
Deterministic Mutation-Based Algorithm for Model Structure 
Selection in Discrete-Time System Identification 

 
Md Fahmi ABD SAMAD, Hishamuddin JAMALUDDIN, Robiah AHMAD, Mohd. Shafiek 

YAACOB and Abul K. M. AZAD 
 

Abstract- System identification is a method of determining a 
mathematical relation between variables and terms of a process 
based on observed input-output data. Model structure selection is one 
of the important steps in a system identification process. Evolutionary 
computation (EC) is known to be an effective search and optimization 
method and in this paper EC is proposed as a model structure 
selection algorithm. Since EC, like genetic algorithm, relies on 
randomness and probabilities, it is cumbersome when constraints are 
present in the search. In this regard, EC requires the incorporation of 
additional evaluation functions, hence, additional computation time. 
A deterministic mutation-based algorithm is introduced to overcome 
this problem. Identification studies using NARX (Nonlinear 
AutoRegressive with eXogenous input) models employing simulated 
systems and real plant data are used to demonstrate that the 
algorithm is able to detect significant variables and terms faster and 
to select a simpler model structure than other well-known EC 
methods. 

 
Index Terms—Evolutionary computation; Model structure 

selection; Nonlinear AutoRegressive with eXogenous input model; 
System identification, Correlation test 

 
1. INTRODUCTION 

 
System identification is a method of recognizing the 

characteristics of a system, thus producing a quantitative 
input-output relationship that explains or resembles the 
system’s dynamics [16]. The procedure of identification 
can be divided into four distinctive steps. The first step is 
the data acquisition. The second step is the model 
representation and structure selection that requires 
selection of the type of model followed by construction of 
the correct or optimal model structure. For a discrete-time 
difference equation, model structure selection includes the 
selection of degree of nonlinearity, maximum orders of lag 
for output, input, noise and time delay. Even when a model 
is found to be sufficiently able to represent a system at 
hand, it is always convenient for users to have a 
parsimonious model structure for the system. This can be 
achieved by penalizing less feasible solutions by 
comparison of the number of variables and terms through 
penalty functions [12]. The third step in system 
identification is the parameter estimation where the values 
of parameters based on the selected model structure are 
estimated. The fourth step is the model validity tests 

intended to verify or validate the representation of the final 
model selected.  

The model structure selection stage requires a robust 
method that is able to search among model structure 
alternatives the global optimal model structure. Such a 
characteristic is found in EC [9]. EC, termed since 1991, 
groups four types of optimization methods i.e. genetic 
algorithm (GA), evolutionary programming (EP), 
evolution strategies (ES) and genetic programming. Their 
differences, as traced back from their original versions, are 
in representation, selection and genetic operators. The 
application of EC extends in the planning, design, 
identification, control and classification in engineering 
analysis and development [3, 22] and some examples of its 
usage in system identification, particularly in model 
structure selection stage, are also available [1, 2, 17, 20].  

An analytical method in model structure selection is 
found in the extension of least square method, known as 
orthogonal least square (OLS), which evaluates the 
significance of a variable based on error reduction ratio 
(ERR) [21]. The OLS method requires the selection of 
threshold values of ERR to distinguish significance. The 
main disadvantage is that the change in the values of ERR 
for a given model is usually gradual, causing difficulty in 
justifying the level of significance and thus deciding the 
number of variables to be included in the final model. The 
use of a genetic algorithm has been shown to be better than 
the OLS method [1, 2].  

However, the performance of EC is highly dependent 
on its algorithm parameters. Researches are wide in search 
of the optimal setting of the parameters since it affects the 
performance in terms of computation speed, exploration 
and exploitation of search solutions, especially when 
constraints are present [1, 8, 18]. Poor selection of these 
parameters may cause GA to either converge prematurely 
or too slowly. As an addition, the objective function (OF) 
in GA needs to be carefully redefined when parsimony of 
the model becomes a requirement in model structure 
selection. 

The main aim of this paper is to propose a model 
structure selection algorithm, named deterministic 
mutation algorithm (DMA). It differs from other EC 
methods where its genetic operation is deterministic. In 
[15], deterministic mutation is based on a quasi-Newton 
optimization method for the problem investigated whereby, 
in this paper, the operator is ruled by its past performances 
to enable quicker detection of parsimonious models. It is 
an original adaptation of EC with no crossover and the 
characteristic of a forward search. Forward search 
evaluates variables one at a time and has been used such as 
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in direct search, stepwise forward inclusion method and 
with orthogonal least square-error reduction ratio 
estimation method [6, 21]. In these methods, parsimony 
has a fixed level that, like predictive accuracy, is based on 
a prespecified significance level, and only one final model 
is produced for the validation stage. There is also a risk of 
validity, as the methods leaves out the parameter 
estimation stage before the selection is made. In this paper, 
a population-based optimization method is designed to 
overcome the above weaknesses, and also to require less 
time and an easier setting when compared to conventional 
algorithms.  

This paper is organized in accordance with the steps of 
system identification as follows. Section 2 explains the 
model structure selection problem, with emphasis on the 
NARX model, and parameter estimation methods. Section 
3 explains the application of EC, where emphasis is given 
to GA followed by an explanation of the proposed 
algorithm, DMA. Section 4 explains the model validation 
methods while section 5 is the simulation study and 
discussion of several algorithms. Section 6 concludes the 
paper. 

 
2. MODEL STRUCTURE SELECTION AND 

PARAMETER ESTIMATION 
 

2.1 Model Structure Selection 
 

Various models are available when determining a 
suitable model representation for a system. These models 
are differentiated by either linear or nonlinear models 
where the latter provide much richer possibilities in 
describing systems and have better flexibility when 
inferring from a finite data set [16]. 

The NARX model is a common model structure 
representation for a nonlinear discrete-time system, which 
is also a generalization of the linear difference equation. It 
is written as:  

*( ) [ ( 1), ( 2), ... ( ), ( ),
            ( 1), ..., ( 1)] ( )

l
y

u

y t F y t y t y t n u t d
u t d u t d n e t

= − − − −
− − − − + +

  

where * [ ]lF ⋅  is a nonlinear function; y(t), u(t) and e(t) are 
output, input and noise, respectively at time t; ny and nu are 
the maximum orders of lag for output and input, 
respectively; d is the time delay and l is the degree of non-
linearity.  

The NARX model can be converted into a linear-in-the-
parameter model so that simple parameter estimation 
methods can be applied. An example of such a model is the 
linear regression model and is written as: 

( ) ( ) ( ),Ty t t e t= +φ θ yn t N≤ ≤   

where θ is the parameter vector, ϕ=[ϕ1 ϕ2 … ϕL] is the 
regressor vector, L is the maximum number of regressors 

adequate in describing the system’s dynamics and N is the 
total number of data depending on the sampling frequency.  

The regressors represent the variables and terms of the 
system and hence determine the size of the parameter 
vector. The number of possible regressors (L) in a NARX 
model increases with the degree of nonlinearity and orders 
of lag and is calculated as follows: 

L = M + 1     
where 

1

l
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= ∑ , where l = degree of nonlinearity       
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Suppose that a system is known to have nonlinearity,     
l = 2; time delay, d = 1; maximum order of lag for input,   
nu = 2 and maximum order of lag for output, ny = 2. This 
makes L = 15, along with the inclusion of a constant term. 
In a linear-in-the-parameter form, the model is written as 
follows: 
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where ai (i = 1, 2, 3, …, 15) are the parameters of the 
model with a1 as a constant.  

Since the decisions on the regressors are either 
inclusion or omission, simple binomial theorems apply. 
Therefore, the number of model choices from a fully 
expanded difference equation model is 2L-1, where L is the 
number of possible regressors. Given L = 15, the search 
space consists of 32 767 points. The structure selection 
stage deals with the selection of an appropriate model for 
the system based on accuracy, parsimony, etc. An 
evaluation of each point or candidate model is exhaustive 
or computationally laborious. 

 
2.2 Parameter Estimation 
 

The least square method is an effective method of 
determining the parameters when a linear-in-the-parameter 
model is used [16]. The method was founded by a German 
mathematician Carl Friedrich Gauss in 1821 and has since 
been developed for various optimization problems [14]. 
Another well-known method is the maximum likelihood 
estimation introduced by R. A. Fisher [14] but when the 
model used in the evaluation is of linear-in-the-parameter 
type and the noise data is uncorrelated, the least square 
method is relatively simpler and shall be used [16].
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3. EVOLUTIONARY COMPUTATION AND 
DETERMINISTIC MUTATION ALGORITHM IN 

MODEL STRUCTURE SELECTION 
 

The development of EC began in mid-1950s [9]. As 
mainstream EC representatives, evolutionary algorithms 
(GA, EP and ES), share the same metaphor as their 
working principle. That principle is the theory of biological 
evolution introduced by the famous Charles Darwin in 
1859. The effectiveness of EC is related to its parameter 
control. 

 
3.1 Genetic Algorithm 
 

Among all methods in evolutionary algorithms, GA, 
introduced by Holland [19], is the most widely known and 
has wide application [4]. In the model structure selection, it 
begins its search for the optimal model structure by 
initializing a set of chromosomes in a population to 
represent candidate models. Chromosome consists of genes 
separated by different positions, also defined as locus in 
which each gene carries an allele i.e. information of the 
search point.  

The typical coding method in GA is the binary 
representation. As each gene represents a variable or a term 
of a model in model structure selection, the allele is either 
1 for presence or 0 for absence. As an illustration, based on 
the model given in Eq. (1) and certain regressor coding, the 
chromosome [110 100 001 000 100] may represent the 
following model: 

1 2 4
2

9 13

( ) ( 1) ( 1)
         ( 1) ( 2) ( 1)
y t a a y t a u t

a y t u t a u t
= + − + −

+ − − + −
   

The chromosomes are then evaluated using a specified 
OF, where this OF is converted into a fitness function. The 
main aim in this evaluation is to identify chromosomes of 
high fitness before the selection stage takes place. In the 
case of the least square method, OF is the minimization of 
the sum of squares of the differences between the model 
output and real data and is written as 

( )2

1
ˆ( ) ( )

N

i i
i

OF y t y t
=

= −∑                (2) 

where ( )ŷ t  is the predicted output and y(t) is the actual 
output value, both at time t.  

However, since GA does not have its own mechanism 
to differentiate parsimonious models from non-
parsimonious ones, a penalty function can be integrated 
into its OF, written as follows: 

( )2
1

ˆ( ) ( ) log( )
N

i i
i

OF y t y t n
=

= − +∑       (3) 

where n is the number of insignificant regressors plus 1 [7]. 
Insignificant regressors can be identified by regressors 
with their estimated parameter less than a specified penalty 
coefficient (penalty). The selection of penalty is made 
based on the knowledge that the number of regressors 
selected for a regression model is inversely related to the 

penalty coefficient (i.e. higher penalty coefficient selects a 
model with less regressors).  

Here, low OF value is identified as high fitness and the 
opposite for high OF value. Conventional GA uses a 
proportional selection method for reproduction. The 
reproduction process is followed by genetic operations like 
crossover and mutation to produce chromosomes of new 
features known as offsprings. The processes are repeated 
until a stopping criterion like the maximum number of 
generations (max_gen) [19]. The best individual of the last 
population is identified as the optimal solution to the 
problem. The cycle of processes require a preselected 
setting of various algorithmic parameters such as 
population size (pop_size), crossover probability (pc) and 
mutation probability (pm). Attempts are continuously being 
made to identify the optimal set of parameters for use with 
GA. However, results do not always support each other 
when a change to a single parameter is made, i.e., the 
parameters are interdependent, or different optimization 
problems are attempted. 

 
3.2 Modified Genetic Algorithm 
 

The modified genetic algorithm (MGA) is a 
modification of the canonical GA, where it functions by 
the division of population into groups and each group 
undergoes different genetic operations [1]. For model 
structure selection, its representation and procedures are 
the same as GA. Its rationale of modification is in the 
allocation of different genetic operations to groups of 
individuals having different fitness in the population. By 
dividing the population into four groups of decreasing 
fitness values, these groups, respectively, undergo  

1. Conservation following the elitist strategy 
2. Mutation 
3. Sequence of crossover and mutation  
4. Replacement if a new chromosome is fitter 
MGA has the potential for quicker convergence than 

simple GA but its optimality still depends on the 
parameters as described earlier [13]. 

 
3.3 Modelling Using Deterministic Mutation Algorithm 
 

The fundamentals of GA lie in the theory of implicit 
parallelism [19]. It states that GA is able to globally search 
the optimal solution by concurrently evaluating multiple 
points when it evaluates a chromosome schema. The 
performance of GA as a robust search method is also 
related to the building block hypothesis in which the 
emphasis during the search is mentioned as toward the 
juxtaposition of short, low-order, high performance 
schemata [19]. Schemata can also be seen as hyperplanes. 
By knowing the optimal hyperplane, the search can be 
made more narrowed or easily converged. 

DMA is developed based on the above notions. Since 
the introduction of GA, crossover has been a prominent 
genetic operator with the mutation as a ‘background 
operator’ used only to ensure that no important allele or 
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value of gene in a chromosome during the search is left out. 
However, DMA uses mutation as its main operator, as has 
typically been the case in evolution strategies.  

By beginning the search with a population of the most 
parsimonious model candidates, optimality of the final 
solution in DMA is cautiously tracked down by its 
accuracy and parsimony through generational mutation. 
These parsimonious models are found from chromosomes 
of few 1-valued genes. Hence, the initial population is 
made up of all chromosomes of the same bit string length 
with only one gene with allele 1. The chromosomes can be 
considered as order 1 chromosomes if the 0-valued genes 
are regarded as wildcard genes since these genes do not 
contribute directly to evaluation for now. The evaluation is 
carried out using the same description as in subsection 3.1 
but according to Eq. (2), i.e., one without the use of a 
penalty function. The evaluation allows high fitness 
schema in the population to be identified and consequently 
the critical gene locus for mutation operation. The 
mutation operator applied does not require a probabilistic 
approach, as usually the case in GA, instead, is compulsory 
in each chromosome of each generation. By defining the 
chromosome length as L, pm = 1/L. This deterministic 
property of the mutation operator is also described as the 
identification of the significant gene for mutation from the 
former generation via the best chromosome. The term 
‘deterministic’ is used to emphasize that from a bit’s 
perspective, the probability of mutation is either 1 for 
critical gene or 0 for non-critical ones. 

The rule is applied to all chromosomes in the following 
generation except to the best chromosome, which is cut off 
from the population. The reason that the best chromosome 
is cut off is that, by that stage, better accuracy can only be 
achieved by more complex chromosomes, provided that no 
ill-conditioned estimation occurs. The mutation, hence, 
allows the size of the population to be reduced by 1 
chromosome each generation. Meanwhile, evaluation 
results, most importantly of the best chromosome in each 
generation, can be recorded in a bookkeeping manner. The 
algorithm is stopped when pop_size reaches 1, where all 
levels of complexity (or parsimony) have been evaluated. 
The algorithm allows a collection of solutions and 
accuracy values in increasing model structure complexity 
with respect to generation.  

The steps of DMA are given as follows: 
Step 1: Initialize population with an identity matrix of 

size L × L where L is the number of possible regressors 
and length of a bit string such that each row represents 1 
chromosome. Let generation number, t = 1. 

Step 2: Evaluate each chromosome in population based 
on the objective function. 

Step 3: Identify and let the best chromosome be Ct. 
Identify and let the locus of the critical gene in Ct of the 
current generation be Lt. The locus is identified by the 
position of bit 1 in Ct where the same position is occupied 
by bit 0 in other chromosomes.  

Step 4: Record and remove the best chromosome Ct 
from the population while flipping the gene of other 

chromosomes at Lt from 0 to 1. This process is called 
deterministic mutation. Let t = t + 1. 

Step 5: Repeat Steps 2 - 4 until t = L where all genes 
have allele 1. 

To illustrate its operation, assume a problem where L = 
4. The initial population at generation t = 1 looks as 
follows: 
Generation number        Population         Objective function             

           t = 1              

1  0  0  0

0  1  0  0

0  0  1  0

0  0  0  1

 
 
 
 
 
 

     

11

12

13

14

OF

OF

OF

OF

 

Next to each row is OF for each chromosome where 
each row in the population represents a chromosome. Here, 
OFpq is OF of the q-th chromosome at p-th generation. 
Assume a minimization problem and OF12 < OF1i (i = 1, 3 
and 4). To identify the locus of the critical gene, the 
position of bit 1 in C1 = [0 1 0 0] is located. Counting from 
left to right, L1 = 2. Since C1 is now a potential solution, its 
structure is recorded. It is removed from the population to 
avoid evaluation redundancy, while deterministic mutation 
is applied to other chromosomes yielding: 

         t = 2               
1  1  0  0

0  1  1  0

0  1  0  1

 
 
 
  

         
21

22

23

OF

OF

OF

 

Assume OF23 < OF2j (j = 1 and 2). This gives              
C2 = [0 1 0 1] and since it is the only chromosome with bit 
1 at position 4, L2 = 4. The population of the next 
generation then looks as follows: 

    t = 3                      
1  1  0  1

0  1  1  1
 
  

         31

32

OF

OF
 

The process continues until there is only one 
chromosome (t = L), where in this case, C4 = [1 1 1 1]. The 
issue of when to stop the evolution can also be addressed 
in other ways, like dropping percentage of OF value or 
number of regressors. Users may decide to stop the 
evolution when the changes of OF value are insignificant 
to a certain percentage or when the number of regressors 
reaches certain quantity. Users may also select their model 
from selected potentials based on validity results. The 
algorithm provides a collection of the best chromosome in 
every generation, Ct (t = 1, 2, …, L)  and their OF values. 
Notice that each chromosome in the collection has a 
different parsimony. For a minimization problem, it is 
explained in section 5 that OFp < OFt for every t < p. 

 
4. MODEL VALIDATION 

 
The model validity tests are used to verify whether the 

model selected fits the system data adequately. Before the 
tests are carried out, performance indicators of solutions 
are also calculated. The selected solution is validated using 
methods like correlation tests [5]. Model validation can 
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also be made by cross-validation utilizing either the k-step-
ahead prediction or the model predicted output function. In 
cross-validation, the error is calculated from the difference 
between the true output and predicted output for each data 
point as follows: 

ˆerror( ) ( ) ( )t y t y t= −       
where ˆ( )y t  is obtained by using the least square estimation 
method. In order to allow comparison to other optimization 
functions, the error is also normalized to the output’s range 
of values for the same type of input. The value is given in a 
percentage form calculated as 

max min

error( )
percentage of error( )= 100%

t
t

y y
×

−
  

where ymax and ymin are the maximum and minimum values 
of true output throughout the set of data, respectively. 

 
4.1 Performance Indicators 
 

In simulation study, the best model identified from a 
simple genetic algorithm or SGA (as described in 
subsection 3.1), MGA (subsection 3.2) and DMA are 
compared by using the following performance indicators: 

1. Error index 
In SGA and MGA, the best chromosome is identified in 

the last generation based on OF value. The error index (EI) 
of the chromosome is calculated as: 

( )2

2

ˆ( ) ( )

( )

y t y t
EI

y t
−∑

=
∑

    

where y(t) is system output and ˆ( )y t  is predicted output.  
2.  Number of regressors 
The number of regressors of the best chromosome is 

simply counted to demonstrate the level of parsimony, just 
as EI represents model accuracy. 

3.  Computation time 
The computation time is used to demonstrate the 

efficiency of each algorithm. For SGA and MGA, a 
specific pop_size and max_gen is given. Since DMA 
allows the specification of its algorithm parameters to be 
based on the length of a chromosome, which is identified 
from the number of possible regressors, its computation 
time can be used to specify the parameters for SGA and 
MGA. 

 
4.2 Correlation Tests 
 

The correlation tests involve the determination of 
correlation between the system’s properties. Linear models 
only require the detections of autocorrelation of residuals 
( εεφ ) and correlation of residuals and system’s inputs 

( uεφ ). Since nonlinear models contain polynomials of 
variables, the models require a more expanded number of 
tests [5] 

( ) [ ( ) ( )] ( ),E t t= − =εεφ τ ε τ ε δ τ 0τ =     (4a) 

( ) [ ( ) ( )] 0,u E u t t= − =εφ τ τ ε τ∀      (4b) 

( )2 2
2 ' ( ) ( ) ( ) 0,

u
E u t u t= − − = 

 ε
φ τ τ ε τ∀    (4c) 

( )2 2 2
2 ' 2 ( ) ( ) ( ) 0,

u
E u t u t= − − = 

 ε
φ τ τ ε τ∀    (4d) 

( ) ( ) [ ( ) ( 1 ) ( 1 )] 0 ,u E t t u t= − − − − =ε εφ τ ε ε τ τ 0τ ≥ (4e) 
where E[•] is the expectation operator. The residual, ε(t) is 
calculated by 

ˆ( ) ( ) ( )t y t y tε = −      
where ˆ( )y t  is the predicted output. 

The commonly accepted bandwidth for the model’s fit 

to the system is approximately 1.96 N± , based on 95% 
confidence interval, where N is the number of data points 
[5]. 

 
5. SIMULATION STUDY  

 
The simulation study is conducted to compare the 

performance of SGA, MGA and DMA in obtaining 
parsimonious models for system identification problems. 
The data acquisition is made by simulating several NARX 
models of different nonlinearities and using a real plant 
data. The simulated models are used to enable direct 
comparison of the correct solution to the solution found by 
the algorithms. This is possible by knowing the sequence 
of regressor selection in the computer program. The 
application of the algorithms is then extended to a real 
plant problem where the correct structure is unknown. 

All simulated models are causal systems of different 
specifications where the outputs are defined by past inputs 
and outputs. The inputs are white signals, u(t), generated 
from a uniform distribution function in the interval [-1, 1] 
and white noise e(t) generated from a uniform distribution 
function in the interval [-0.01, 0.01]. Five hundred data 
points are generated from each simulation. The real plant 
data is gas furnace data suitable for a posteriori modelling 
[7]. 

The settings of SGA and MGA are made by selecting 
0.6 for crossover probability and 0.01 for mutation 
probability. The value for crossover probability is taken 
from De Jong’s genetic algorithm, claimed as optimum for 
both online and offline applications [10] and also 
recognized as the benchmark for parameter control study 
using meta-level GA [11]. The value for mutation 
probability is also claimed to be suitable for both online 
and offline applications in the meta-level GA study. 
Depending on the computation time needed by DMA, 
pop_size and max_gen for SGA and MGA are set equally 
at a specific value. This equality is used to ensure 
adequacy of both variations and manipulations of 
chromosomes. The penalty coefficient is selected slightly 
lower than or equal to the absolute value of the smallest 
parameter either in the simulation model or the model 
identified from DMA to ease the search for optimal penalty 
coefficient yet expected to satisfy the same level of 
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parsimony as the model in DMA. The evaluation of 
chromosomes in SGA and MGA is made according to the 
OF described in Eq. (3). The performance of all the 
algorithms is compared via the performance indicators; 
Error index (EI), number of regressors and computation 
time where the computation time is taken by using a 1.70 
GHz processor. 

 
5.1 Simulated Models 
 

Simulated Model 1 has an input lag, nu = 2; time delay, 
d = 1; output lag, ny = 1; nonlinearity, l = 3 and therefore 
has a search space of 220 – 1 = 1 048 575 points. The model 
is defined as 

3
( ) 0.5 ( 1) 0.3 ( 2) 0.3 ( 1) ( 1)

         0.5 ( 1) ( )
y t y t u t y t u t

u t e t
= − + − + − −

+ − +
 

The correct chromosome for this simulated model is [010 
101 000 000 000 010 00]. To achieve approximately the 
same or more computation time than used by DMA, 
pop_size and max_gen for SGA and MGA are set equally 
at 20. Penalty is given to regressors with their       
parameter < 0.1. 

Simulated Model 2 has an input lag, nu = 3; time delay, 
d = 1; output lag, ny = 2; nonlinearity, l = 2 and a search 
space of 221 – 1 = 2 097 151 points. The model is defined 
as 

2

2

( ) 0.5 ( 1) 0.4 ( 1) 0.2 ( 3)
         0.3 ( 1) ( 1) 0.1 ( 2)
         0.4 ( 3) ( )

y t y t u t u t
y t u t y t
u t e t

= − + − − −
+ − − + −
+ − +

  

In this simulation, the correct chromosome is [010 101 001 
001 000 000 001]. The values of pop_size and max_gen in 
SGA and MGA are set to 20 whilst penalty is set to 0.1. 

Simulated Model 3 has a fairly larger number of correct 
and possible regressors. Its specifications are input lag,    
nu = 2; time delay, d = 1, output lag, ny = 2, nonlinearity,    
l = 3, therefore, a search space of 235 – 1 = 34 359 738 367 
points. The model is defined as 

   2 2

2 3

3

( ) 0.5 0.4 ( 1) 0.2 ( 1) ( 1)
         0.2 ( 1) ( 2) 0.3 ( 2) ( 2)
         0.2 ( 1) ( 2) 0.7 ( 1) ( 2)
         0.2 ( 1) ( 1) 0.8 ( 2)
         0.4 ( 1) ( )

y t u t y t u t
y t u t y t u t
y t y t y t u t
y t u t y t
u t e t

= + − + − −
− − − + − −
+ − − + − −
− − − − −
− − +

 

where the number of correct regressors is 10 and the 
correct chromosome is [100 100 011 001 000 010 100 010 
010 000 001 000]. The pop_size and max_gen for SGA and 
MGA are both set to 30 whilst penalty is 0.15. 

Shown in Figs. 1-3 are the plots of OF and EI values 
against the number of generations for simulated Models   
1-3, respectively, using SGA, MGA and DMA. Only the 
selected evolution period is shown because, in the 
beginning of evolution, the values of OF and EI using 
DMA are very high. Since MGA maintains its elitism, its 
OF values keep decreasing. DMA shows better 
convergence as the number of generations, hence the 
number of regressors, increases. For simulated Model 1, 
based on the records of DMA, the best chromosome in a 

term balanced by accuracy and parsimony is at generation 
4, which gives the correct structure [010 101 000 000 000 
010 00]. For simulated Model 2, the selected chromosome 
is from generation 6 that has the correct structure [010 101 
001 001 000 000 001]. For simulated Model 3, the correct 
chromosome is selected by DMA in generation 10. Table 1 
shows the performance measures of the three algorithms. 
Tests using correlation tests to the selected chromosomes 
from DMA for the simulated models give all results either 
within the confidence bands or containing only slight 
correlations at a few lag values. 

 
Fig. 1  (a) OF value versus the number of generations (b) EI versus the 
number of generations by using different algorithms for simulated Model 
1 

 
Fig. 2  (a) OF value versus the number of generations (b) EI versus the 
number of generations by using different algorithms for simulated Model 
2 

To further verify that the model obtained is input-
independent, cross-validation is carried out. An additional 
100 output data are generated from Model 3 and 
superimposed to the output values of the DMA selected 
model using a different input function. Instead of random 
white signal, the input u(t) in these additional data are 
given by 

( )( ) 0.5 sin(0.3 ) cos(0.4 )u t t t= +   
where t is sampling time = 501, 502, …600. 

Throughout the superimposition, the maximum error is, 
however, found in the estimation set calculated as 0.0120. 
Its percentage of error is 0.96%. In the test set, the 
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maximum error and percentage of error are 0.0099 and 
0.89%, respectively. 

 
Fig. 3  (a) OF value versus the number of generations (b) EI versus the 
number of generations by using different algorithms for simulated Model 
3 

Table 1: Performance measures of SGA, MGA and DMA for 
simulated models 

Simulated 
Models 

Performance 
Indicators SGA MGA DMA 

1 

Number of 
regressors 13 7 4 

Error index 0.2684 0.0162 0.0162 
Computation 
time (seconds) 1.625 1.421 1.156 

2 

Number of 
regressors 12 11 6 

Error index 0.1027 0.0308 0.0113 
Computation 
time (seconds) 1.719 1.453 1.187 

3 

Number of 
regressors 19 19 10 

Error index 0.0652 0.0336 0.0123 
Computation 
time (seconds) 2.984 3.234 1.890 

 
5.2 Gas Furnace Data 
 

This input-output data are from an actual process plant 
[7]. The data consist of a discrete stochastic input series of 
gas feed rates in cubic feet per minute and output series of 
carbon dioxide concentrations in outlet gas. There are 296 
pairs of input-output data sampled at an interval of 9 
seconds.  

For real data such as this, the specifications of the 
model are determined first. Therefore, before SGA and 
MGA are tested, several variations of nonlinearity degrees, 
output lag order and input lag order of a NARX model are 
tested using DMA. The models from chromosomes with 
the most 1-valued genes are analyzed using the extended 
correlation tests in Eqs. (4a)-(4e). More regressors usually 
give a better model fit, but the least square method 
becomes ill-conditioned when the number of parameters is 
too large. In order to avoid this overfitting situation, only 
well-conditioned chromosomes of various specifications 
are compared. Based on the correlation tests, the most 

suitable variation for the gas furnace data is found to be      
l = 3, ny = 7, and nu = 2 where the total number of possible 
regressors is 220. This gives more than 1066 possible 
models to choose from. 

DMA is then applied again to find a parsimonious 
model. As in the procedure in subsection 4.1, pop_size and 
max_gen for DMA are set to 220. The pop_size and 
max_gen for SGA and MGA are limited to 110 due to the 
more complex processes. The penalty for SGA and MGA 
is set to 0.000035, based on the smallest parameter value of 
the solution selected from DMA.  

Fig. 4 shows the OF and EI values in SGA, MGA and 
DMA for the selected evolution period because of the same 
reason as in subection 5.1. MGA shows lower OF and EI 
values. The solution of DMA at generation 11 is selected 
as its optimal solution since solutions in latter generations, 
as seen, do not give significant improvement in OF or EI 
values. The OF and EI values for some solutions using 
DMA in interval of 5 generations can be inferred from 
Table 2. The results of performance measures are given in 
Table 3. 

 
Fig. 4  (a) OF value versus the number of generations (b) EI versus the 
number of generations by using different algorithms for gas furnace data 
 
Table 2: Objective function and error index of best chromosomes 

in 5 generation intervals found in DMA for gas furnace data 
Number of 

generations (number 
of regressors)   

Objective 
function Error index 

5 22.3637 5.1889 
10 16.6209 4.4733 
15 15.2241 4.2812 
20 14.1296 4.1245 
25 13.1514 3.9791 
30 12.6240 3.8985 

 
Table 3: Performance measures of SGA, MGA and DMA for gas 

furnace data 
 SGA MGA DMA 
Number of 
regressors 113 139 11 

Error Index 0.0029 0.0023 0.0044 
Computation 
time (seconds) 1546.032 2063.906 1092.625 
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Although the EI in DMA is higher, this is due to the 
parsimony concern in the study. If the selected 
chromosome has been at the 108th and 129th generation, 
the EI given by chromosomes in DMA is 0.0028 and 
0.0025, respectively. These are about the same as found in 
SGA and MGA. It is clear that DMA has advantages over 
computational need and parsimonious model search. Fig. 5 
gives the correlation results of the selected solution from 
DMA where only slight correlations are found. Correlation 
tests to model with 58 regressors in DMA give all results 
within confidence bands. Fig. 6 shows the superimposition 
of actual and predicted outputs. The maximum error is 
1.4643, while the percentage of error is 9.83%. 

 
Fig. 5  Correlation results of selected solution in DMA for gas furnace 
data 

 
Fig. 6  (a) System and predicted outputs (b) Error of prediction using 
selected model from DMA for gas furnace data 
 
5.3 Discussion 
 

Based on the study of simulated models and real plant 
data, DMA is able to demonstrate a convincing and 
consistent capability in model structure selection. Since its 
solutions can be retrieved in an ascending quantity of gene 
1 in a chromosome, careful trade-off between parsimony 
and accuracy is possible.  

The usage of a penalty function in SGA and MGA 
requires a selection of penalty coefficient. Inappropriate 

penalty coefficient can be divergent in effective solution 
selection as the detection of significant variables and terms 
become ambiguous. SGA and MGA also requires the 
initialization of a random population in the procedures. 
This becomes a deficiency factor in the algorithm when 
non-parsimonious chromosomes begin to dominate the 
population. This dominance contributes to premature 
convergence, as parsimonious chromosomes are unable to 
be formed. SGA and MGA also utilizes probabilities that 
make the outcome of a simulation trial always differ from 
another, constituting a lack of consistency. 

 
6. CONCLUSION 

 
DMA functions in an organized deterministic pattern. It 

selects the most critical terms and variables in its advance 
of iterations with consideration of parameter estimation 
and without a rigid dependence of a fixed significance 
threshold. The simulation study shows that DMA is much 
simpler in the sense that it does not require too many 
genetic operations, parameter controls and penalty 
mechanism but is able to find good solutions quicker, with 
more efficient constraint-compliance and, additionally, is 
more accurate in some cases than SGA and MGA. 
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