GA
of the GA by dividing the population into groups
according to their fitness values, where each groupThe GA conforms to the metaphor of natural bio-

logical evolution by applying the principle of survival undergoes a different set of genetic operations. It has
been shown to perform better than the simple GAof the fittest. With this metaphor, it operates as a

stochastic global search method in producing better and the OLS algorithm.
The success of grouping in reference [20] over theapproximations to a solution of system identification

[1, 3]. It emphasizes genetic encoding of potential simple GA emphasizes the division into good, second
best, and bad groups, while reference [21] recognizesinput–output relationship solutions of a system into

chromosomes and applies genetic operators to these the importance of the elitist strategy along with
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elitist strategy, the single best individual of the
generation is preserved or reproduced for the next
generation without any changes to its structure.
It preserves the structure or schemata so that
direct comparison can be made between it and
other manipulated chromosomes of the next
generation.

2. Acceptable. The acceptable group has the
second highest fitness values and undergoes only
mutation. The rationale behind this strategy is
that the chromosomes in this group are expected
to have optimum hyperplanes owing to high fit-
ness levels. Therefore, in order to prevent schemata
disruption (the complete disruption of its solution
structure), the crossover process is not allowed.

3. Ordinary. This group consists of the next fittest
chromosomes, and they undergo the conventional
sequence in recombination – crossover and
mutation. The importance of inducing mutation
in this sequence is to increase the variability ofFig. 1 Simple GA flow chart
the population, thus maintaining high exploration
of search space.other conventional routines. The proposed algorithm

4. Bad. The bad chromosome, having the lowestconsiders all of the above by emphasizing four
fitness value in the population, is compared againstdifferent groups. The flow chart for its implementation
a newly initialized chromosome and replaced ifis given in Fig. 2. Two of the groups (best and bad)
the replacement is better.consist of single individuals, while the other two

(acceptable and ordinary) are actual groups with
The importance of the division is exceptionally clear

varied proportions.
in the appointment of the type of genetic operators

Listed from the fittest to the weakest, the groups
to the groups. Although other researchers suggest

are as follows.
mutation as a ‘background operator’, recent find-

1. Best. The best chromosome is also known as ings reveal that mutation is also useful as a search
the elitist. Conforming to what is known as the operator [28]. The separation of the population into

groups raises the question of the optimum ratio for
separation of the acceptable and ordinary groups.
Previous usage of setting the separation point on the
basis of a fixed value of the objective function is only
suitable when it is known that the OF values of time-
dependent data spread across the fixed value.

Previous research using a fixed value for separation
is exemplified as follows. By running the algorithm
for the first generation, a fixed value can be readily
selected relative to the whole range of OF values in
that generation. For a minimization problem, when
the fixed value is ten, all chromosomes having an
OF value higher than ten are classified as ordinary
and bad, while chromosomes having an OF value
lower than ten fall into the acceptable and best
categories.

Depending on the level of equilibrium of
time-dependent data over finite time, different time-
dependent data give different ranges of OF values
with regards to the population. The range may also

Fig. 2 MGA flow chart change throughout evolution. The selection of a fixed
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value for separation needs to be avoided since it algorithm relies on optimum grouping of predeter-
mined population size, an indicator of the algorithmis important not to differentiate the quality of a

chromosome favourably based on the OF value but convergence rate (in terms of the required number
of generations) is also needed.with the position in the population after sorting

based on the OF value. Three performance indicators are used in this
paper.In order to avoid this situation, the number of

chromosomes allocated to the groups in the proposed
1. Error index of the best chromosome. The erroralgorithm are determined by different fixed ratios

index (EI) refers to the square root of the sum ofbefore an optimum ratio based on predefined per-
squared errors of the best chromosome, namelyformance indicators can be selected. The settings of
the elitist in the final generation, divided by thethe ratios are explained in section 4.
sum of the output squared. The calculation of EI
is as follows

3.3 Application of GA to structure selection of the
NARX model

EI=SW [ y(t)− ŷ(t)]2

W y2(t)
(7)

Following the example in section 2, where the non-
linearity of a system was of order two, the order of where ŷ(t) is the one-step-ahead predicted output
lag for input n

u
=2, the order of lag for output n

y
=2, obtained from the least-squares method. When

and the time delay d=0, the variables are y(t−1), several trials are made, the mean value is
y(t−2), u(t−1), and u(t−2), and the terms are con- calculated.
stant a

1
and the multiplications of variables. 2. OF value of the best chromosome. The OF is

The output, y(t), for the system is represented by used as a measure of fitness of the chromosome
where it is set that a highly fit individual has a lowy(t)=a1+a2y(t−1)+a3y(t−2)+a4u(t−1)
OF value, and vice versa. This indicator is the

+a5u(t−2)+a6y2(t−1)+a7y(t−1)y(t−2) evaluation function repeatedly used in the simu-
lation to decide the group to which a chromosome+a8y(t−1)u(t−1)+a9y(t−1)u(t−2)
belongs before the next stage proceeds. Since it is

+a10y2(t−2)+a11y(t−2)u(t−1) also of high importance that a solution is at a suit-
able parsimony, a penalty function is integrated+a12y(t−2)u(t−2)+a13u2(t−1)
in the calculation. The logarithmic penalty func-

+a14u(t−1)u(t−2)+a15u2(t−2)+e(t) (5) tion is observed in Akaike’s B-information cri-
terion [24] and shown to be better than other

In a binary-represented GA, the variables and the forms of penalty function [23]. Here, the OF is as
terms are represented by the genes of the chromo- follows
some as bit 1 for existence and bit 0 for omission.
Therefore, chromosome [110 100 001 000 100]

OF=G∑N
i

[ y
i
(t)− ŷ

i
(t)]2H+ log(n) (8)represents the model

y(t)=a1+a2y(t−1)+a4u(t−1) where n is the number of insignificant regressors
plus one. Insignificant regressors refer to regressors+a9y(t−1)u(t−2)+a13u2(t−1) (6)
with an estimated parameter less than or equal to
a specified penalty value agreed upon for trade-The model is completed by estimation of the para-
off with the level of accuracy. The selection of themeters a

1
, a

2
, a

4
, a

9
, and a

13
by parameter estimation

penalty value requires a trial-and-error approachmethods.
based on the knowledge that the number of
selected significant regressors is inversely pro-3.4 Model validation
portional to the penalty value. The significant

3.4.1 Performance indicators regressors refer to regressors that correspond to
high-valued parametersIn order to evaluate the accuracy of a structure

effectively, a performance measure is needed. The
Number of selected regressors3

1

penalty valueindicator helps in determining the best structure
among the possible solutions in the population.
Another indicator is used in the iterations to deter- In the comparison between different ratios, it

refers to the OF value of the elitist that is selectedmine the group for model structures. Since the

JSCE362 © IMechE 2007 Proc. IMechE Vol. 221 Part I: J. Systems and Control Engineering



980 H Jamaluddin, M F Abd Samad, R Ahmad, and M S Yaacob

by the end of evolution. Like the EI, when several following conditions [29]
trials are used, the mean value is presented.

3. Generation count. The generation count refers to w
ee

(t)=
E [e(t)e(t+t)]

E [e2(t)]
=d(t), t=0 (11a)

the generation number in the evolution at which
the elitist in the final generation first appears.

w
ue

(t)=
E [u(t)e(t+t)]

√E [u2(t)e2(t)]
=0, Yt (11b)With the assumption that each generation requires

the same amount of time, this indicator allows the
comparison of computation time between differ-

w
e(eu)

(t)=
E [e(t)e(t−1−t)u(t−1−t)]

√E [e2(t)]E [e2(t)u2(t)]
=0, t�0

ent ratios needed to identify the best chromo-
some. Two statistical calculations are given:

(11c)(a) mean from a number of trials, x:

w
u2∞e

(t)=
E [(u2(t)−u2)e(t+t)]

√E [(u2(t)−u2)2 ]E [e2(t)]
= 0, Yt

x:=
WN
i=1

x
i

J
(9)

(11d)

where x is the value of the generation count w
u2∞e2

(t)=
E [(u2(t)−u2)e2(t+t)]

√E [(u2(t)−u2)2 ]E [e4(t)]
= 0, Yt

of a trial and J is the number of trials;
(b) standard deviation from a number of trials, s (11e)

where the residual, e(t), is calculated by

s=SWJi=1 (x
i
−x: )2

J−1
(10) e(t)=y(t)−y

<

(t) (12)

y
<

(t) is the one-step-ahead predicted output, and
the overbar denotes the time average, so that u2 isThe mean decides the speed of the ratio while
given bythe standard deviation detects the level of

consistency or reliability of the ratio.
u2=

1

N
∑
N

t=1
u2(t) (13)

The run of the algorithms is made several times for
When analysing a system that is not affected by

a fair conclusion on its performance. By running
external input [30], the single-dimensional correlation

the algorithms several fixed times, the element of
tests to counter the autocorrelations of residuals of

dependence on its initial population is effectively
low and high order consist of equation (11a) and

reduced.
These performance indicators are observed in the

w
e2e2
=
WN+t
t=1

(e2(t)−e2)
WN
t=1

(e2(t)−e2)2
=G1, t=0

0, otherwise
(14)order as listed above. The order is made to preserve

the priorities of observing algorithm performance,
wherebeginning from accuracy, parsimony, speed, and lastly

consistency. This is because an accurate solution is
e2=

1

N
∑
N

t=1
e2(t) (15)easier to achieve than parsimonious solutions. Then,

effective ratios are differentiated by speed, then
The accepted bandwidth for the fit of the modelconsistency.
to the system is approximately ±1.96/√N when
allowed a 95 per cent confidence interval, with N as
the number of data points.3.4.2 Correlation tests

The final step crucial in system identification is the
model validity test. A model can only be accepted as 4 SIMULATION STUDY
valid once it is proven that the selected terms and
variables do not contribute bias to its accuracy. This Simulated systems and real-world data are used in
can be done by applying correlation tests to ensure the search for the optimum grouping for the MGA.
that no other significant terms and/or variables are The simulated systems are of second- and third-
omitted from the model. A non-linear model requires degree non-linearity. A high degree of non-linearity
more tests than a linear model since it contains exhibits high complexity and requires careful selection

of regressors. Their model structures are predefinedpolynomials of variables. It is valid if it fulfils the
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when generating data. This enables immediate identi- Unless mentioned otherwise, the specification
of the algorithm is fixed for all trials, simulatedfication of the order of lags and direct comparison

between the correct model structure and the one models, and time-dependent data. The population
size, popsize, is set to 200, the maximum generationidentified by the GA.

The time-dependent data are the Wölfer sunspot is 100, the crossover probability p
c
=0.6, the mutation

probability p
m
=0.7/chromosome length, and theand gas furnace data exhibiting an a posteriori

modelling requirement [31]. The selection of the penalty value is 0.001.
order of lags for these data and specifications are
explained in their respective subsections. When used

4.1 Simulated model 1
with real data, a high-order polynomial function is

The first simulated system is generated from thebelieved to be able to yield better modelling [32].
following model (model 1)In a MGA, the optimum group ratio has to be

decided. Five trials were made for each of five
y(t)=0.5y(t−1)+0.3u(t−2)+0.3y(t−1)u(t−1)selected ratios implemented for each system and

time-dependent dataset. The selection of five trials +0.5u3(t−1)+e(t)
has been found to be adequate to represent the
natural behaviour of the algorithm. The represent- The input lag n

u
=2, the output lag n

y
=1, and the

non-linearity l=3. The inputs, disturbances, andation and operations used in the algorithm are
those of the conventional simple GA, also known as number of data are as follows: the input, u(t), is a

random white signal in the range [−1, 1]; the noise,the canonical GA: binary representation, one-point
crossover, and bit-flipping mutation [33]. The selec- e(t), is a random white noise in the range [−0.01, 0.01];

the number of data generated N=500.tion method used is individual selection, where the
fitness of individuals controls their future potential The model contains 20 regressors, resulting in

a search space of size 1048 575. By knowing theas parents, while the mating preference is mating of
two chromosomes with close OF values. This mating regressor selection sequence written in the computer

program, the correct chromosome for the model canpreference is similar to positive assortive mating [3].
The investigation is made using a separation be written as [010 101 000 000 000 010 00].

In this experiment, all ratios provide chromosomesratio. Fixed ratios are applied so that the number of
chromosomes in each group is maintained. It has to with the same EI as the optimum solution, valued at

0.0161. However, all trials of ratios 1 to 4 give thebe noted that, although there are four groups in the
population, two groups are of primary concern: same low OF values of the best chromosomes, at

0.017 30, where most trials needed less than half ofacceptable and ordinary. After the evaluation of
individual chromosomes has been done, two chromo- the maximum generation. Ratio 5 gives an average

of 0.017 32, and this failure is an obvious indicationsomes are labelled as best and bad. This leaves a
reduced population of size of poor performance. Ratio 4 was found to have the

lowest mean and standard deviation of the gener-
Separation population=popsize−2 (16) ation count. The next best ratio appears to be ratio

3, then ratio 2. Numerically, ratio 4 provides a 51 per
The reduced population is split into two by the

cent quicker and 63 per cent more consistent result
following ratios.

than its closest competitor.
Figure 3 gives the graphical results in one of the1. Acc=1 : Ord=0.

trials of ratio 4. Figure 3(a) gives the sum of squared2. Acc=3 : Ord=1.
errors of the whole population throughout the gener-3. Acc=1 : Ord=1.
ation. The convergence trend of population error is4. Acc=1 : Ord=3.
quite unclear owing to the large population size, and5. Acc=0 : Ord=1 (representative of a simple GA).
this is also seen in the other ratios. The search for
the solution reached its optimum at the 19th gener-where Acc is the number of chromosomes in the

acceptable group and Ord is the number in the ation (Fig. 3(b)). This is faster than most of the trials
of other ratios. The best structure contains nineordinary group. These ratios are referred to as

ratios 1 to 5. For comparative intention, however, it regressors, including all the correct regressors. The
reason for this non-parsimonious model selection isis interesting to note that ratio 5 is representative of

a simple GA where, putting aside all supplementary that the penalty value set beforehand in the algorithm
is too low, causing the number of selected regressorsstrategies, all chromosomes are required to undergo

crossover and mutation in the indicated sequence. to rise. This can be overcome by applying different

JSCE362 © IMechE 2007 Proc. IMechE Vol. 221 Part I: J. Systems and Control Engineering
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Fig. 3 Results of simulated model 1 (ratio 4): (a) sum of squared errors of population versus
number of generations; (b) OF value of best chromosome versus number of generations;
(c) system output and one-step-ahead output prediction versus number of data

values of penalty before a suitable level of parsimony the selected t value satisfy equations (11a) to (11e)
within the confidence bandwidth.is accepted. By increasing the penalty value to 0.1,

thereby penalizing bits with a parameter value less
4.2 Simulated model 2than 0.1, the best chromosome was found to be

exactly the same as the correct chromosome which
The second simulated system is generated from the

is [010 101 000 000 000 010 00].
following model (model 2)

The identification of the best chromosome is
y(t)=0.5y(t−1)+0.4u(t−1)−0.2u(t−3)followed by model validity tests to confirm that no

bias is contained in the model. This is presented in +0.3y(t−1)u(t−1)+0.1y(t−2)y(t−2)
Fig. 4 for the correct chromosome using a penalty
value of 0.1, where it can be seen that all points of +0.4u2(t−3)+e(t)

Fig. 4 Model validity tests for simulated model 1

JSCE362 © IMechE 2007Proc. IMechE Vol. 221 Part I: J. Systems and Control Engineering
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The input lag n
u
=3, the output lag n

y
=2, and the Figure 6 shows the model validity tests for the elitist

found from a penalty value of 0.1. All tests reveal thatnon-linearity l=2. It contains 21 regressors with
the structure is within the confidence bandwidth.2 097 151 overall candidate solutions in its search

space. The correct chromosome for the model is
[010 101 001 001 000 000 001]. The input region,

4.3 Wölfer sunspot time series datadisturbance region, and the settings of the algorithm
are the same as in simulated model 1. The Wölfer sunspot time series data consist of the

In this test, ratios 1 and 5 are unable to produce average number of sunspots on the sun measured
a solution with a low EI like the other ‘winning’ ratios, annually [31]. It is a suitable and commonly used
that is, 0.0131. This eliminates the potential of ratios time series exhibiting discrete-time behaviour and
1 and 5 as they require more generations before a equilibrium over a long period. Since the series does
newer solution with a lower EI can be selected. not have input, it involves only regressions among
Comparisons regarding the parsimony of models past output terms at equal time intervals. Applying
with OF values reveal that the ‘winning’ ratios give a term selection algorithm combined with the OLS
equally parsimonious models with OF=0.016 30. and error reduction ratio approach, Wei et al. [22]
Ratio 2 gives the lowest mean and lowest standard identify the suitable lag order for the output to be
deviation of the generation count, followed by ratio nine. The identification by Wei et al. [22] was made
3. The differences are 27 per cent in speed and 39 per using a linear model, namely the ARX model. The
cent in consistency. variables identified as significant are [ y(t−1), y(t−9),

Figure 5 gives the graphical results of one of the y(t−2), constant], and when this is represented in
trials of ratio 2. The convergence trend of the whole binary coding of length ten it is [111 000 000 1].
population seen in Fig. 5(a) is smoother than in To avoid pure coincidence, the Wölfer sunspot
simulated model 1 as the popsize-to-search space time series data are tested by applying n

y
=10 and

ratio is smaller. The actual number of the generation l=1. This results in 11 regressors and 2047 candidate
count in this sample run is 27 (Fig. 5(b)), with the solutions. Since the number of regressors is smaller,
best chromosome containing 20 regressors including the value of popsize is reduced to 30. All other
all the correct variables and terms. By increasing specifications are as in the simulated systems. There
the penalty value to 0.1 to increase parsimony, the are 288 output values collected from the year 1700
elitist was represented by the correct chromosome, to 1987, and the data are normalized to the standard

interval [0, 1].[010 101 001 001 000 000 001].

Fig. 5 Results of simulated model 2 (ratio 2): (a) sum of squared errors of population versus
number of generations; (b) OF value of best chromosome versus number of generations;
(c) system output and one-step-ahead output prediction versus number of data
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Fig. 6 Model validity tests for simulated model 2

In this test, all ratios give the same value of the EI, generation is high, the method always converges in
far fewer generations, the slowest in ratio 3 being 130.2341. The OF values are also the same at 1.6883.

This suggests a comparison of the generation count. generations. With a low penalty value, the algorithm
picks up all regressors as significant. Although theRatio 3 gives the lowest mean value, with a 12 per

cent difference from the second best ratio, ratio 2. model accuracy is better, the chromosome consists of
all regressors, neglecting the importance of parsimony.Ratio 2 gives the lowest standard deviation value,

with a 25 per cent difference from the second best An additional test applying a penalty value of 0.1
selects chromosome [011 000 000 10] which is similarratio, ratio 3.

Observing the graphical results of ratio 3 given in to the finding by reference [22].
The result of model validation using the parsi-Fig. 7, the convergence trend is unclear (Fig. 7(a)), as

is the case for simulated model 1. The elitist or best monious model found by applying a penalty value of
0.1 is shown in Fig. 8, where the first test is successfulchromosome was detected from the fifth generation

(Fig. 7(b)). Although the value of the maximum while the second test gives out-of-boundary values

Fig. 7 Results of Wölfer sunspot time series data (ratio 3): (a) sum of squared errors of population
versus number of generations; (b) OF value of best chromosome versus number of
generations; (c) system output and one-step-ahead output prediction versus number
of data
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4.4 Gas furnace data of Box et al. [31]

These time series data were obtained by Box et al.
[31] from actual process plant data consisting of a
discrete stochastic input series of gas feed rate in
cubic feet per minute and an output series of carbon
dioxide concentration in the outlet gas. There are 296
pairs of input–output data sampled at an interval of
9 s. After several tests, a satisfactory specification
of non-linearity, input lag, and output lag is used
for this study: output lag=2; input lag=2; non-
linearity=2.

With this specification, the number of regressors
amounts to 15 and the search space is 32 767. OwingFig. 8 Model validity tests for Wölfer sunspot time
to the small number of regressors, the popsize is setseries data using a linear model structure
to 100 while other specifications are kept the same(a non-linearity of one)
as in the simulated systems.

All the ratios provide the same EI value of 0.0046.
The objective OF values of all the ratios are also the

when applying t=0.1 and t=−0.1. This may be
same at 18.1491. This means that the solutions all

inherent from the selection of linear modelling. It
have equal levels of error and parsimony. Regarding

suggests that a higher-order model is required.
the generation count, ratio 3 reveals the lowest mean

Another trial was made, applying a non-linearity
value, followed by ratio 5, with a difference of 13 per

of three. The order of lag of output n
y
=9, since linear

cent. The lowest standard deviations are those of
modelling has demonstrated that the system is better

ratios 2 and 5. Their values are close, and the other
identified with a high lag value. This correponds

ratios are at least 40 per cent more inconsistent.
to 220 regressors/genes being contained in each

Figure 10 gives the graphical results of one of the
chromosome. The population size, popsize, is set to

trials of ratio 3, where an unstable situation is
100, the penalty value is 1.5, and the other settings

observed at the beginning of evolution before con-
of the algorithm are the same as those for a non-

vergence of population error is observed (Fig. 10(a)).
linearity of one. The high penalty value selected in

The generation number when the best chromosome
the algorithm is due to ensuring parsimony for the

was first found is nine (Fig. 10(b)). In this simulation,
high quantity of parameters associated with a high

the algorithm selects all regressors as significant owing
number of regressors. The results were tested using

to the low penalty value. Increasing the penalty value
the correlation tests to ensure model validity, and

to 0.1 gives [111 101 011 011 111] as the best chromo-
this is shown in Fig. 9 where all lag points are within

some. A further increment in penalty value to 0.5
confidence bands.

yields [111 010 010 000 000] as the best chromosome.
Figure 11 shows the result when the chromosome

of penalty value 0.5 is tested. All tests are satisfied
except w

ue
, which indicates that the process estimate

is biased. In a linear system, however, when the
residual is correlated with the input, the residuals are
also autocorrelated even if the noise model is correct
(when w

ue
(t)≠0 Yt, w

ee
(t)≠d(t)) [29]. However, since

this is analysed non-linearly, the slight inadequacy
may be inherent from wrong selection of lag orders
or non-linearity when these parameters are set.

5 DISCUSSION

Three out of four data samples used in the paperFig. 9 Model validity tests for Wölfer sunspot time
show that, with a sufficient number of generations,series data using a non-linear model structure

(a non-linearity of three) all ratios are able to produce solutions with an
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Fig. 10 Results of gas furnace time series data (ratio 3): (a) sum of squared errors of population
versus number of generations; (b) OF value of best chromosome versus number of
generations; (c) system output and one-step-ahead output prediction versus number
of data

Fig. 11 Model validity tests for gas furnace time series data

equal level of the EI. In some of the trials using ratios The results of the mean and standard deviation
of the generation count are presented again in1 and 5 in simulated model 2, the final solution has

a high EI. Regarding the OF, although ratio 5 has a Fig. 12 and analysed. Without affecting previous
observations, trials that theoretically need morelow EI in simulated model 1, its solution is non-

parsimonious compared with other ratios. Thus far, generations to produce accurate and parsimonious
solution are set to 100 for the generation count inratios 2 to 4 are more promising in producing a more

accurate and parsimonious solution. The maximum the graph. They are connected by smoothed lines in
an attempt to define the trend throughout the ratios.number of generations set for the ratios seems to

play an important role that may affect the whole This also means that the mean graph (Fig. 12(a))
must be looked at first before any further refinementoptimization outcome.
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Fig. 12 (a) Mean of generation count versus ratio and (b) standard deviation of generation count
versus ratio

of the conclusion using the standard deviation graph. In the comparison of the correct ratio, the study
reveals that the ratio should be somewhere betweenThe simulated systems clearly persist on ratio 4 for

simulated model 1 and on ratio 2 for simulated 1 : 3 and 3 : 1 in terms of acceptable group size to
ordinary group size. As a conclusion, it is safe andmodel 2. Their trends as the generation count

increases are alike. Observing the results of the optimistic to say that an equal size – ratio 3 or 1 : 1
– should be selected on the basis of the outcome ofWölfer sunspot time series data seems to show that

ratio 3 is the best ratio in terms of mean. As for the Fig. 12 where the lowest points tend to be in the
middle. A suitable selection of penalty value pro-gas furnace time series data, ratio 3 again gives a

better performance than even neighbouring ratios. vides a more parsimonious model. An alternative
approach to the study is to use the same initialMeanwhile, in the standard deviation graph,

generally, when the ratio is the best for the data, its population every time a trial is made. A different
setting to the algorithm is also expected to yield aconsistency is also better than that of other ratios.

For the real-world data, to be exact, consistency is better overall conclusion.
seen in the neighbouring ratio, ratio 2. Overall,
study of the simulated systems and real-world time
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APPENDIX popsize population size
p

c
, p

m
crossover and mutation probability

Notation
u(t) system input at time t

a
i

parameter value x value of generation count
Acc number of chromosomes in the y(t) system output at time t

acceptable group y
<

(t) one-step-ahead predicted output at
d response time delay time t
e(t) system noise at time t
J number of the trial e(t) residual at time t
l degree of non-linearity h parameter vector
L number of regressors (including a h< vector of estimated parameters

w regressor vectorconstant)
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